KOMOKU

R _: The Exponential Growth of Rootkit
Techniques

by
Jamie Butler
Bill Arbaugh

Nick Petroni



KOMOKU

Definitions
Emerging trends
Historical rootkits
Corporate rootkits
Rootkit techniques
Rootkit detection

Conclusion

Agenda



KOMOKU

Definition of a Rootkit

Software that hides
itself or other objects,
such as files, processes,
and Registry keys, from
view of standard
diagnostic,
administrative, and
security software. -
Mark Russinovich

Malicious and good
programs can use the
same techniques- the
difference is intent!

(Otl(it,’ Te@

Good

Intent

l

PUP

Malicious



Categorization as malicious
KOMOKU

depends on intent and approval

Good vs. Evil intent
Intent is predicated upon

Informed consent of the owner or user of the
computer system

Approval of the owner or user of the computer
system



KOMOKU

Rootkits vs. Spyware

Rootkits hide resources

Spyware collects data

Rootware: software that
collects data without the
knowledge and consent of
the owner of the system
and that employs stealth
to further that ignorance

Rootkits

Commere




Rootware in the Wild

MiniKeylogger*

Monitors keystrokes, file operations, dial-up activities, and
Internet Explorer

Hides process and service using a driver
Powered Keylogger*

Logs keystrokes, mouse clicks, passwords, web-activities,
e-mail activities, screen shots, and idle status.

Hides all files, directories, Registry entries, and processes
it creates using a driver

* Source: Symantec Security Response
http://securityresponse.symantec.com

6



Historical Background

Cuckoo’s Egg
Late 1980’s

Access discovered because of a 75 cent accounting
imbalance

Hiding Out Under UNIX by Black Tie Affair
Circa 1989
Phrack Volume Three, Issue 25

Hid tty from “who”



Historical Background

SunOS 4.x Rootkit

CERT Advisory CA-1994-01

Replaced system files — ps, Is, du, login, netstat
Windows NT Rootkit

Circa 1999 — Greg Hoglund

Hooked the kernel in memory



KOMOKU

Recent Explosion

400% growth in the
number of rootkits

recorded by McAfee
from 2004 to 2005

McAfee predicts an
annual growth rate of
at least 650% over the
next two or three years
for the current
Windows architecture

4500 ~
4000

Rootkit Growth

3500

o
2 3000

3 2500
c

[
£ 2000

=
8 1500
1

1000

500

2004

2005 2006
year

2007

2008




KOMOKU

Rootkit Techniques

One way to hide is to gain control of execution
Replace system programs
Hooks
Callbacks
Specialized registers
Layered drivers
Others

Another way to hide is to manipulate kernel data itself
Lists of processes, drivers, etc.
Handle tables
Others

Virtualization



KOMOKU

Hooks

Inline function hooks — similar to hotpatching

Part of original function is overwritten with an
iInstruction that causes a change in execution

System call hooks — used in the NT Rootkit

Replace addresses of functions within a table
provided by the kernel

Import Address Table (IAT) hooks — used in many
user land rootkits

Replace address of imported function from one DLL

with the address of a different function
I



Hooks

IDT hooks — used in the Shadow Walker Rootkit

Replace in the table that handles interrupts, the IDT, the

Interrupt Service Routine (ISR) address with the address of a
rootkit function

IRP table hooks

All drivers have a function table corresponding to the

different form of 1/0 Request Packets (IRPs) the driver will
handle

Replace the addresses in the original IRP table



KOMOKU

Callbacks

A callback is a documented way to gain execution
control by registering a function to be “called back”
when a certain event occurs on the system. Callback

registration is exposed by the operating system in the
form of an API.

Examples

Windows Message Hooks -most keylogging
spyware

File system callbacks
Object Manager functions

NDIS protocols



Special Registers

Debug registers

Can be used to gain execution when execution
reaches a certain point or when there is a memory
access on a particular location

Model Specific Registers (MSRS)

Can be used to gain control when certain
instructions are executed such as SYSENTER

Similar to an IDT hook



Layered Device Drivers

Allows the interception of all I1/O
Keyboard
File system

Network



Direct Kernel Object (data)

Manipulation

Unlink the list of processes and drivers
FU Rootkit

Alter handle tables
FUTo Rootkit



KOMOKU

VM Rootkits

SubVirt
University of Michigan and Microsoft Research
Works against VMWare and Virtual PC
Places the OS within a virtual machine
Modifies the boot sector for persistence

Blue Pill
Joanna Rutkowska
Relies upon AMD SVM Technology



Current Rootkit Detection Methods

Heuristic or Behavioral Detection
Integrity Detection
Signature Based Detection

Diff Based or Cross View Detection



KOMOKU

Examples

Integrity Checkers — Komoku and SVV
Signature Scanners — AV Products
Behavior and Cross View Based Approaches
Microsoft Strider GhostBuster
Syslinternals’ Rootkit Revealer

RAIDE



KOMOKU

Integrity Types

Bitwise Integrity Checks
Komoku and SVV

Semantic Integrity Checks

Komoku

20



KOMOKU

Bitwise Integrity

Detects unauthorized changes to system files or to loaded
OS components in memory.

Uses a baseline database containing their hash values

Periodically calculates and compares the hashes of these
files against the trusted baseline.

Example: Komoku and SVV

Verifies that immutable code and data in system
memory has not been altered

Very powerful but difficult to do right

21



KOMOKU

Semantic Integrity

Unlike bitwise integrity which only ensures that scalar
bit values remain invariant, Semantic integrity ensures
that a first order logic predicate remains invariant.

This enables detection of DKOM and other
sophisticated attacks that target the structures within

an operating system.

22



Signature Based Detection

“Fingerprint Identification”

Searches memory or the file system for unique byte
patterns (signatures) found in the rootkit’s code.

Tried N’ True Approach - Has been used by AV
scanners for many years.

Highly accurate, but ineffective against unknown
rootkit / malware variants (for which a signature
does not exist) or deliberately obsfucated code.

23



KOMOKU

Behavioral Detection

Attempts to detect the effects of a rootkit on the victim system
which means it may detect previously unknown rootkits.

Detecting diverted execution paths.

Deviations in executed instructions — PatchFinder by
Joanna Rutkowska

Detecting alterations in the number, order, and frequency
of system calls.

May suffer from a high false positive rate.

Most end users don’t have the skill to screen out false
positives.

24



Cross View Based Detection

Uses two views of same information
Example:
Walk the list of EPROCESS structures in memory
Call ZwQuerySystemInformation
Compares results
Any differences are reported
Often uses undocumented structures

Occasionally uses “clean” and “dirty” boots for
comparison

25



What makes detection so hard?

Determining intent — good vs. evil

Many third party security add-ons employ the same
methods as rootkits

Example

UAY Rootkit

Zone Alarm

26



Conclusion

27



KOMOKU

Questions?

28



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print



