Hacking VoIP Exposed

David Endler, TippingPoint
Mark Collier, SecureLogix
Agenda

• Introductions
• Casing the Establishment
• Exploiting the Underlying Network
• Exploiting VoIP Applications
• Social Threats (SPIT, PHISHING, etc.)
Introductions

- David Endler, Director of Security Research for TippingPoint, a division of 3Com
- Mark Collier, CTO for SecureLogix Corporation
Shameless Plug

• This presentation is the byproduct of research for our book coming out in December, 2006

http://www.hackingexposedvoip.com
Introduction - VoIP Security

- History has shown that most advances and trends in information technology (e.g. TCP/IP, Wireless 802.11, Web Services, etc.) typically outpace the corresponding realistic security requirements. VoIP is no different.
- As VoIP infrastructure becomes more accessible to the common script kiddie, so will the occurrence of attacks.
- The most prevalent threats to VoIP deployments today are the same security threats inherited from the traditional data networking world.
VoIP security is built upon the many layers of traditional data security:
Slice of VoIP Security Pyramid

VoIP Protocol and Application Security

OS Security

Supporting Service Security (web server, database, DHCP)

Network Security (IP, UDP, TCP, etc)

Physical Security

Policies and Procedures

- Toll Fraud, SPIT, Phishing
- Malformed Messages (fuzzing)
- INVITE/BYECANCEL Floods
- CALL Hijacking
- Call Eavesdropping
- Call Modification

- Buffer Overflows, Worms, Denial of Service (Crash), Weak Configuration

- SQL Injection, DHCP resource exhaustion

- Syn Flood, ICMP unreachable, trivial flooding attacks, DDoS, etc.

- Total Call Server Compromise, Reboot, Denial of Service

- Weak Voicemail Passwords
- Abuse of Long Distance Privileges
Agenda

• Introductions
• Casing the Establishment
 – Footprinting
 – Scanning
 – Enumeration
• Exploiting the Underlying Network
• Exploiting VoIP Applications
• Social Threats (SPIT, PHISHING, etc.)
Footprinting

- Involves basic remote reconnaissance using well known online tools like SamSpade and Google
- Use Google to sift through:
 - Job listings
 - Tech Support
 - PBX main numbers
Footprinting

• Google Job postings (or directly go to the target web site):

“Required Technical Skills:

Minimum 3-5 years experience in the management and implementation of Avaya telephone systems/voice mails:

* Advanced programming knowledge of the Avaya Communication Servers and voice mails.”
Footprinting

• Google the target’s Tech Support:
 – “XXXX Department has begun a new test phase for Cisco Conference Connection (CCC). This is a self-serve telephone conferencing system that is administered on-campus and is available at no charge for a 90 day test period to faculty and staff. The system has been subject to live testing by a small group and has proven itself ready for release to a larger group. In exchange for the free use of the conferencing system, we will request your feedback on its quality and functionality.”
Footprinting

• Use Google to find main switchboard and extensions.
 – “877 111..999-1000..9999 site:www.mcgraw-hill.com”

• Call the main switchboard and listen to the recording.

• Check out our VoIP Voicemail Database for help in identifying the vendor at http://www.hackingexposedvoip.com
Footprinting

• Most VoIP devices (phones, servers, etc.) also run Web servers for remote management
• Find them with Google
• VoIP Google Hacking Database at http://www.hackingexposedvoip.com
Footprinting
Footprinting

- `inurl: "NetworkConfiguration" cisco`
Footprinting

• Snom phones have a packet capture feature.
• Yikes!
Scanning

- VoIP device port scanning
- Nmap has the best VoIP fingerprinting database
- Use the –O flag:

```
nmap -O -P0 192.168.1.1-254
Starting Nmap 4.01 ( http://www.insecure.org/nmap/ ) at 2006-02-20 01:03 CST
Interesting ports on 192.168.1.21:
(The 1671 ports scanned but not shown below are in state: filtered)
PORT   STATE SERVICE
23/tcp open  telnet
         MAC Address: 00:0F:34:11:80:45 (Cisco Systems)
Device type: VoIP phone
Running: Cisco embedded
**OS details: Cisco IP phone (POS3-04-3-00, PC030301)**
Interesting ports on 192.168.1.23:
(The 1671 ports scanned but not shown below are in state: closed)
PORT   STATE SERVICE
80/tcp open  http
         MAC Address: 00:15:62:86:BA:3E (Cisco Systems)
Device type: VoIP phone|VoIP adapter
Running: Cisco embedded
**OS details: Cisco VoIP Phone 7905/7912 or ATA 186 Analog Telephone Adapter**
Interesting ports on 192.168.1.24:
(The 1671 ports scanned but not shown below are in state: closed)
PORT   STATE SERVICE
80/tcp open  http
         MAC Address: 00:0E:08:DA:DA:17 (Sipura Technology)
Device type: VoIP adapter
Running: Sipura embedded
**OS details: Sipura SPA-841/1000/2000/3000 POTS<->VoIP gateway**
```
Scanning

- SIP enabled devices will usually respond on UDP/TCP ports 5060 and 5061
- SCCP enabled phones (Cisco) responds on UDP/TCP 2000-2001
- Sometimes you might see UDP or TCP port 17185 (VXWORKS remote debugging!)
Enumeration

- Will focus on three main types of VoIP enumeration here
 - SIP “user agent” and “server“ scraping
 - SIP phone extensions (usernames)
 - TFTP configuration files
 - SNMP config information
Enumeration

SIP Messages

<table>
<thead>
<tr>
<th>SIP Request</th>
<th>Purpose</th>
<th>RFC Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVITE</td>
<td>to initiate a conversation</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>BYE</td>
<td>to terminate an existing connection between two users in a session</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>OPTIONS</td>
<td>to determine the SIP messages and codecs that the UA or Server understands</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>REGISTER</td>
<td>to register a location from a SIP user</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>ACK</td>
<td>To acknowledge a response from an INVITE request</td>
<td>RFC 3261</td>
</tr>
<tr>
<td>CANCEL</td>
<td>to cancel a pending INVITE request, but does not affect a completed request (for instance, to stop the call setup if the phone is still ringing)</td>
<td>RFC 3261</td>
</tr>
</tbody>
</table>
Enumeration

- SIP responses (RFC 2543) are 3-digit codes much like HTTP (e.g. 200 ok, 404 not found, etc.). The first digit indicates the category of the response:
 - 1xx Responses - Information Responses
 - 2xx Responses - Successful Responses
 - 3xx Responses - Redirection Responses
 - 4xx Responses - Request Failures Responses
 - 5xx Responses - Server Failure Responses
 - 6xx Responses - Global Failure Responses
Enumeration

- Use the tool `netcat` to send a simple OPTIONS message

  ```
  [root@attacker]# nc 192.168.1.104 5060
  OPTIONS sip:test@192.168.1.104 SIP/2.0
  Via: SIP/2.0/TCP 192.168.1.120;branch=4ivBcVj5ZnPYgb
  To: alice <sip:test@192.168.1.104>
  Content-Length: 0
  
  SIP/2.0 404 Not Found
  Via: SIP/2.0/TCP 192.168.1.120;branch=4ivBcVj5ZnPYgb;received=192.168.1.103
  To: alice <sip:test@192.168.1.104>;tag=b27e1a1d33761e85846fc98f5f3a7e58.0503
  Server: Sip EXpress router (0.9.6 (i386/linux))
  Content-Length: 0
  Warning: 392 192.168.1.104:5060 "Noisy feedback tells: pid=29801 req_src_ip=192.168.1.120 req_src_port=32773 in_uri=sip:test@192.168.1.104 out_uri=sip:test@192.168.1.104 via_cnt==1"
  ```
Enumeration

- Automate this using SiVuS http://www.vopsecurity.org
Enumeration

• SIP extensions are useful to an attacker to know for performing Application specific attacks (hijacking, voicemail brute forcing, caller id spoofing, etc.)

• Let’s go back to our netcat example
Enumeration

• Use the tool netcat to send a simple OPTIONS message for a username “test”. IF the username exists, we would expect a 200 response instead of 404.

• [root@attacker]# nc 192.168.1.104 5060
 OPTIONS sip:test@192.168.1.104 SIP/2.0
 Via: SIP/2.0/TCP 192.168.1.120;branch=4ivBcVj5ZnPYgb
 To: alice <sip:test@192.168.1.104>
 Content-Length: 0

SIP/2.0 404 Not Found
Via: SIP/2.0/TCP 192.168.1.120;branch=4ivBcVj5ZnPYgb;received=192.168.1.103
To: alice <sip:test@192.168.1.104>;tag=b27e1a1d33761e85846fc98f5f3a7e58.0503
Server: Sip EXpress router (0.9.6 (i386/linux))
Content-Length: 0
Warning: 392 192.168.1.104:5060 "Noisy feedback tells: pid=29801 req_src_ip=192.168.1.120 req_src_port=32773 in_uri=sip:test@192.168.1.104 out_uri=sip:test@192.168.1.104 via_cnt==1"
Enumeration

• Let’s automate this. We wrote a tool called SIPSCAN to help. Available at http://www.hackingexposedvoip.com
• Not only can you use OPTIONS, but INVITE and REGISTER as well.
• DEMO of SIPSCAN
Enumeration

SIPScan

Target SIP Server: 192.168.1.103
Target SIP Domain: 192.168.1.103
Transport: UDP
Port: 5060

SIPScan Results:
Scan started Mon Mar 6 01:19:16 2006
Target SIP Server: 192.168.1.103:5060 UDP
Domain: 192.168.1.103

1: Found a live extension/user at 201@192.168.1.103 with
SIP response code(s): REGISTER:401
2: Found a live extension/user at 202@192.168.1.103 with
SIP response code(s): REGISTER:401
3: Found a live extension/user at 203@192.168.1.103 with
SIP response code(s): REGISTER:401
4: Found a live extension/user at 204@192.168.1.103 with
SIP response code(s): REGISTER:401

Done Scanning. ... Save Results under File
Enumeration

- Almost all phones we tested use TFTP to draw down their configuration files.
- Rarely is TFTP server well protected.
- If you can guess the name of the configuration file, you can download it.
- Config files have passwords, services, and usernames in them!
Enumeration

- Go to http://www.hackingexposedvoip.com to see a list of commonly named VoIP config files
- Use a tool called TFTPBRUTE (http://www.hackingexposedcisco.com)

```bash
[root@attacker]# perl tftpbrute.pl 192.168.1.103 brutefile.txt 100
tftpbrute.pl, , V 0.1
TFTP file word database: brutefile.txt
TFTP server 192.168.1.103
Max processes 100
 Processes are: 1
 Processes are: 2
 Processes are: 3
 Processes are: 4
 Processes are: 5
 Processes are: 6
 Processes are: 7
 Processes are: 8
 Processes are: 9
 Processes are: 10
 Processes are: 11
 Processes are: 12
*** Found TFTP server remote filename : sip.cfg
*** Found TFTP server remote filename : 46xxsettings.txt
 Processes are: 13
 Processes are: 14
*** Found TFTP server remote filename : sip_4602D02A.txt
*** Found TFTP server remote filename : XMLDefault.cnf.xml
*** Found TFTP server remote filename : SipDefault.cnf
*** Found TFTP server remote filename : SEP001562EA69E8.cnf
```
Enumeration

- SNMP is enabled on several VoIP phones
- Simple SNMP sweeps will garner lots of juicy information
- If you know the device type, you can snmpwalk with the specific OID
- Find the OID using Solarwinds MIB database
Enumeration

[Image of a computer screen showing a search for MIBs with the text "Avaya-46xxIPTelephone-MIB" and the OID "1.3.6.1.4.1.6889"]
Enumeration

- [root@domain2 ~]# snmpwalk -c public -v 1 192.168.1.53 1.3.6.1.4.1.6889
- SNMPv2-SMI::enterprises.6889.2.69.1.1.1.0 = STRING: "Obsolete"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.2.0 = STRING: "4620D01B"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.3.0 = STRING: "AvayaCallserver"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.4.0 = IpAddress: 192.168.1.104
- SNMPv2-SMI::enterprises.6889.2.69.1.1.5.0 = INTEGER: 1719
- SNMPv2-SMI::enterprises.6889.2.69.1.1.6.0 = STRING: "051612501065"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.7.0 = STRING: "700316698"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.8.0 = STRING: "051611403489"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.9.0 = STRING: "00:04:0D:50:40:B0"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.10.0 = STRING: "100"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.11.0 = IpAddress: 192.168.1.53
- SNMPv2-SMI::enterprises.6889.2.69.1.1.12.0 = INTEGER: 0
- SNMPv2-SMI::enterprises.6889.2.69.1.1.13.0 = INTEGER: 0
- SNMPv2-SMI::enterprises.6889.2.69.1.1.14.0 = INTEGER: 0
- SNMPv2-SMI::enterprises.6889.2.69.1.1.15.0 = STRING: "192.168.1.1"
- SNMPv2-SMI::enterprises.6889.2.69.1.1.16.0 = IpAddress: 192.168.1.1
- SNMPv2-SMI::enterprises.6889.2.69.1.1.17.0 = IpAddress: 255.255.255.0
- ...
- SNMPv2-SMI::enterprises.6889.2.69.1.1.4.8.0 = INTEGER: 20
- SNMPv2-SMI::enterprises.6889.2.69.1.1.4.9.0 = STRING: "503"
Enumeration Countermeasures

- VLAN and logically segment voice and data services when appropriate
- Patch and update to latest firmware
- Change default passwords and enable SIP authentication
- Perform vendor installation security checklist (if it exists)
- Restrict or Disable administrative web functions
Agenda

• Introductions
• Casing the Establishment
• Exploiting the Underlying Network
 – Man in the Middle
 – Eavesdropping
• Exploiting VoIP Applications
• Social Threats (SPIT, PHISHING, etc.)
Exploiting the Network

• Traffic Sniffing is as old as time itself
• Traffic Sniffing (ARP Poising) on switches is slightly less old
• Common MiTM tools:
 – Ettercap (http://ettercap.sourceforge.net/)
 – Dsniff (http://www.monkey.org/~dugsong/dsniff/)
 – Cain and Abel (http://www.oxid.it/cain.html)
Exploiting the Network

- Eavesdropping with basic sniffers and reassembling the streams
 - Ethereal
 - CAIN
 - VOMIT
 - Etherpeak

- Demo with Ethereal and CAIN
Exploiting the VoIP Network

<table>
<thead>
<tr>
<th>Started</th>
<th>Closed</th>
<th>IP1 (Codec)</th>
<th>IP2 (Codec)</th>
<th>S... File</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/05/2006</td>
<td></td>
<td>192.168.1.108</td>
<td>195.20 (PCMU, 8kHz Mono)</td>
<td>RTP-20060526093512458.wav</td>
<td>271594 bytes</td>
</tr>
</tbody>
</table>
Agenda

• Introductions
• Casing the Establishment
• Exploiting the Underlying Network
• Exploiting VoIP Applications
 – Fuzzing
 – Disruption of Service
 – Signaling Manipulation
• Social Threats (SPIT, PHISHING, etc.)
Fuzzing

- Functional protocol testing (also called “fuzzing”) is a popular way of finding bugs and vulnerabilities.
- Fuzzing involves creating different types of packets for a protocol which contain data that pushes the protocol's specifications to the point of breaking them.
- These packets are sent to an application, operating system, or hardware device capable of processing that protocol, and the results are then monitored for any abnormal behavior (crash, resource consumption, etc.).
Fuzzing

- Fuzzing has already led to a wide variety of Denial of Service and Buffer Overflow vulnerability discoveries in vendor implementations of VoIP products that use H.323 and SIP.
- PROTOS group from the University of Oulu in Finland responsible for high exposure vulnerability disclosures in HTTP, LDAP, SNMP, WAP, and VoIP.
Fuzzing

INVITE sip:6713@192.168.26.180:6060;user=phone SIP/2.0
Via: SIP/2.0/UDP 192.168.22.36:6060
From: UserAgent<sip:6710@192.168.22.36:6060;user=phone>
To: 6713<sip:6713@192.168.26.180:6060;user=phone>
Call-ID: 96561418925909@192.168.22.36
Cseq: 1 INVITE
Subject: VovidaINVITE
Contact: <sip:6710@192.168.22.36:6060;user=phone>
Content-Type: application/sdp
Content-Length: 168

v=0
o=- 238540244 238540244 IN IP4 192.168.22.36
s=VOVIDA Session
c=IN IP4 192.168.22.36
t=3174844751 0
m=audio 23456 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=ptime:20

SDP Payload
Fuzzing

INVITE sip:6713@192.168.26.180:6060;user=phone SIP/2.0
Via: aaa
aa
aa
aa...
From: UserAgent<sip:6710@192.168.22.36:6060;user=phone>
To: 6713<sip:6713@192.168.26.180:6060;user=phone>
Call-ID: 96561418925909@192.168.22.36
Cseq: 1 INVITE
Subject: VovidaINVITE
Contact: <sip:6710@192.168.22.36:6060;user=phone>
Content-Type: application/sdp
Content-Length: 168

v=0
o=- 238540244 238540244 IN IP4 192.168.22.36
s=VOVIDA Session
c=IN IP4 192.168.22.36
t=3174844751 0
m=audio 23456 RTP/AVP 0
a=rtpmap:0 PCMU/8000
a=ptime:20
Fuzzing

Fuzzing VoIP protocol implementations is only at the tip of the iceberg:

- Intelligent Endpoint Signaling
 - SIP/CMSS
 - H.225/H.245/RAS
- Master-Slave Endpoint Signaling
 - MGCP/TGCP/NCS
 - Megaco/H.248
 - SKINNY/SCCP
 - Q.931+
- SS7 Signaling Backhaul
 - SIGTRAN
 - ISTP
 - SS7/RUDP
- Accounting/Billing
 - RADIUS
 - COPS
- Media Transfer
 - RTP
 - RTCP

Black Hat Briefings
Application-Level Interception

Attacker Places Themselves Between Proxies Or Proxy/UA
Disruption of Service

Flood Application On PC

UDP, RTP, TCP SYN Floods

Primary Proxy

Secondary Proxy

SIP Phone

SIP Phone

SIP Phone

SIP Phone
Disruption of Service

Flood Application On PC

INVITE Floods

Primary Proxy

Secondary Proxy

SIP Phone

SIP Phone

SIP Phone

SIP Phone
Disruption of Service
Signaling Manipulation
Signaling Manipulation

User → Proxy
Hijacked Session
Hijacked Media
Proxy → Attacker
Inbound Calls Go to the Attacker Rather Than The Legitimate UA
Attacker → User
The Attacker Can Also Perform A Man-In-The-Middle Attack
Signaling Manipulation

- Timed Out or Recv'd Bind Challenge Repeat
- Unbind Challenge Repeat
- Malformed Challenge
- Sent REGISTER, Contact: *
- Recv'd 200 OK
- Hijack Next User
- Remove User Bindings
- Wait OK User Binding Removal
- Send REGISTER, Contact: *
- Recv'd 401 Challenge
- Wait OK Hijack Binding
- Respond To Binding Removal Challenge
- Sent REGISTER, Contact: hijacker
- Recv'd 401 Challenge
- Malformed Challenge
- Set Hijack Binding
- Respond To Hijack Bind Challenge
Signaling Manipulation
Signaling Manipulation

Attacker Sends BYE Messages To UAs
Audio Manipulation

Attacker Sees Packets And Injects New Audio
Agenda

• Introductions
• Casing the Establishment
• Exploiting the Underlying Network
• Exploiting VoIP Applications
• Social Threats (SPIT, PHISHING, etc.)
 – SPIT
 – VoIP Phishing
SPIT
VoIP Phishing

• “Hi, this is Bob from Bank of America calling. Sorry I missed you. If you could give us a call back at 1-866-555-1324 we have an urgent issue to discuss with you about your bank account.”

• Hello. This is Bank of America. So we may best serve you, please enter your account number followed by your PIN.