Subverting Vista™ Kernel For
Fun And Profit

Joanna Rutkowska
Advanced Malware Labs

COSEINC

SyScan’06
July 218, 2006, Singapore
&
Black Hat Briefings 2006
August 3, 2006, Las Vegas

About this presentation

@ This presentation is based on the research done
exclusively for

@ This presentation has been first presented at
in Singapore, on July 21st, 2006

© COSEINC Research, Advanced Malware Labs, 2006

Content

Part |

» loading unsigned code into Vista Beta 2 kernel (x64)
without reboot

Part |l

» Blue PIill — creating undetectable malware on x64 using
Pacifica technology

© COSEINC Research, Advanced Malware Labs, 2006

Signed Drivers in Vista x64

» All kernel mode drivers must be signed

» Vista allows to load only signed code into kernel

» Even administrator can not load unsigned module!
» This is to prevent kernel malware and anti-DRM

» Mechanism can be deactivated by:

» attaching Kernel Debugger (reboot required)
» Using F8 during boot (reboot required)

» using BCDEdit (reboot required, will not be available in
later Vista versions)

» This protection has been for the first time implemented in
Vista Beta 2 build 5384.

© COSEINC Research, Advanced Malware Labs, 2006

How to bypass?

¢ Vista allows usermode app to get raw access to disk
® CreateFile (\\.\C:)

® CreateFile (\\.\PHYSICALDRIVEO))

«» This allows us to read and write disk sectors which are
occupied by the pagefile

@ So, we can modify the contents of the pagefile, which

may contain the code and data of the paged kernel
drivers!

» No undocumented functionality required — all
documented in SDK :)

© COSEINC Research, Advanced Malware Labs, 2006

Challenges

» How to make sure that the specific kernel code is paged
out to the pagefile?

» How to find that code inside pagefile?

» How to cause the code (now modified) to be loaded into
kernel again?

» How to make sure this new code is executed by kernel?

© COSEINC Research, Advanced Malware Labs, 2006

How to force drivers to be paged?

@ Allocate *lots of* memory for a process (e.g. using
VirtualAlloc())

@ The system will try to do its best to back up this memory
with the actual physical pages

@ At some point there will be no more physical pages
available, so the system will try to page out some
unused code...

» Guess what is going to paged now... some unused
drivers :)

© COSEINC Research, Advanced Malware Labs, 2006 8

Eating memory...

- &l x

tion View Favorites Window Help =8| x|
=
O Q% 3 Line IL +X o RRE | [Ox 2

Command Prompt - memeater.exe -1o| x|

. physical memaory
{— (about1GB)

memater started
cati)) 912 bytes of memory...
allocating memory... ouching memo 657
press ENTER t nti - quit...

z of memor

ol quit...

. 2" allocation _

oo e of memory...

= started...

= o quit...

Al oo - R
— ?”;er y "‘:":;e _ttarted Even more drivers
o be paged out... code paged...
3™ allacation
critical point — no more
—— physical memory for
dri ident memeater! No more drivers codes
rivers residen —
— to bg paged out!
code (4MB)
8:04:05 AM 8:04:30 AM £:05:00 AM 8:05:30 AM £:05:44 AM
Show Celor Scale Counter Instance Parent Obje
|7 Available |'.1B_.‘tes Me
[v System Driver Resident Bytes Me
a2 start - € [Performance £ Ntexplorer ’ ICY Hexplorer ¢+ Command Prompt = Command Promp... < (B 8:07AM

© COSEINC Research, Advanced Malware Labs, 2006

What could be paged?

» Pageable sections of kernel drivers (recognized by the
section name starting with ‘PAGE’ string)

» Driver’'s data allocated from Non-Paged pool (e.qg.
ExAllocatePool ())

© COSEINC Research, Advanced Malware Labs, 2006

10

Finding a target

» We need to find some rarely used driver, which has
some of its code sections marked as pageable...

» How about NULL.SYS?

« After quick look at the code we see that its dispatch
routine is located inside a PAGE section — one could not
ask for more :)

» It should be noted that there are more drivers which
could be used instead of NULL — finding them all is left
as an exercise to the audience ;)

© COSEINC Research, Advanced Malware Labs, 2006 11

Locating paged code inside pagefile

@ This is easy — we just do a pattern search

» if we take a sufficiently long binary string (a few tens of
bytes) its very unlikely that it will appear more then once in

a page file
» Once we find a patter we just replace the first bytes of
the dispatch function with our shellcode

» The next slide demonstrates how to use disk editor to do
that

© COSEINC Research, Advanced Malware Labs, 2006

12

How to make sure our shellcode gets executed?

» We need to ask kernel to be kind enough and execute
our driver’s routine (whose code we have just replaced in
pagefile)

» In case of replacing driver’s dispatch routine it's just
enough to call CreateFile () specifying the target
driver's object to be opened

» This will cause the driver's paged section to be loaded
iInto memory and then executed!

© COSEINC Research, Advanced Malware Labs, 2006 13

Putting it all together

@ Allocate lots of memory to cause unused drivers code to
be paged

» Replace the paged out code (inside pagefile) with some
shellcode

@ Ask kernel to call the driver code which was just
replaced

© COSEINC Research, Advanced Malware Labs, 2006 14

DEMO

» The above attack has been implemented in a form of a
“1-click tool’

» Special heuristics has been used to automatically find
out how much memory should be allocated, before
‘knocking the driver’

» The shellcode used in the demo disables signature
checking, thus allowing any unsigned driver to be
subsequently loaded

© COSEINC Research, Advanced Malware Labs, 2006

15

Creating useful shellcodes

» We can create a shellcode which would disable
signature checking...

» ... or we can create a small shellcode which would
allocate some memory (via ExAllocatePool) and then

“download” the rest of the malware from ring 3...

© COSEINC Research, Advanced Malware Labs, 2006 16

DEMO

© COSEINC Research, Advanced Malware Labs, 2006

17

Possible solutions (1/3)

» Solution #1: Forbid raw disk access from usermode.

» This would probably break lots of programs:
» diskeditors/undeleters
» some AV programs?
» some data bases?
» Besides, access would still be possible from kernel mode

» SO we can expect that lots of legal apps would provide
their own drivers for raw disk access

» Those drivers would be signed of course, but could be
used by attacker as well (no bug is required!).

© COSEINC Research, Advanced Malware Labs, 2006 18

Possible solutions (2/3)

» Solution #2: Encrypt pagefile!

» Generate encryption key while system starts and keep it
In kernel non-paged memory. Do not write it to disk nor
to the registry!

» Big (?) performance impact

» Encrypt only those pages which were paged from ring0,
keep ring3 pages unencrypted

» Sounds better, still introduces some performance impact
(not sure how much though)

© COSEINC Research, Advanced Malware Labs, 2006

19

Possible solutions (3/3)

» Solution #3: Disable kernel memory paging!
» Disadvantage: wasting precious physical memory...
» On the other hand:

» is RAM really so precious these days?

* BTW, you can manually disable kernel memory paging in
registry!

» But it can be enabled again (reboot required), so it's not a
good solution.

© COSEINC Research, Advanced Malware Labs, 2006

20

Bottom line

» The presented attack does not rely on any
Implementation bug nor on any undocumented
functionality

» MS did a good thing towards securing kernel by
Implementing signature check mechanism

» The fact that this mechanism was bypassed does not
mean that Vista is completely insecure (it's just not that
secure as it's advertised)

» It's very difficult to implement a 100% efficient kernel
protection in a general purpose operating system

© COSEINC Research, Advanced Malware Labs, 2006

21

Invisibility by Obscurity

» Current malware is based on a concept...

» e.g. FU unlinks EPROCESS from the list of active
processes in the system

» e.g. deepdoor modifies some function pointers inside
NDIS data structures

.. etc...
» Once you know the concept you can write a detector!
» This is boring!

© COSEINC Research, Advanced Malware Labs, 2006 23

Imagine a malware...

» ...which does not rely on a concept to remain
undetected...

» ...which can not be detected, even though its algorithm
(concept) is publicly known!

» ...which can not be detected, even though it's code is
publicly known!

» Does this reminds you a modern crypto?

© COSEINC Research, Advanced Malware Labs, 2006 24

Blue Pill Idea

» Exploit AMD64 SVM extensions to move the operating
system into the virtual machine (do it ‘on-the-fly’)

» Provide thin hypervisor to control the OS

» Hypervisor is responsible for controlling “interesting”
events inside gust OS

© COSEINC Research, Advanced Malware Labs, 2006

25

AMDG64 & SVM

» Secure Virtual Machine (AMD SVM) Extensions (AKA
Pacifica)

» May 23, 2006 — AMD releases Athlon 64 processors
based on socket AM2 (revision F)

» AM2 based processors are the first to support SVM
extensions

» AM2 based hardware is available in shops for end users
as of June 2006

© COSEINC Research, Advanced Malware Labs, 2006 26

SVM

» SVM is a set of instructions which can be used to
implement Secure Virtual Machines on AMDG64

» MSR EFER register: bit 12 (SVME) controls weather
SVM mode is enabled or not

» EFER.SVME must be set to 1 before execution of any
SVM instruction.

» Reference:

» AMDG64 Architecture Programmer’s Manual Vol. 2: System
Programming Rev 3.11

© COSEINC Research, Advanced Malware Labs, 2006 27

The heart of SVM: VMRUN instruction

HOST Virtual
(Hypervisor) Machine
"] .
instruction flow (]
{outside Matrix)]
' instruction flow
Guest state and : ST/ /7)) inside guest
specification of > : v
what guest events " .
are intercepted ' ! .
; '
! '
VMCB ----eeeecececsceeadt VMRUN |- .
i '
' :
"o 0
'
'
resume at the next instruction [
after VMRUN (exit code ' : .
written to VMCB on exit) :
'
'
: guest has been
intercepted
\ 4

© COSEINC Research, Advanced Malware Labs, 2006 28

Blue Pill ldea (simplified)

e -,

5 ¥
Native Operating PROC bluepill
System '

v

[enable SYM 1

: v
[prepare VMCB |

[T L —) v

1----3:--

F 1

v ~ VMCB
====% VMRUN

Blue Pill
Hypervisor

|" check
L VMGB.?xitcude

_z

*---.

only during
first call

RET from bluepill PROC,
never reached in host mode,
only executed once in guest
mode

‘-

........... ‘ RET "

Native Operating System continues to execute,
but inside Virtual Machine this time...

© COSEINC Research, Advanced Malware Labs, 2006

BP installs itself ON THE FLY!

» The main idea behind BP is that it installs itself on the fly

» Thus, no modifications to BIOS, boot sector or system
files are necessary

» BP, by default, does not survive system reboot
» But this is not a problem:
@ servers are rarely restarted

¢ |[n Vista the ‘Power Off’ button does not shut down the
system — it only puts it into stand by mode!

» And also we can intercept (this has not been yet
implemented):

» restart events (hypervisor survives the reboot)
» shutdown events (emulated shutdown)

© COSEINC Research, Advanced Malware Labs, 2006 30

SubVirt Rootkit

» SubVirt has been created a few months ago by
researches at MS Research and University of Michigan

» SubVirt uses commercial VMM (Virtual PC or VMWare)
to run the original OS inside a VM

© COSEINC Research, Advanced Malware Labs, 2006

31

SubVirt vs. Blue Pill

» SV is permanent! SV has to
take control before the original
OS during the boot phase. SV
can be detected off line.

» SV runs on x86, which does

not allow for full virtualization
(e.g. SxDT attack)

» SV is based on a commercial

VMM, which creates and
emulates virtual hardware.
This allows for easy detection

© COSEINC Research, Advanced Malware Labs, 2006

» Blue Pill can be installed on

the fly — no reboot nor any
modifications in BIOS or boot
sectors are necessary. BP can
not be detected off line.

» BP relies on AMD SVM

technology which promises full
virtualization

» BP uses ultra thin hypervisor

and all the hardware is natively
accessible without
performance penalty

32

Matrix inside another Matrix

» What happens when you install Blue Pill inside a system
which is already bluepilled?

» If nested virtualization is not handled correctly this will
allow for trivial detection — all the detector would have to
do was to try creating a test VM using a VMRUN
iInstruction

» Of course we can cheat the guest OS that the processor
does not support SVM (because we control MSR
registers from hypervisor), but this wouldn’t cheat more
inquisitive users ;)

» S0, we need to handle nested VMs...

© COSEINC Research, Advanced Malware Labs, 2006

33

{
Creating new . VMCB1]
VM on behalf

of the VM1

Allow VM1 to
handle VM2's
events

f=ccsccccas

time

Detection via timing analysis

» We can assume that some of the instructions are always
intercepted by the hypervisor
® VMMCALL

@ RDMSR — to cheat about the value of EFER. SVME bit

» S0, not surprisingly, the time needed to execute RDMSR

to read the value of EFER would be different (longer)
when running from guest

» Detector can execute such instructions a few millions of
times and measure the time.

© COSEINC Research, Advanced Malware Labs, 2006

35

Cheating timing analysis

@ The first problem is that detector (usually) does not have
a base line to compare the results with...

» But even if it had (e.g. when testing access to physical
pages and while one of them being backed up by disk)
still we can cheat it!

» SVM offers a way to fool the guest’s time stamp counter
(obtained using RDTSC).

@ All we have to do is to adjust VMCB.TSC_OFFSET
accordingly before executing VMRUN (which resumes
the guest)

© COSEINC Research, Advanced Malware Labs, 2006

36

Time dilatation for guest

Set VMCB.TSC OFFSET = -tx

Y

. Hypervisor | ——p/VMRUN i »/VMRUN
g : E tx = extra time :
VM X - b

Intercepted Event,
e.g. RDMSR Next instruction in guest after
the one which caused
interception, e.g. RDTSC

time

© COSEINC Research, Advanced Malware Labs, 2006 37

Getting the real time...

© COSEINC Research, Advanced Malware Labs, 2006

38

Time profiling in practice

» Now imagine that you need to check 1000 computers in
your company using the “external” stopwatch...

» Now imagine that you need to do this a couple of time
every day...

» Time dilatation should make it impossible to write a self
sufficient detector based on timing analysis!

» The challenge: we need a good ‘calibrating’ mechanism
so that we know how much time to subtract.

© COSEINC Research, Advanced Malware Labs, 2006

39

Blue Pill based malware

» Blue Pill is just a way of silently moving the running OS
into Matrix on the fly

» BP technology can be exploited in many various ways in
order to create stealth malware

» Basically ‘sky is the limit’ here :)
» On the next slides we present some simple example:

© COSEINC Research, Advanced Malware Labs, 2006 40

Delusion Backdoor

» Simple Blue Pill based network backdoor

» Uses two DB registers to hook:
® ReceiveNetBufferlListsHandler

® SendNetBufferListsComplete

» Blue Pill takes care about:

» handling #DB exception (no need for IDT[1] hooking inside
guest) and protecting

@ protecting debug registers, so that guest can not realize
they are used for hooking

» Not even a single byte is modified in the NDIS data
structures nor code!

» Delusion comes with its own TCP/IP stack based on IwIP

© COSEINC Research, Advanced Malware Labs, 2006 41

Delusion Demo (Blue Pill powered)

serial connection

{null modem)
communication
with backdoor
.:"4
Internet Delusion/Blue Pill Blue il
Attacker connecting to installed

) o
Delusion backdoor debugging/tracing

© COSEINC Research, Advanced Malware Labs, 2006 42

Blue Pill detection

» Two level of stealth:

¢ level 1: can not be detected even though the concept is
publicly known (BPL1)

» level 2: can not be detected even if the code is publicly
known (BPL2)

» Level 1 does not requite BP's pages protection

» Level 2 Is about avoiding signature based detection
» Level 2 is not needed in targeted attacks

» BPL2 has not been implemented yet!

© COSEINC Research, Advanced Malware Labs, 2006 43

Generic BP detection

» |If we could come up with a generic program which would
detect SVM virtual mode then...

» it would mean that SVM/Pacifica design/implementation
does not support full virtualization!

» To be fair: AMD does not claim full virtualization in SVM

documentation — it only says it is ‘Secure VM'...
However it's commonly believed that SVM == full

virtualization...

© COSEINC Research, Advanced Malware Labs, 2006

44

Blue Pill detection

» We currently research some theoretical generic attacks
against BPL1

» It seems that the attack would only allow for crashing the
system if its bluepilled

» It seems that the only attack against BPL2 would be
based on timing analysis (or crashing when some
special conditions will be met, like e.g. user removing
SATA disk in a specific moment during tests)

© COSEINC Research, Advanced Malware Labs, 2006 45

Pacifica vs. Vanderpool

» Pacifica (SVM) and Vanderpool (VT-x) are not binary
compatible

» However they seem to be very similar

¢ XEN even implements a common abstraction layer for
both technologies

» |t seems possible to port BP to Intel VT-x

© COSEINC Research, Advanced Malware Labs, 2006

46

Blue Pill Prevention

» Disable it in BIOS
» Its better not to buy SVM capable processor at all!
» Hypervisor built into OS

» What would be the criteria to allow 3™ party VMM (e.g.
VMWare or some AV product) to load or not?

@ Or should we stuck with “The Only Justifiable VMM”,
provided by our OS vendor? ;)

» Not allowing to move underlying OS on the fly into virtual
machine

» would not solve the problem of permanent, “classic” VM
based malware

» or maybe another hardware solution...

© COSEINC Research, Advanced Malware Labs, 2006 47

Hardware Red Pill?

@ How about creating a new instruction — SVMCHECK :
mov rax, <password>
svmcheck
cmp rax, O
Jnz inside vm

¢ Password should be different for every processor

@ Password is necessary so that it would be impossible to
write a generic program which would behave differently
inside VM and on a native machine.

@ Users would get the passwords on certificates when they
buy a new processor or computer

» Password would have to be entered to the AV program
during its installation.

© COSEINC Research, Advanced Malware Labs, 2006 48

Future work

» Implement nested VMs

» Intercept restart and shutdown events (controlled restart,
emulated shutdown)

» Support for multi-core processors
» Implement BPL1 using Intel VT-x
» Implement Blue Pill Level 2 (BPL2)
» Implement time dilatation for guest

© COSEINC Research, Advanced Malware Labs, 2006

49

Bottom line

»Arbitrary code can be injected into Vista x64 kernel

» This could be abused to create Blue Pill based malware on
processors supporting virtualization

' BP installs itself on the fly and does not introduce any modifications
to BIOS nor hard disk

» BP can be used in many different ways to create the actual malware
— Delusion was just one example

» BP should be undetectable in any practical way (when fully
implemented)

' Blocking BP based attacks on software level would also prevent
ISVs from providing their own VMMSs and security products based on
SVM technology

» Changes in hardware (processor) could allow for easy BP detection

© COSEINC Research, Advanced Malware Labs, 2006 50

Credits

» Neil Clift for interesting discussions about Windows
kernel

» Edgar Barbosa for preparing shellcode for the kernel
strike attack
» Edgar joined COSEINC AML at the end of June!
» Alexander Tereshkin AKA 90210 for thrilling discussions
about Blue Pill detection
@ Alex is going to join COSEINC AML in August!

© COSEINC Research, Advanced Malware Labs, 2006 51

joanna@research.coseinc.com

check out
for information about available trainings!

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

