Statistical Structures:
Fingerprinting Malware for

Classification and Analysis

Daniel Bilar
Wellesley College (Wellesley, MA)
Colby College (Waterville, ME)

bilar <at> alum dot dartmouth dot org

Black Hat Briefings

- Why Structural Fingerprinting?
Goal: Identifying and classifying malware

= Problem: For any single fingerprint, balance

between over-fitting (type II error) and under-
= fitting (type I error) hard to achieve

Approach: View binaries simultaneously from
different structural perspectives and perform
statistical analysis on these ‘structural
fingerprints’

Black Hat Briefings

Different Perspectives

Idea: Multiple perspectives may increase likelihood of
correct identification and classification

Structural
Perspective

Description

Statistical
Fingerprint

static /
dynamic?

Assembly
instruction

Win 32 API
call

System
Dependence
Graph

Count different
Instructions

Observe API calls
made

Explore graph-
modeled control and
data dependencies

Opcode
frequency
distribution

API call vector

Graph structural
properties

Black Hat Briefings

Primarily
static

Primarily
dynamic

Primarily
static

Fingerprint:
Opcode frequency distribution

Synopsis: Statically disassemble the binary, tabulate
the opcode frequencies and construct a statistical
fingerprint with a subset of said opcodes.

&

« Goal: Compare opcode fingerprint across non-
malicious software and malware classes for quick
identification and classification purposes.

Main result: ‘Rare’ opcodes explain more data
variation then common ones

Black Hat Briefings

Procedure:

1. Inventoried PEs (EXE, DLL,
etc) on XP box with
Advanced Disk Catalog

Chose random EXE samples

size: 122880 with MS Excel and Index
totalopcodes: 10680 your Files

compiler: MS Visual C++ 6.0) Ran IDA with modified

class: utility (process) InstructionCounter plugin on
sample PEs

0001. 002145 20.08% mov : Au%lmented IDA output files

0002. 001859 17.41% push with PEID results (compiler)

0003. 000760 7.12% call and general_ ‘functionality
class’ (e.g. file utility, IDE,

0004. 000 11% 1l
4 759 7.11% pop network utility, etc)

0005. 000641 6.00% cmp

. erOtfelJ ava gafrsgr for rawd
ata files and fed JAMA’e
5\> matrix into Excel for analysis

Black Hat Briefings

. Malware: Opcode Distribution

Giri.5209

AFXRfI%2K4.root.exe
vanquish.dll

size: 12288
totalopcodes: 615
compiler: unknown

class: virus

0001. 000112 18.21%

0002. 000094 15.28%
0003. 000052 8.46%
0004. 000051 8.29%
0005. 000040 6.50%

mov
push
call
cmp
add

'Y

\
6\

Procedure:

Booted VMPlayer with XP
image
Inventoried PEs from C. Ries

malware collection with
Advanced Disk Catalog

Fixed 7 classes (e.g. virus,,
rootkit, etc), chose random
PEs samples with MS Excel
and Index your Files

Ran IDA with modified
InstructionCounter plugin on
sample PEs

Au%lmented IDA output files
with PEID results (compiler,
packer) and ‘class’

Wrote Java parser for raw data

files and fed JAMA’ed matrix
into Excel for analysis

Black Hat Briefings

Aggregate (Goodware):
Opcode Breakdown

retn XOor and

2% 2% 1% 20 EXEs
jnz (size-blocked random samples from

3% 538 inventoried EXEs)
add ~1,520,000 opcodes read
3% \
, 192 out of 398 possible opcodes
Jjmp
2% \\ found

72 opcodes in pie chart account for
>99.8%
push 14 opcodes labelled account for ~90%
19%
Top 5 opcodes account for ~64 %

call
9%

Black Hat Briefings

Aggregate (Malware):
Opcode Breakdown

Black Hat Briefings

67 PEs
(class-blocked random samples
from 250 inventoried PEs)

~665,000 opcodes read
141 out of 398 possible
opcodes found (two undocu-

mented)

60 opcodes in pie chart
account for >99.8%

14 opcodes labelled account
for >92%

Top 5 opcodes account for
~65%

Class-blocked (Malware):
Opcode Breakdown Comparison

Aggregate
|

rootkit
(kernel) ~

rootkit
(user)

[
tools

Aggregate breakdown
mov 30% lea 3%
push 16 % add 3%
call 10% test 3%
pop 6% retn 3%
cmp 4% jnz 2%
jz 4% xor 2%
jmp 4% sub 1%

Top 14 Opcodes: Frequency

Opcode | Goodware | Kernel User Tools Bot Trojan Virus Worms
RK RK

mov 25.3% 37.0% | 20.0% | 25.4% | 34.6% | 30.5% |16.1% | 22.2%
push |195% | 15.6% |16.6% |19.0% |14.1% |15.4% |22.7% | 20.7%
call 8.7% 5.5% 8.9% 8.2% | 11.0% 10.0% | 9.1% 8.7%
pop 163% @ 0% i=4% 1=0% 168% |73% |70% |62%
5.1% 6.4% 4.9% 5.3% 3.6% 3.6% 5.9% 5.0%
143% 133% 139% [43% |33% |35% |4.4% |4.0%
3.9% 1.8% 3.3% 3.1% 2.6% 2.7% 5.5% 4.2%
132% |1.8% [32% |3.7% |26% |34% |31% |3.0%
3.0% 4.1% 3.8% 3.4% 3.0% 3.4% 2.7% 4.5%
130% |58% |37% |34% |25% |3.0% |35% |3.0%
2.6% 3.7% 3.1% 3.4% 2.2% 2.6% 3.2% 3.2%
l22% 13-% laa% 29% 230% [a32% |20% |l23%
1.9% 1.1% 2.3% 2.1% 3.2% 2.7% 2.1% 2.3%

11.3% |15% |1.0% |1.3% |05% |0.6% |15% |1.6%

- Comparison Opcode Frequencies

Opcode

Goodware

mov
push
call
pop
cmp

Jz

25.3%
19.5%
8.7%
6.3%
5.1%
4.3%
3.9%
3.2%
3.0%
3.0%
2.6%
2.2%
1.9%
1.3%

Perform distribution tests for top
14 opcodes on 7 classes of
malware:

Rootkit (kernel + user)
Virus and Worms
Trojan and Tools

Bots

Investigate: Which, if any,
opcode frequency is significantly
different for malware?

Hat Briefings

_ Top 14 Opcode Testing (z-scores)

Opcode | Kernel User Tools Bot Trojan Virus Worms ‘Higher o
RK RK

/.

baag apoodo

Juan

High

10368 206 2. ol 287 970

Similar
-15.5 -21.0 . -59.9 -31.2 12.1

-17.0 1.2 : 26,0 10.6 2.6

-13.5 . 5.1 9.8 4.8

-3.5 . -30.8 . 4.7

6.1 : -20.9 . 1.4 . Tests

-8.4 . -29.2 ; 11.5 : suggests
opcode
frequency
roughly

Low

Lower

Z
\

K

0.0 : -14.6 . -0.2

-2.2 : -2.3

4.3
5.3 . 1/3 same
"y 1/3 lower

2y 1/3 higher

Us
goodware

Top 14 Opcodes Results Interpretation

"(framer’sV 10.3|6.1|4.0|15.0| 9.5 | 5.6 | 5.2 Most frequent 14

in %)
opcodes weak
Op Krn [Usr [Tools| Bot Trojan | Virus Worm .
predictor

mov

o Belan uls o
call T xplains just 5-15% o
pop variation!
cmp
lea Higher
B test ;
- jmp High
fldd Similar
jnz
retn Y Low

Xor Lower
and

N\

. Tools: (al Virus + Worms:
Kernel-mode Rootkit: ools: (almost) no

L deviation in top 5 few # of deviations;
most # of deviations opcodes = more more jumps = smaller
X hgndcoded assembly; ‘benign’ (i.e. similar Size, simpler malicious
evasive’ opcodes ? to goodware) ? function, more control

flow ?

Black Hat Briefings

Rare 14 Opcodes (parts per million)

Opcode

Goodware

Kernel
RK

User
RK

Tools

Bot

Trojan

Virus

Worms

bt
fdivp
fild

fstew
imul
int
nop

pushf
rdtsc

sbb
setb

setle
shld

std

30
37

(0]

o
o
o

34
o

45
o

981

47

35
o

o
708

71
59
o

70
52

83

52

118

Rare 14 Opcode Testing (z-scores)

Opcode | Kernel User Tools Bot Trojan Virus Worms isingherfif/
RK RK

/.

High

bt -1.2 -0.4 0.7 6.6 5.9 -0.7 4.8

Similar
fdivp -1.3 -2.2 -0.3 3.8 2.8 -0.8 1.3

fild -4.3 -6.5 -6.1 -1.5 -0.8 -2.6 2.1 i

Lower

fstew -0.7 -1.2 -1.0 3.3 2.2 -0.4 0.2

imul -3.3 1.3 -5.9 4.4 -1.4 -1.7 0.9
int 26.2 287 -1.8 -1.0 2.4 -1.4 Tests

y4
Kotonboua A 9poddQ

nop 2.3 -3.6 -3.2 -5.0 -1.6 4.5 2.3 Suggests
opcode
frequency
roughly

pushf -2.4 -3.7 -1.8 -3.9 -2.2 -0.7 -2.6

rdtsc -0.7 -1.2 -1.1 1.1 -0.7 3.8 -0.9

sbb -6.5 -2.0 3.4 -2.2 0.3 0.8 -2.0

setb -0.5 4.7 0.6 4.6 7.9 -0.3 21 1/10 lower
1/5 higher
7/10 same

setle -1.0 -1.6 -1.4 -1.6 1.3 -0.6 -1.2

shld -1.0 0.6 0.6 -1.1 -0.9 1.0 0.2

std 4.8 1.4 0.8 0.3 2.4 -0.6 4.8 VS
goodware

Black Hat Briefings

Rare 14 Opcodes: Interpretation

.‘I'la:/“)e"’sv 63 [36|42| 17 | 16 | 10

1

12

Krn

INT: Rooktkits (and tools) make
heavy use of software interrupts =
tell-tale sign of RK ?

Infrequent 14 opcodes
much better
predictor!

Explains 12-63% of
variation

Higher “
High

Similar

Low

Lower N

NOP:

Virus makes use =
NOP sled, padding ?

- Summary: Opcode

Giri.5209

AFXRfI%2K4.root.exe
vanquish.dll

size: 12288
totalopcodes: 615
compiler: unknown

class: virus

0001. 000112 18.21%
0002. 000094 15.28% push
0003. 000052 8.46% call
0004. 000051 8.29% cmp
0005. 000040 6.50% add

\

mov

]

Distribution

Compare opcode
fingerprints against
various software classes
for quick identification
and classification

Malware opcode
frequency distribution
seems to deviate
significantly from non-
malicious software

‘Rare’ opcodes explain
more frequency
variation then common
ones

Black Hat Briefings

. Opcodes: Further directions

Acquire more samples and software class differentiation

Investigate sophisticated tests for stronger control of
false discovery rate and type I error

® Study n-way association with more factors (compiler,
® type of opcodes, size)

Go beyond isolated opcodes to semantic ‘nuggets’ (size-
wise between isolated opcodes and basic blocks)

Investigate equivalent opcode substitution effects

Black Hat Briefings

Related Work

« M. Weber (2002): PEAT — Toolkit for Detecting
. and Analyzing Malicious Software

= R. Chinchani (2005): A Fast Static Analysis

* Approach to Detect Exploit Code Inside
Network Flows

S. Stolfo (2005): Fileprint Analysis for
Malware Detection

Black Hat Briefings

. Fingerprint: Win 32 API calls

Joint work with Chris Ries

Synopsis: Observe and record Win32 API calls made
by malicious code during execution, then compare
them to calls made by other malicious code to find
similarities

Goal: Classify malware quickly into a family (set of
variants make up a family)

Main result: Simple model yields > 80% correct
classification, call vectors seem robust towards
different packer

Black Hat Briefings

= Win 32 API call: System overview

—| Database —l

Data Vector |—\ ; ::>
Malicious Co@ Collection Log Fil(> Builder Vector JComparison| Family

&
. Data Collection: Run malicious code, recording
Wing2 API calls it makes

Vector Builder: Build count vector from collected API
call data and store in database

Comparison: Compare vector to all other vectors in the
_database to see if its related to any of them

Black Hat Briefings

= Win 32 API Call: Data Collection

Win 2000 Linux

VMWare » Fake DNS Server
Honeyd

WinXP

Malware
v Relayer
Logger

Malware runs for short period of time on VMWare
machine, can interact with fake network

API calls recorded by logger, passed on to Relayer
Relayer forwards logs to file, console

Black Hat Briefings

- Win 32 API Call: Call Recording

Malicious process is started in suspended state
= DLL is injected into process’s address space

. When DLL’s D11Main () function is executed, it hooks
» the Wing2 API function

= Hook records the call’s time and arguments, calls the
« target, records the return value, and then returns the
target’s return value to the calling function.

v

Calling Target ‘ Calling
Function Function Function

t t

Trampoline

Function

Function call before hooking Function call after hooking

/Win 32 API call: Call Vector N

Function FindClose FindFirstFileA CloseHandle EndPath
Name

Number 62 156
of Calls

- _/

Column of the vector represents a hooked function
and # of times called

1200+ different functions recorded during execution

For each malware specimen, vector values recorded
to database

Black Hat Briefings

- Win 32 API call: Comparison

Computes cosine similarity measure csm
between vector and each vector in the database

=
[4\,
r—
V2
| |

* —

If csm(vector, most similar vector in the
database) > threshold = vector is classified
as member of faInllYmost—similar—vector

Otherwise vector classified as member of
fa'Inllyno—variants—yet

Black Hat Briefings

Win 32 API call: Results

Collected 77 malware samples Family #of #correct
members

- .) Apost 1
Classification made by 17 Discrepancies Banker 4
» major AV scanners produced Nibu

% 21 families (some aliases) Be:geno

: Blaster
~80 % correct with - Frethem

[y
ey
ANF—‘-B@

csm threshold 0.8 ‘ / Gibe

Inor
Klez

Threshold M % M # false fam. both miss. fam. Mitgleider
MyDoom

0.7 0.8 62 8 MyLife
0.75 0.8 62 6 Netsky

DN ek DN ek)

[y
(=]

Sasser

0.8 0.82 63 SDBot

0.85 0.82 63 Moega
0.79 61 Randex
0.79 61 Spybot

0.62 48 Pestlogger
Welchia

Q= O W NN 0N RN O N -

Q\ = = DN W OO W O N

Win 32 API call: Packers

« Wide variety of Variant
different packers used Netsky.AB
within same families Netsky.B

Netsky.C

5
« Dynamic Win 32 API Netsky.D
call fingerprint seems NetskyK

robust towards packer Netsky.P
Netsky.S

8 Netsky variants in
sample, 7 identified Netsky.Y

Black Hat Briefings

Packer Identified
PECompact |

UPX

PEtite
PEtite
tElock
FSG
PE-Patch,
UPX

PE Pack

Summary: Win 32 API calls

Allows researchers and analysts to quickly identify
variants reasonably well, without manual analysis

Simple model yields > 80% correct classification
= Resolved discrepancies between some AV scanners

Dynamical API call vectors seem robust towards
different packer

—| Database —l

— Data N| Vector |—N| :
Malicious Co\de/ Collection Log Flle/ Builder JComparison

Black Hat Briefings

API call : Further directions

Acquire more malware samples for better variant
classification

Explore resiliency to obfuscation techniques
(substitutions of Win 32 API calls, call spamming)

® Investigate patterns of ‘call bundles’ instead of just
isolated calls for richer identification

Replace VSM with finite state automaton that captures
rich set of call relations

Black Hat Briefings

Related Work

« R. Sekar et al (2001): A Fast Automaton-Based

_ Method for Detecting Anamalous Program
* Behaviour

« J. Rabek et al (2003): DOME — Detection of
Injected, Dynamically Generated, and
Obfuscated Malicious Code

K. Rozinov (2005): Efficient Static Analysis of
Executables for Detecting Malicous Behaviour

Black Hat Briefings

Fingerprint: PDG measures

Synopsis: Represent binaries as a System
Dependence Graph, extract graph features to construct
‘eraph-structural’ fingerprints for particular software
classes

» Goal: Compare ‘graph structure’ fingerprint of
unknown binaries across non-malicious software and
malware classes for identification, classification and
prediction purposes

Main result: Work in progress

Black Hat Briefings

. Program Dependence Graph

Frogram Cods

'

Control Flow : Forward Dominance
Graph Tree

]

Data Dependence Control Dependence
sraph raph

\--.._____I_‘_‘r______..--"‘

Frogram Dependencs
Graph

Picture from J. Stafford (Colorado, Boulder)

A PDG models intra-
procedural

Data Dependence:
Program statements
compute data that are
used by other statements.

Control Dependence:

Arise from the ordered
flow of control in a
program.

Black Hat Briefings

. Program Dependence Graph

int maini) {
int sum
int 1
while

0: Control dependence

= 1;
(1 < 113
=1 1
i =1 1;

{ Flow dependence
+ 1;

I
printf (“zd\n”, sum) ;
printf (Msd\n”,i);

T

printf {sum)

Material from Codesurfer

Black Hat Briefings

System Dependence Graph

Program — ~——__
. __.r"l"-\.__ -\----'-.

— - - S
o

P e T
Proc & Proc B nas Proc £
+ [l ¥ \\\

PCFG= FOF| [PCFG=FOF PCFG ~ FOF a1 ASDG of a program

. L
il hd Grap

vcts | |_rcos ™ are the aggregated
- '“ f____f/“ PDGs augmented
with the calls
composed SystemContol - hetween functions

Dependence Graph

Picture from J. Stafford (Colorado, Boulder)

A SDG models control, data, and call dependences in
a program

Black Hat Briefings

System Dependence Graph

, , Enter main
int malinf() Yx:;“waxahhi
. : ' while(i < 110 printf (sum)

printf (“#d\n”, sum) ;
printf (*gd\n”,1) ;

int add{int x, int v) {
return x + v;

Material from Codesurfer

Black Hat Briefings

. Graph measures as a fingerprint

= Binaries represented as a System
. Dependence Graph (SDG)

Tally distributions on graph measures:

: Edge weights (weight is jump distance)
Node weight (weight is number of statements in basic block)
Centrality (“How important is the node”)
Clustering Coefficient (“probability of connected neighbours™)
Motifs (“recurring patterns”)

=>» Statistical structural fingerprint

Example: H. Flake (BH 05) Graph-structural measure

Black Hat Briefings

Primer: Graphs

) Graphs (Networks)
® ' O aremadeupof
vertices (nodes) and
edges

An edge connects two
vertices

Nodes and edges can
have different weights

(b,c)

Edges can have
directions (d)

Picture from Mark Newman (2003)

Black Hat Briefings

Modeling with Graphs

Category Example (nodes, edge)
Social Friendship (people, friendship bond)
Set of people/groups with Business (companies, business dealings)

some interaction between

Movies (actors, collaboration)
them

Phone calls (number, call)
Information Citation (paper, cited)

Information linked together Thesaurus (words, synonym)

www (html pages, URL links)
Technology Power grid (power station, lines)
(Transmission) Telephone
resource or commodity
distribution/transmission
Biological Genetic regulatory network (proteins, dependence)

biological ‘entities’ interacting Cardjovascular (organs, veins) [also transmission]
Food (predator, prey)

Neural (neurons, axons)
Physical Science Chemistry (conformation of polymers, transitions)
physical ‘entities’ interacting

Internet (routers, physical links)

Black Hat Briefings

Measures: Centrality

Centrality tries to measure the ‘importance’ of a
vertex

Degree centrality: “How many nodes are
connected to me?”

Closeness centrality: “How close am I from
all other nodes?”

Betweenness centrality: “How important
am I for any two nodes?”

Freeman metric computes centralization for
‘entire graph

Black Hat Briefings

Measure:
Degree centrality

Degree
centrality: “How
many nodes are
connected to me?”

Normalized:
N

E edge(n;,n;)

edge(i, J) _ =)
j;ﬁj Malm) =57

Black Hat Briefings

Measure:
Closeness centrality

Closeness
centrality: “How
close am I from all
other nodes?”

Normalized:

MC(nz) =M (n,)(N-1)

Black Hat Briefings

Measure:
Betweenness centrality

‘ Betweenness
' centrality: “How
_ important am I for
any two nodes?”

Normalized:

C'(l’l)= CB(ni)
PYT(N=1)(N=2)/2

Black Hat Briefings

[.ocal structure:
Clusters and Motifs

* Graphs can be decomposed into constitutive
subgraphs

Subgraph: A subset of nodes of the original

: graph and of edges connecting them (does not
have to contain all the edges of a node)

Cluster: Connected subgraph

Motif: Recurring subgraph in networks at
higher frequencies than expected by random
chance

Black Hat Briefings

- Measure: Clustering Coefficient

Cliques (completely connected subgraphs)

 N(N-1)
2

' > How close the neighborhood of a node is to a
' clique? Edges among first

k=N-—-1, n=

.— heighbors of node J

.

' ici C, = ' , k=0,
Clustering coefficient ; K(k—1)/2 or

c =" of triangles connected fo i

I

Average clustering coefficient nr. of triples centered on i

N
| Zisz

Il
i‘\' i=1

Slide from Albert (Penn State)

Black Hat Briefings

Measure: Network motifs

5

A motif in a network is a
subgraph ‘pattern’

Recurs in networks at
higher frequencies than
expected by random

. chance

Motif may reflect underlying generative
processes, design principles and
constraints and driving dynamics

of the network

Black Hat Briefings

Motif example:

X regulates Y and Z
Y regulates Z e

Found in

Biochemistry (Transcriptional regulation)
Neurobiology (Neuron connectivity)
Ecology (food web)

Engineering (electronic circuits) ..

X
Feed-forward loop: Vv
Y
\4
7z

and maybe Computer Science (PDGs) ??

Black Hat Briefings

. Graph measures as a fingerprint

= Binaries represented as a System
. Dependence Graph (SDG)

Tally distributions on graph measures:

: Edge weights (weight is jump distance)
Node weight (weight is number of statements in basic block)
Centrality (“How important is the node”)
Clustering Coefficient (“probability of connected neighbours™)
Motifs (“recurring patterns”)

=» Statistical structural fingerprint

Black Hat Briefings

Summary: SDG measures

Synopsis: Represent binaries as a System
Dependence Graph, extract graph features to construct
‘eraph-structural’ fingerprints for particular software
classes

» Goal: Compare ‘graph structure’ fingerprint of
unknown binaries across non-malicious software and
malware classes for identification, classification and
prediction purposes

Main result: Work in progress

Black Hat Briefings

Related Work

« H. Flake (2005): Compare, Port, Navigate |

" M. Christodorescu (2003): Static Analysis

= of Executables to Detect Malicious
° Patterns

A. Kiss (2005): Using Dynamic
Information in the Interprocedural Static

References

Statistical testing:

S. Haberman (1973): The Analysis of Residuals in Cross-Classified Tables,
pp. 205-220

B.S. Everitt (1992): The Analysis of Contingency Tables (2" Ed.)

Network Graph Measures and Network Motifs:

® L. Amaral et al (2000): Classes of Small-World Networks
» R Milo, Alon U. et al (2002): Network Motifs: Simple Building Blocks of

Complex Networks
M. Newman (2003): The structure and function of complex networks
D. Bilar (2006): Science of Networks. hitp://cs.colby.edu/courses/cs298

System Dependence Graphs:

GrammaTech Inc.: Static Program Dependence Analysis via Dependence
Graphs. http://www.codesurfer.com/papers/

. Kiss et al (2003). Interprocedural Static Slicing of Binary Executables

Black Hat Briefings

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

