
Information Security Partners, LLC
iSECPartners.com

Fuzzing Win32 Interprocess
Communication Mechanisms

June, 2006 Draft
For updates see http://www.isecpartners.com

Prepared For:
Black Hat 2006, Las Vegas, NV

Jesse Burns, Principal Partner, iSEC Partners

www.isecpartners.com

Introduction

Fuzzing is the intentional providing of bad data to find bugs.

Most software has two kinds of input:

1. Trusted – If you can write there, you are already trusted
– Software binaries themselves are trusted “input”
– Scripts, and libraries are usually trusted (some exceptions like Java & C#)
– ACL’d data files may be trusted

2. Untrusted – A privilege or identity gradient exists between the
producer and consumer
– Network inputs are generally untrusted
– Some communications aren’t ACL’d against all possible bad guys

Security testing of all untrusted input is crucial!
Robustness testing of trusted inputs is nice to have.

Fuzzing can help with testing of both kinds of input.

www.isecpartners.com

Microsoft Windows IPC

Much Windows Interprocess communication (IPC) is Based on
“Securable Objects”

• Standardized design
• Feature-rich security including access control and auditing

Local and Remote
• Mostly used locally
• Remote security issues are serious but not today’s topic
• Many mechanisms are only local

Highly compatible between versions
• NT 3.1 has similar IPC channels to Windows Vista
• Remote communication may break due to security improvements or

heightened security settings
• Surprisingly it often works between NT and W2K3 R2

www.isecpartners.com

What is a Win32 IPC channel

All securable objects share attributes
• Discretionary Access Control based on DACL

• Mandatory auditing is available but rarely used

• They have Owners

• Under Windows Vista – Integrity Level – not today’s topic

Additionally they may have names for sharing.

Processes running as different users can name their IPC channels

and then communicate through them.

www.isecpartners.com

Show me a big list of Win32 IPC mechanisms

Glad you asked
• Events
• Event Pair
• Files – you might have heard of these
• Keyed Event – New for XP
• LPC – Don’t ask, won’t tell
• Mailslots
• Mutexes
• Named Pipes
• Registry keys
• Semaphores
• Shared Sections
• Sockets?!? Now securable, not named.
• Timers

www.isecpartners.com

Selected Win32 IPC mechanisms

Named Pipes
A message or stream-based way to communicate

• Message mode is atomic like UDP

• Streams are more like TCP and may block mid-message

Local or Remote – but the remote story is very dangerous!

• Remote is based on SMB

Shared Sections
A local way of sharing memory pages between processes

• Awesome speed

• Needs external synchronization

• Data validation can be problematic

www.isecpartners.com

Selected Win32 IPC mechanisms

Events
A shared signaling mechanism

• Like yelling “Now” -- no actual message

• Event is context-dependant

Local only

• Often used with Shared Sections to let listeners know a
message is waiting

Semaphores
A thread synchronization mechanism

• Works between processes too, allows for counted accesses

Local only

www.isecpartners.com

Goals

Primary: To identify local or remote vulnerabilities.

Interested in privilege escalation
• Possible when communicating across a privilege or identity gradient
• Why IPC is all about communicating, so lets focus there

Secondary: To work on applications in binary form.

Find bugs in libraries, COM objects, and dependencies
• Sometimes we need to trust things we can’t review

Reuse testing tools
• Regression testing should include security tests
• Tools for binaries are easier to reuse across products

Minimize changes for new versions of software

www.isecpartners.com

Fuzzing for IPC Bugs – A tool with limits

Ideally find any kind of bug.

Actually we are only targeting issues that are easy to see manifest

under this technique.

Crashers or bugs causing exceptions to catch in the debugger

are ideal targets.

Bugs that introduce inconsistent states, or screw up the system,

database, or record store in ways detectable by regression tests

are also good.

www.isecpartners.com

Fuzzing for IPC Bugs – Ideal Bugs

Targeting code written in C or C++ helps

• Tends to have lots of stupid, technical bugs outside the domain
of the application. This improves reusability of the testing tools.

These sort of bugs pop out

• Integer Overflows

• Heap & Stack Overflows

• Pointer problems (i.e. generic writes into buffers with untrusted
offsets)

• Parser bugs

• Double frees

www.isecpartners.com

Fuzzing for IPC Bugs – Not So Much

Non-language or “domain specific” bugs
• Injection bugs i.e. SQL or Command
• Authorization bypass
• Many, many, others.

Intentional “bugs”
• Back doors
• Insecurely designed features like “automatic updates”

IPC naming & creation timing bugs
• Name squatting attacks
• Races prior to DACL establishment

These would be nice to find, but aren’t suited to this approach.
Surprisingly automated fuzzing isn’t a security cureall.

Oh well — I guess I can keep my job then.

www.isecpartners.com

Easy viewing of IPC Objects

Processes Explorer™ and Handle™ from Systernals.

http://www.systernals.com/

Unfortunately these tools are not affiliated with iSEC at all.

I am a big fan of their excellent tools however.

Somewhat like a super LSOF for windows.

www.isecpartners.com

Screen Shot of Systernals - Process Explorer

www.isecpartners.com

Screen Shot of Systernals - Handle

www.isecpartners.com

Systernals Tools

Yes:
• Great for getting started with understanding windows IPC

mechanisms

• Can help identify communication across privilege or
identity gradients for testing

No:
• Not the right tool to use for short lived objects

• Not a tool for manipulating the creation of these objects

• Not directly used for fuzzing

www.isecpartners.com

WinDbg – The Windows Debugger

• Great multipurpose tool for working with binaries

• Available without charge from Microsoft

• Can intercept kernel32 calls that create IPC channels
– CreateNamedPipeW/A – Creating named pipes

– CreateFileMappingW/A – Creating Shared Sections

• Attaches to existing processes or spawns new ones

www.isecpartners.com

WinDbg – The Windows Debugger

Yes:
• Able to alter program behavior like system calls

• Useful for slowly manipulate the creation of objects

• Breakpoints extend the life of short lived objects so we can
examine them

• Postmortem debugging for when our fuzzing finds bugs

No:
• Not graphical, harder to start out with

• Harder to examine ACLs to find potential communication
across a privilege gradient

• Difficult to use for directly fuzzing

www.isecpartners.com

Demo with Microsoft - WinDbg

Using WinDBG to intercept the creation of a named pipe

What can we do with this?

• Discover IPC mechanism use

• Hook IPC mechanism use for fuzzing

Demonstration (Cross your fingers)

www.isecpartners.com

Discovering IPC mechanism use with WinDbg

Possible but not ideal with WinDbg – informative though.

1. Put a break point on the targeted IPC mechanism
1. bp kernel32!CreateNamedPipeW
2. bp kernel32!CreateNamedPipeA

2. Wait for the break point to be hit (run and exercise the
application)

3. Take a look at the first parameter to CreateNamedPipeW
with a commands like
1. kb, (look up offset of first arg)
2. du 402104, (402104 being the address of the first arg from above step)

4. Look – the name of the pipe being created is displayed

Yes - this is slow and therefore boring to do.
But understanding it we can automate it…give me a few slides.

www.isecpartners.com

Middle person approach to fuzzing

1. Intercept the creation of an IPC endpoint named “Foo”
• For example a named pipe called \\.\pipe\foo

2. Alter it so it uses some unexpected name “Bar”
• You can use their buffer if you don’t change the length \\.\pipe\bar

• Change it back after the sys call if you feel paranoid or have problems

3. Create our own named IPC mechanism named “Foo”
• This requires a script, I use python for my examples but Java, Perl, C#,

C++ are all fine.

4. Our script connects to “Bar” when it receives a connection
on “Foo” and forwards reads and writes from “Foo” to
“Bar”
• It can log the content for initial analysis

• pass everything through for testing

• Alter random or selected bytes for fuzzing

www.isecpartners.com

Code Injection and Hooking

Tools for code injection and hooking are available
• Microsoft’s Detours, commercially licensable

http://research.microsoft.com/sn/detours/
• Matt Conover’s BSD licensed x86hook tinjectdll & friends

http://www.cybertech.net/~sh0ksh0k/projects/
• Hook API SDK, a commercial product which I haven’t used

http://www.hook-api.com/index.html
• MadCodeHook, another commercial product I haven’t tried

http://www.madshi.net/ (Written with Borland Delphi!)
• Home grown ‘getto detours’ things like Scott Stender, and

Andreas Junestam have both independently thrown
together at iSEC.

I use Matt’s excellent code for this presentation.
Matt’s code is open, feature-rich and even nice to read.

www.isecpartners.com

Hooking and Injection

Hooking is a powerful tool, useful far beyond fuzzing.

Using injection we place our code into a running process.

Usually injecting a DLL for for convenience and packaging.

• The injected code replaces parts of the code we hook.

• The hooked code calls us, and we handle the call.

• Examples of hooking are included with each package.

Hookdll_healp.dll is demo’d in the HeapHookDll project.

Set WinDbg as post-mortem prior to fuzzing with “windbg -I”

www.isecpartners.com

Hooking and Injection – Discovering IPC mechanisms

Hooking allows optimized discovery of IPC mechanisms

Idea is the same as with WinDbg. But:

1. Hook the API rather than break point on it

2. Log the name, ACL, and other parameters of interest rather
than examining them manually

Step two is actually easier with hooks!

Your code receives the parameters in a typed, easy to read

format.

www.isecpartners.com

Hooking and Injection – IPC Discovery Demo

Injecting an logging hook to discover named pipe creation.

This one is easy, not boring to use, totally reusable.

It was also very short.

Demonstration (Cross your fingers)

www.isecpartners.com

Hooking and Injection – Fuzzing

Injecting a middle person!

Just like we did with WinDbg, but now we spawn the

‘script-in-the-middle’ automatically.

• Hook CreateNamedPipeA/W

• In the hook call ShellExecute to launch our fuzzing python
script

• Python script takes the proper name, new name of the
script as well as any details like buffer sizes, modes, etc.

• Python script fuzzes the data before passing it along

www.isecpartners.com

Hooking and Injection – Fuzzing Demo

Hook the creation of IPC channels to fuzz clients!

Example messes with client responses, passes writes

unchanged.

Demonstration (Cross your fingers)

www.isecpartners.com

Hooking and Injection – Fuzzing

Script-in-the-middle can be fairly simple!

def main():
listen_name, put_name = get_args()
make a pipe
listener = win32pipe.CreateNamedPipe(

pipe_prefix + listen_name,
win32pipe.PIPE_ACCESS_DUPLEX,
win32pipe.PIPE_TYPE_MESSAGE |
win32pipe.PIPE_READMODE_MESSAGE |
win32pipe.PIPE_WAIT,
win32pipe.PIPE_UNLIMITED_INSTANCES,
block_size, block_size, 10, None)

…

www.isecpartners.com

Fuzzing Fuzzies.

So what should we change

- Randomly change values

- Incrementing or decrementing values

- Inserting large numbers like 0xFFFFFFFF

- Overwrite nulls

- Overwrite double nulls for unicode strings

- Extend the size of writes so they are huge

- Change strings specific to the application

Mix it up a bit.

The ideal rate of change is often very low.

To allow getting into the interaction before causing errors.

www.isecpartners.com

More fuzzing tool tips

• Log the random number generator’s ‘seed’ used for each
run of your fuzzer, to allow re-testing.

• Logging pipe traffic allows for easier failure reproduction.

• Use injection to perform fuzzing as part of regression tests.

I have written a few simple template schemes to specify

fuzzing guidelines in, these are simple to write.

www.isecpartners.com

Shared Sections – A good fuzzing target

Shared sections are just named blocks of shared memory.

May be associated with some signaling mechanism like
• Event
• Named Pipe
• Mailslot
• Socket

Discoverable using the previously discussed techniques.

Writes to these blocks ‘should be synchronized but that is just
an un-enforced convention.

In practice updates may come at any time.

www.isecpartners.com

Shared Sections – Fuzzing Technique

1. Scribbling – create bad data to cause failures

2. Asynchronous Scribbling – Breaking the convention

Usually shared sections already contain the last message

This is a good place to start.

www.isecpartners.com

Shared Sections – How to Scribble

1. Start a regression test of the client and server process

2. Map the shared section into your fuzzers address space

3. Make a copy of the sections content

4. Make changes to the content

5. Signal the event associated with the shared section

www.isecpartners.com

Shared Sections – How to Scribble Asynchronously

1. Start a regression test of the client and server process

2. Map the shared section into your fuzzers address space

3. Spawn a threat to make continuous changes to the content
of the section

4. Optionally signal the event associated with the shared
section

Note: Continuously changing the contents can break writes
from other clients removing the need to figure out the
signaling system.

www.isecpartners.com

Shared Section – Scribbling Example

Using a small python program to fuzz a shared section.

Demonstration (Cross your fingers)

www.isecpartners.com

Asynchronous section scribble – Defense

Always copy the content of a shared section into non-shared

memory before performing data validation.

And consider locking down the ACLs on those objects!

www.isecpartners.com

Questions

Thanks to Scott Stender, of iSEC for his important contributions
on this topic and for my presentation. He taught me a lot about Win32
IPC, and wrote the first shared section fuzzer I ever saw.

Please get updates including slides and example code from
http://www.isecpartners.com

iSEC does commercial work – including helping companies test their
products and making reusable testing regimes.

Want to talk more about fuzzing or need some help?

I am reachable as:
Jesse (at)
isecpartners . com

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

