

Introduction

Current personal firewalls are focused on combating usermode
malware

What about protection against rootkits?

Overview
i386 Windows NT+ network subsystem overview
What malware authors usually do to cheat firewalls
Common firewall techniques

Bypassing typical firewall hooks with no code patching
Advanced firewall techniques

DKOM solutions to bypass modern firewalls
Live demo

How to make firewalls resistant to the discussed attacks

Windows NT Network Subsystem Overview

Common Firewall “Bypassing” Techniques

Code injection into trusted process
Malware finds trusted process and tries to inject code into it

Firewalls evolve to catch various types of code injections

Prevention of firewall drivers from loading
Rootkit registers an image load notification callback via
PsSetLoadImageNotifyRoutine()
The callback checks for known driver images and counteracts their loading (e.g.
by patching XOR EAX, EAX / RET 0x08 at their entry point)

 These techniques do not actually bypass firewalls – they cheat
them. They are either firewall implementation specific or take
advantage of incompetence of a user (i.e. weak firewall rules
exploitation)

Common Firewall Techniques – x86 Kernel Mode

TDI hooking
Allows to implement per-process traffic monitoring and filtering connection
attempts and packets of connectionless protocols made by upper-level socket
interfaces
High level TDI interfaces may be used by a firewall to simplify the detection and
prevention of attacks against application layer protocols

NDIS hooking
Allows to implement protection against attacks targeted from data link layer (e.g.
Ethernet specific attacks) to transport layer (TCP protocol attacks). TDI hooks
cannot prevent data link layer attacks
It makes possible to hook unknown protocols’ traffic (for example it may be used
to switch system to “network stealth” mode)

Common Firewall Techniques – TDI hooking

Attaching to \Device\Ip, \Device\RawIp, \Device\Tcp, \Device\Udp
Perform per-process traffic monitoring

Techniques used
Device filtering

Find a real device in the filter chain (lowest one)

DRIVER_OBJECT.MajorFunction[] hooking
Perform a tunneling and find real TCPIP.SYS handlers

 It’s too high level to pose obstacle for a rootkit
It can block only rootkits that are using kernel mode sockets interface
Greg Hoglund suggested using personal TCP/IP stack in 2001

Device Filtering – Finding Original Device

Original Device Filter Device 1 Filter Device 2

MajorFunction[] Hooking – Tunneling (1)

Walk relocation information of the TCPIP.SYS, store all absolute
labels

Drivers must have relocation info. Therefore, all specified MajorFunction
elements must have DREFs in the driver image

Hook Int 01 in the IDT
Should be done in SMP-safe way: all existing IDTs must be hooked

Catch a thread which is going to call IoCallDriver() to the TDI filter
device, set Trace Flag in this thread

No code patching is required: change pIofCallDriver pointer (it can be
found easily – IofCallDriver() is exported) like Driver Verifier or IRP
Tracker does. Edgar Barbosa used pIofCallDriver hooking to bypass VICE

MajorFunction[] Hooking – Tunneling (2)

Trace the thread until it comes to
one of the absolute labels of the TCPIP.SYS

Original MajorFunction[IrpStack->MajorFunction] found

IopInvalidDeviceRequest() in the ntoskrnl.exe
This MajorFunction was not specified by the TCPIP.SYS

the caller (IoCallDriver() returns)
TDI filter has denied something, or current IRP is pending. Wait for another
IoCallDriver()

Remember original MajorFunction[] value if it was found, clear TF
Now rootkit is able to call original MajorFunction directly, without
IoCallDriver(). It should adjust IRP stack locations manually

Unhook IDT if all required MajorFunction[] entries have been found

Common Firewall Techniques – NDIS Hooking

Hooking NdisRegisterProtocol(), NdisOpenAdapter(),
NdisDeregisterProtocol(), NdisCloseAdapter()

Catch all known (read, TCP/IP) protocol registrations
Patch NDIS_PROTOCOL_CHARACTERISTICS

Catch all protocol bindings
Patch returned NDIS_OPEN_BLOCK

Techniques used
NDIS.SYS export table patching
NDIS.SYS code patching

 Still not a problem for a rootkit

NDIS Hooking – Typical Scenario

Driver calls NdisRegisterProtocol()
Firewall checks for known protocol name (usually TCPIP, RASARP and
TCPIP_WANARP) and then patches NDIS_PROTOCOL_CHARACTERISTICS with
its own handlers

Some internal NDIS macros call functions by pointers from
NDIS_PROTOCOL_CHARACTERISTICS and not from NDIS_OPEN_BLOCK

Driver calls NdisOpenAdapter()
Firewall calls original NdisOpenAdapter(), and if it succeeds, patches
(PNDIS_OPEN_BLOCK)*NdisBindingHandle code pointers

SendHandler, SendPacketsHandler
RequestHandler
TransferDataHandler
…

NDIS AntiHooking – Bypassing Firewall Hooks

Rootkit may patch its own handlers over the firewall hooks in the NDIS_OPEN_BLOCK
of a certain protocol binding

Used in “DeepDoor” by Joanna Rutkowska and “Peligroso” by Greg Hoglund
This may work for simple firewalls, but more advanced ones will check their hooks for
presence (subsequent NDIS_OPEN_BLOCKs checks) and integrity (i.e. splices/detours
of their handlers)

How to register a protocol which will not be noticed by a NDIS-hooking firewall?

Bypass firewall hooks!
It’s a good idea to leave hooks intact, so that firewall will notice nothing. Active
antihooking may trigger the defense subsystem of the firewall

These hooks may be either EAT-based or direct code patches in the NDIS.SYS
EAT hooks may be defeated by finding original API addresses
Direct code hooks may be defeated with the code pullout technique

NDIS EAT AntiHooking – Using Original Functions

Load NDIS.SYS file image from the disk
Assume that disk IO is not hooked. Bypassing disk IO hooks is beyond the scope of
this presentation

Map image sections to appropriate virtual addresses
This step may be skipped if we’re going to translate Relative Virtual Addresses to
Relative Physical Addresses using virtual section table each time we encounter a RVA.
Reason: saving of memory

Walk export table and find needed RVAs
There’s no GetProcAddress() equivalent in the kernel
(MmGetSystemRoutineAddress() can be used only for ntoskrnl and hal exports)

Apply found RVAs to the original NDIS.SYS image, don’t rely on the import table
anymore

Make sure that API code is not hooked

NDIS Code AntiHooking – Using New NDIS Image

It’s possible to load NDIS.SYS image from the disk with our own PE loader and
make calls into this image

Map NDIS.SYS file image sections to appropriate virtual addresses in the nonpaged
memory
All absolute pointers must be rebased to the existing NDIS.SYS image: we want our
new hook-free code to use existing NDIS data

Advantages
Initialization speed: we should perform a few fairly simple operations to make things
up and running
The loaded code will always be 100% correct – it is a clone of the running NDIS
The technique is portable: there’s no need to implement different PE loader for every
processor which OS supports

Disadvantages
Code size: we’re going to use only few functions, but load the whole NDIS
New code is identical to the original NDIS.SYS: a memory scanner could detect a
copy

NDIS Code AntiHooking – Code Pullout Overview

More intelligent solution: build a sufficient NDIS code subtree
Again, absolute pointers should be fixed to the existing NDIS image

Advantages
Generated code size is much smaller than the full NDIS image
NDIS code may be mutated with any polymorphic algorithm, signatures will be broken
If we have to perform a search for a not-exported symbol based on code XREFs or
other dependencies, the searching process may be combined with code walking to
improve the performance

Disadvantages
Initialization speed: there is a number of time-consuming operations
It is theoretically possible that we encounter instructions that our disassembler will not
be able to decode: the disassembler engine must understand as many instructions
subsets as possible
It’s architecture-dependent: one has to implement code coverage and rebuilding tools
for every supported processor

NDIS Code AntiHooking – Code Pullout (1)

PE loader maps new virtual image of the NDIS.SYS from the disk
Don’t care about relocs – they will be fixed later
Do not use MmCreateSection() with a SEC_IMAGE allocation attribute:
original section mapper (MiCreateImageFileMap()) may be hooked

Entry points for the subtree are defined as RVAs of the needed APIs
All subtrees will intersect with each other over the shared code – generated code
should not be redundant

Engine builds a code coverage map: each queued branch is being
statically walked with a disassembler

We stop on RET, IRETD, unpredictable control transfer (like JMP reg32) or
when we come to the code that has been already analyzed. Calls and conditional
jumps “fork” execution flow – they add branches to later analysis. Subtree
coverage map is complete when there is no more branches left in the analysis
queue

NDIS Code AntiHooking – Code Pullout (2)

All contiguous regions of the covered code are copied to one chunk of
memory one after another without gaps

Here we recalculate entry points for the addresses which were specified as the
top of the original code subtrees (NDIS APIs in our case)
This is where polymorphic methods may be applied to get rid of any static code
signatures

Engine relinks all relative jumps and calls in the generated code
All relative instructions that connect non-adjacent code blocks were damaged
while merging a coverage

Relocations are fixed to the original NDIS image

Modern Firewall Techniques

Registration of a dummy protocol for walking protocols list
Will spot new protocols without hooking, thus leaving antihooking methods
useless

Periodical checks of the NDIS_OPEN_BLOCKs code pointers integrity
“DeepDoor” and “Peligroso” rootkits will lose their hooks

Anti-splice and anti-detours tricks
Various control data is addressed in trampolines via PIC code with the help of
EIP-based deltas: direct detours will change the logic of the firewall trampoline,
which may lead to BSOD or rootkit compromise

Modern Firewall Techniques – Walking Protocols

NdisRegisterProtocol() returns valid NDIS_PROTOCOL_BLOCK
pointer which is first in the protocols list

Walking list this way is dangerous! ndisProtocolListLock must be acquired,
otherwise a race condition may occur

Walking Protocols – Stable Way

The right solution will be to use real ndisProtocolList and ndisProtocolListLock
The problem: they are not exported
ndisProtocolList is singly linked, so we can’t walk it backwards to find a head
To be sure that firewall is not cheating us, we again will use static analysis of the NDIS.SYS
file
Here’s a fact: both these global variables are used by the NdisRegisterProtocol()

First, enumerate all absolute pointers in the NdisRegisterProtocol() execution tree

Eliminate all IAT pointers from this list

Now check, which global variable from the list is ever used as a PKSPIN_LOCK by
examining calls to KfAcquireSpinLock() and such

From NT4 till 2003 Server there will be just one spin lock – the ndisProtocolListLock

Acquire found spin lock and check other global variables – do they look like a head of a
NDIS_PROTOCOL_BLOCK singly linked list

Some memory forensics required!

NDIS Internals – ndisProtocolList Usage

NdisRegisterProtocol()
Places new NDIS_PROTOCOL_BLOCK at the head of the ndisProtocolList

NdisDeregisterProtocol()
Removes protocol from the list

ndisReferenceProtocolByName()
ndisCheckAdapterBindings()
ndisHandleProtocolReconfigNotification()
ndisHandleProtocolUnloadNotification()
ndisHandleProtocolBindNotification()
ndisHandleProtocolUnbindNotification()

ndisDereferenceProtocol()
Decrements reference counter and frees NDIS_PROTOCOL_BLOCK if it reaches zero
Does not walk ndisProtocolList if the protocol remains referenced

ndisPnPDispatch()
Checks for empty ndisProtocolList before calling ndisQueueBindWorkitem()

ndisCheckAdapterBindings()

 ndisProtocolList is not used by the packet indication code

NDIS Internals – Registering a Filter (1)

NdisOpenAdapter() updates a corresponding miniport filter database (ETH_FILTER for
ethernet in NT4/2000, X_FILTER structure in XP+)

Database is selected using Miniport->MediaType value
Miniport->EthDB for ethernet
Miniport->TrDB for token ring
Miniport->FddiDB for fiber optic

For ARCnet miniports ARC_FILTER is used instead of X_FILTER; the filter database is at
Miniport->ArcDB

struct _X_FILTER { // XP SP2
/*<+0x0>*/ /*|0x4|*/ struct _X_BINDING_INFO* OpenList;

/*<+0x4>*/ /*|0x210|*/ struct _NDIS_RW_LOCK BindListLock;

/*<+0x214>*/ /*|0x4|*/ struct _NDIS_MINIPORT_BLOCK* Miniport;

/*<+0x218>*/ /*|0x4|*/ unsigned int CombinedPacketFilter;

/*<+0x21c>*/ /*|0x4|*/ unsigned int OldCombinedPacketFilter;

/*<+0x220>*/ /*|0x4|*/ unsigned int NumOpens;

/*<+0x224>*/ /*|0x4|*/ struct _X_BINDING_INFO* MCastSet;

/*<+0x228>*/ /*|0x4|*/ struct _X_BINDING_INFO* SingleActiveOpen;
/*<+0x22c>*/ /*|0x6|*/ unsigned char AdapterAddress[6];

…

NDIS Internals – Registering a Filter (2)

XNoteFilterOpenAdapter()/EthNoteFilterAdapter() attaches new
ETH_BINDING_INFO/X_BINDING_INFO to the selected filter
database

Current NDIS_OPEN_BLOCK pointer is stored there

This way NDIS saves information about NDIS_OPEN_BLOCK bindings to
the particular NDIS_MINIPORT_BLOCK

NDIS does not use ndisProtocolList to find an open binding on any
network event, but firewalls do (indirectly): they get information about bindings
by walking the protocol list

struct _X_BINDING_INFO { // XP SP2
/*<+0x0>*/ /*|0x4|*/ struct _X_BINDING_INFO* NextOpen;
/*<+0x4>*/ /*|0x4|*/ struct _NDIS_OPEN_BLOCK* NdisBindingHandle;
/*<+0x8>*/ /*|0x4|*/ void* Reserved;
/*<+0xc>*/ /*|0x4|*/ unsigned int PacketFilters;
/*<+0x10>*/ /*|0x4|*/ unsigned int OldPacketFilters;
/*<+0x14>*/ /*|0x4|*/ unsigned long References;
…

NDIS Internals – Managing Received Packets

Ethernet packet managers
ethFilterDprIndicateReceivePacket()

Gets X_FILTER pointer by looking into PNDIS_MINIPORT_BLOCK (Miniport-
>EthDB), which is its first parameter

EthFilterDprIndicateReceive()

For legacy miniports only
Gets ETH_FILTER/X_FILTER pointer as the first parameter

Managers walk ETH_BINDING_INFO / X_BINDING_INFO lists and
indicate packets to the appropriate protocols

NDIS doesn’t care about NDIS_PROTOCOL_BLOCKs here; only
NDIS_OPEN_BLOCKs matter (X_BINDING_INFO.NdisBindingHandle)

 Therefore, NDIS may indicate the packets to the protocol which is
not present in the ndisProtocolList

Bypassing Protocol Walking – Approaches

New protocol registration: Code Pullout + DKOM methods
We should exclude our protocol from the ndisProtocolList: it will remain
functional, but a firewall won’t be able to find it using list walking
Approach I: call hook-free versions of NdisRegisterProtocol(),
NdisOpenAdapter() and then unlink NDIS_PROTOCOL_BLOCK from the list.
Very similar to process hiding via PsActiveProcessHead elements unlinking
Approach II: modify copied NdisRegisterProtocol() and
NdisOpenAdapter() code trees

Without new protocol: nothing to hide
We should establish hooks over the existing protocols; hooking
NDIS_OPEN_BLOCKs is too high level
Approach III: hook existing ETH_BINDING_INFO / X_BINDING_INFOs
Approach IV: register new ETH_BINDING_INFO / X_BINDING_INFO
manually

Bypassing Protocol Walking I – Protocol Unlinking

Unhook NdisRegisterProtocol() and NdisOpenAdapter()

Call these hook-free APIs to register and bind a rootkit protocol
It will be linked in the ndisProtocolList, but a firewall will not detect its
registration and binding

Unlink returned NDIS_PROTOCOL_BLOCK from the list
We have already found ndisProtocolList

Major shortcoming
Firewall may detect and hook newly registered protocol before we unlink it

 Easy to implement, but very impractical: rootkit may be
compromised if a firewall has a timer which is frequent enough

Bypassing Protocol Walking II – Pullout Update

Modify our copies of NdisRegisterProtocol() and
NdisOpenAdapter() code trees

Substitute all references to the original ndisProtocolList with references to
the fake one in the generated code: both APIs will remain coherent
This may be done on the final step of the code generating – relocations linking
Fake ndisProtocolList may be NULL

 Uses disassembler engine (i.e. not easily portable), requires to
hook Receive* handlers of all other protocols bound to same
adapter in order to block packets designated to our TCP/IP stack –
only rootkit protocol should receive them

Bypassing Protocol Walking III – X_FILTER Hooks

It has been shown that NDIS packet receive managers use
X_FILTER.OpenList as a head of all open bindings

Choose random protocol binding to the specific adapter by walking its
X_FILTER.OpenList

Make a copy of its NDIS_OPEN_BLOCK (accessed via
X_BINDING_INFO.NdisBindingHandle)
Patch Receive* handlers in the copied open block
Substitute pointer to the original NDIS_OPEN_BLOCK for pointer to the patched
copy

 Very stealthy: this approach introduces only one pointer
modification to a system

Bypassing Protocol Walking IV – NDIS API Emulation

Register new ETH_BINDING_INFO / X_BINDING_INFO manually
Create correct NDIS_OPEN_BLOCK without NdisOpenAdapter()
Properly add new X_BINDING_INFO which points to faked
NDIS_OPEN_BLOCK to the X_FILTER.OpenList

Major shortcoming
Very NDIS version dependent

 Very hard to implement properly; different code for every
supported NDIS version

Bypassing Protocol Walking I, II – Stealth Packet Sends

What about sending packets?
It’s almost trivial: only NDIS_OPEN_BLOCK and NDIS_MINIPORT_BLOCK are
required, and they are not hooked by a firewall

Hook-free NdisOpenAdapter() may set
NDIS_OPEN_BLOCK.SendHandler to

ndisMSendX()

ndisMSend()
ndisMWanSend()

ndisMSendSG()

These APIs may be hooked in the NDIS.SYS image
Use code pullout again – this time without any relocations updates

Bypassing Protocol Walking III – Stealth Packet Sends

We didn’t register our own protocol – we hooked X_BINDING_INFO
of an existing one

So, its NDIS_OPEN_BLOCK.SendHandler and SendPacketsHandler may be
hooked by a firewall

In order to send packets stealthy, we should find original ndisMSend*
functions

By tunneling the firewall with an innocent packet: sooner or later it should be
sent via call to one of NDIS packet send functions
By searching NDIS image for not-exported symbols using XREFs or code
signatures analysis
By temporarily registering and binding a dummy protocol with aid of previously
discussed methods to get original NDIS send functions pointers

Protocol registration and binding must not be caught by a firewall

Demonstration

FireWalk rootkit:
kernel mode FTP server over the rootkit’s TCP/IP stack VS

popular personal firewalls

Hardening Firewalls

A firewall should operate at a more privileged level than a rootkit,
otherwise it can always be bypassed

Since in i386 NT they both run in kernel mode, the only solution for
firewall vendors is to complicate rootkits’ (and their authors’) life
as much as possible

Maybe full rewrite of NDIS (with a lot of obfuscations) is a good idea – at least,
there will be no symbols

Hardening Firewalls – Monitoring Packet Receives

Find unlinked protocols
Walk filter databases for each miniport, get a list of NDIS_OPEN_BLOCKs bound
to them
Hook all found NDIS_OPEN_BLOCKs
Save NDIS_PROTOCOL_BLOCKs associated with each NDIS_OPEN_BLOCK
Walk ndisProtocolList and alert user about unlinked protocols

KLISTER by Joanna Rutkowska did similar things to find processes
unlinked from PsActiveProcessHead list

It was bypassed too

Hardening Firewalls – Monitoring Packet Sends

Firewall has to take into account that rootkit may not use its
NDIS_OPEN_BLOCK.SendHandler() or SendPacketsHandler() to
send packets to the network

Rootkit may call ndisMSend* directly
However, it should find these functions first

 Firewall should at least hook code of ndisMSend* and
ndisMWanSend*. The nature of packet send interface does not
require any special system object registration (you should register
and bind a protocol in order to receive packets), and until this
behavior doesn’t change, firewalls will be having hard times
catching sent packets

References

Joanna Rutkowska, KLISTER
http://invisiblethings.org/tools/klister-0.4.zip

Joanna Rutkowska, Rootkits vs. Stealth by Design Malware
http://invisiblethings.org/papers/rutkowska_bhfederal2006.ppt

Greg Hoglund, NT Rootkit
http://www.rootkit.com/vault/hoglund/rk_044.zip

Opc0de, Bypassing VICE 2
http://rootkit.com/newsread.php?newsid=197

PCAUSA, Windows Network Data and Packet Filtering
http://www.ndis.com/papers/winpktfilter.htm

90210, Bypassing Klister 0.4 With No Hooks or Running a Controlled Thread Scheduler
http://www.rootkit.com/vault/90210/phide2.zip

Questions?

Thank you for your time!

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

