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 Why Structural Fingerprinting?
Goal: Identifying and classifying malware

Problem: For any single fingerprint, balance
between over-fitting (type II error) and under-
fitting (type I error)  hard to achieve

Approach: View binaries simultaneously from
different structural perspectives and perform
statistical analysis on these ‘structural
fingerprints’



Different Perspectives
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Idea: Multiple perspectives may increase likelihood of
correct identification and classification



Fingerprint:
Opcode frequency distribution

Synopsis: Statically disassemble the binary, tabulate
the opcode frequencies and construct a statistical
fingerprint with a subset of said opcodes.

Goal: Compare opcode fingerprint across non-
malicious software and malware classes for quick
identification and classification purposes.

Main result: ‘Rare’ opcodes explain more data
variation then common ones



Goodware: Opcode Distribution
Procedure:
1. Inventoried PEs (EXE, DLL,

etc) on XP box with
Advanced Disk Catalog

2. Chose random EXE samples
with MS Excel and Index
your Files

3. Ran IDA with modified
InstructionCounter plugin on
sample PEs

4. Augmented IDA output files
with PEID results (compiler)
and general ‘functionality
class’ (e.g. file utility, IDE,
network utility, etc)

5. Wrote Java parser for raw
data files and fed JAMA’ed
matrix into Excel for analysis

---------.exe
-------.exe
---------.exe

size: 122880

totalopcodes: 10680

compiler: MS Visual C++ 6.0

class: utility (process)

0001. 002145    20.08%      mov

0002. 001859    17.41%      push

0003. 000760     7.12%      call

0004. 000759     7.11%      pop

0005. 000641     6.00%      cmp

1, 2

3, 4

5



Malware: Opcode Distribution
Procedure:

1. Booted VMPlayer with XP
image

2. Inventoried PEs from C. Ries
malware collection with
Advanced Disk Catalog

3. Fixed 7 classes (e.g. virus,,
rootkit, etc), chose random
PEs samples with MS Excel
and Index your Files

4. Ran IDA with modified
InstructionCounter plugin on
sample PEs

5. Augmented IDA output files
with PEID results (compiler,
packer) and ‘class’

6. Wrote Java parser for raw data
files and fed JAMA’ed matrix
into Excel for analysis

Giri.5209
Gobi.a
---------.b

size: 12288

totalopcodes: 615

compiler: unknown

class: virus

0001. 000112    18.21%      mov

0002. 000094    15.28%      push

0003. 000052     8.46%      call

0004. 000051     8.29%      cmp

0005. 000040     6.50%      add

2,3

4, 5

6

AFXRK2K4.root.exe
vanquish.dll

1



Aggregate (Goodware):
 Opcode Breakdown
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Aggregate (Malware):
Opcode Breakdown
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Class-blocked (Malware):
 Opcode Breakdown Comparison
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 Top 14 Opcodes: Frequency
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 Comparison Opcode Frequencies

1.5%

1.1%

1.7%

3.7%

5.8%

4.1%

1.8%

1.8%

3.3%

6.4%

2.7%

5.5%

15.6%

37.0%

Kernel
RK

1.0%

2.3%

2.3%

3.1%

3.7%

3.8%

3.2%

3.3%

3.9%

4.9%

5.1%

8.9%

16.6%

29.0%

User
RK

1.3%

2.1%

2.9%

3.4%

3.4%

3.4%

3.7%

3.1%

4.3%

5.3%

5.9%

8.2%

19.0%

25.4%

Tools

0.5%

3.2%

3.0%

2.2%

2.5%

3.0%

2.6%

2.6%

3.3%

3.6%

6.8%

11.0%

14.1%

34.6%

Bot

0.6%

2.7%

3.2%

2.6%

3.0%

3.4%

3.4%

2.7%

3.5%

3.6%

7.3%

10.0%

15.4%

30.5%

Trojan

1.5%

2.1%

2.0%

3.2%

3.5%

2.7%

3.1%

5.5%

4.4%

5.9%

7.0%

9.1%

22.7%

16.1%

Virus

1.3%

1.9%

2.2%

2.6%

3.0%

3.0%

3.2%

3.9%

4.3%

5.1%

6.3%

8.7%

19.5%

25.3%

Goodware

1.6%and

2.3%xor

2.3%retn

3.2%jnz

3.0%add

4.5%jmp

3.0%test

4.2%lea

4.0%jz

5.0%cmp

6.2%pop

8.7%call

20.7%push

22.2%mov

WormsOpcode
Perform distribution tests  for top
14 opcodes on 7 classes of
malware:

Rootkit (kernel + user)

Virus and Worms

Trojan and Tools

Bots

Investigate: Which, if any,
opcode frequency is significantly
different for malware?



Top 14 Opcode Testing (z-scores)
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Top 14 Opcodes Results Interpretation
5.25.69.515.04.06.110.3Cramer’s V

(in %)
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Tools: (almost) no
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Explains just 5-15% of
variation!



 Rare 14 Opcodes (parts per million)
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Rare 14 Opcode Testing (z-scores)
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Rare 14 Opcodes: Interpretation
12101617423663Cramer’s V

(in %)

Krn Usr Tools Bot Trojan Virus
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heavy use of software interrupts 
tell-tale sign of RK ?

Infrequent 14 opcodes
much better
predictor!

Explains 12-63% of
variation



Summary: Opcode Distribution

Malware opcode
frequency distribution
seems to deviate
significantly from non-
malicious software

‘Rare’ opcodes explain
more frequency
variation then common
ones

Compare opcode
fingerprints against
various software classes
for quick identification
and classification

Giri.5209
Gobi.a
---------.b

size: 12288

totalopcodes: 615

compiler: unknown

class: virus

0001. 000112    18.21%      mov

0002. 000094    15.28%      push

0003. 000052     8.46%      call

0004. 000051     8.29%      cmp

0005. 000040     6.50%      add

AFXRK2K4.root.exe
vanquish.dll



Opcodes: Further directions
Acquire more samples and software class differentiation

Investigate sophisticated tests for stronger control of
false discovery rate and type I error

Study n-way association with more factors (compiler,
type of opcodes, size)

Go beyond isolated opcodes to semantic ‘nuggets’ (size-
wise between isolated opcodes and basic blocks)

Investigate equivalent opcode substitution effects



Related Work

M. Weber (2002): PEAT – Toolkit for Detecting
and Analyzing Malicious Software

R. Chinchani (2005): A Fast Static Analysis
Approach to Detect Exploit Code Inside
Network Flows

S. Stolfo (2005): Fileprint Analysis for
Malware Detection



Fingerprint: Win 32 API calls

Goal: Classify malware quickly into a family (set of
variants make up a family)

Synopsis: Observe and record Win32 API calls made
by malicious code during execution, then compare
them to calls made by other malicious code to find
similarities

Joint work with Chris Ries

Main result: Simple model yields > 80% correct
classification, call vectors seem robust towards
different packer



Win 32 API call: System overview

Data 
Collection

Vector 
Builder

Vector Comparison

Database

Malicious Code FamilyLog File

Data Collection: Run malicious code, recording
Win32 API calls it makes

Vector Builder: Build count vector from collected API
call data and store in database

Comparison: Compare vector to all other vectors in the
database to see if its related to any of them



Win 32 API Call: Data Collection
Win 2000

VMWare

WinXP

Linux

Relayer

Fake DNS Server
Honeyd

Malware

Logger

Malware runs for short period of time on VMWare
machine, can interact with fake network

API calls recorded by logger, passed on to Relayer

Relayer forwards logs to file, console



Win 32 API Call: Call Recording
Malicious process is started in suspended state
DLL is injected into process’s address space
When DLL’s DllMain() function is executed, it hooks
the Win32 API function

Calling 
Function

Target 
Function

Target 
Function

Calling 
Function

Hook Trampoline

Function call before hooking Function call after hooking

Hook records the call’s time and arguments, calls the
target, records the return value, and then returns the
target’s return value to the calling function.



Win 32 API call: Call Vector

Column of the vector represents a hooked function
and # of times called

1200+ different functions recorded during execution

For each malware specimen, vector values recorded
to database

…01561262Number
of Calls

…EndPathCloseHandleFindFirstFileAFindCloseFunction
Name



Win 32 API call: Comparison
Computes cosine similarity measure csm
between vector and each vector in the database

=
•

=
21

21
21 ),(

vv

vv
vvcsm vv

vv
vv

If csm(vector, most similar vector in the
database) > threshold  vector is classified
as member of familymost-similar-vector

Otherwise vector classified as member of
familyno-variants-yet

v 1

v2



Win 32 API call: Results
Collected 77 malware samples

33    Moega
58SDBot

66Welchia
11Pestlogger
01Spybot
12    Randex

23Sasser
88Netsky
55MyLife
810MyDoom
22Mitgleider
11Klez
02Inor
11Gibe
23Frethem
11Blaster

1415Beagle

4
1
2

4
1
2

Banker
    Nibu
    Tarno

01Apost

# correct# of
members

Family

2720480.620.99
1132610.790.95
1041610.790.9
842630.820.85
563630.820.8
465620.80.75
285620.80.7

miss. fam.bothfalse fam.  #  %Threshold

Classification made by 17
major AV scanners produced
21 families (some aliases)

~80 % correct with
csm threshold 0.8

Discrepancies

Misclassifications



Win 32 API call: Packers

Wide variety of
different packers used
within same families

Dynamic Win 32 API
call fingerprint seems
robust towards packer

PE PackNetsky.Y

PE-Patch,
UPX

Netsky.S

FSGNetsky.P

tElockNetsky.K

PEtiteNetsky.D

PEtiteNetsky.C

UPXNetsky.B

PECompactNetsky.AB

IdentifiedPackerVariant

8 Netsky variants in
sample, 7 identified



Summary: Win 32 API calls

Simple model yields > 80% correct classification

Resolved discrepancies between some AV scanners

Dynamical API call vectors seem robust towards
different packer

Data 
Collection

Vector 
Builder

Vector Comparison

Database

Malicious Code FamilyLog File

Allows researchers and analysts to quickly identify
variants reasonably well, without manual analysis



API call : Further directions
Acquire more malware samples for better variant
classification

Explore resiliency to obfuscation techniques
(substitutions of Win 32 API calls, call spamming)

Investigate patterns of ‘call bundles’ instead of just
isolated calls for richer identification

Replace VSM with finite state automaton that captures
rich set of call relations



Related Work

R. Sekar et al (2001): A Fast Automaton-Based
Method for Detecting Anamalous Program
Behaviour

J. Rabek et al (2003): DOME – Detection of
Injected, Dynamically Generated, and
Obfuscated Malicious Code

K. Rozinov (2005): Efficient Static Analysis of
Executables for Detecting Malicous Behaviour



Fingerprint: PDG measures

Goal: Compare ‘graph structure’ fingerprint of
unknown binaries across non-malicious software and
malware classes for identification, classification and
prediction purposes

Synopsis: Represent binaries as a System
Dependence Graph, extract graph features to construct
‘graph-structural’ fingerprints for particular software
classes

Main result: Work in progress



Program Dependence Graph
A PDG models intra-
procedural

Data Dependence:
Program statements
compute data that are
used by other statements.

Control Dependence:
Arise from the ordered
flow of control in a
program.

Picture from J. Stafford (Colorado, Boulder)



Material from Codesurfer

Program Dependence Graph



System Dependence Graph

A SDG models control, data, and call dependences in
a program

A SDG of a program
are the aggregated
PDGs augmented
with the calls
between functions

Picture from J. Stafford (Colorado, Boulder)



System Dependence Graph

Material from Codesurfer



Graph measures as a fingerprint

Binaries represented as a System
Dependence Graph (SDG)
Tally distributions on graph measures:

Edge weights (weight is jump distance)
Node weight (weight is number of statements in basic block)
Centrality (“How important is the node”)
Clustering Coefficient (“probability of connected neighbours”)
Motifs (“recurring patterns”)

 Statistical structural fingerprint

Example: H. Flake (BH 05) Graph-structural measure



Primer: Graphs
Graphs (Networks)
are made up of
vertices (nodes) and
edges

An edge connects two
vertices

Nodes and edges can
have different weights
(b,c)

Edges can have
directions (d)

Picture from Mark Newman (2003)



Modeling with Graphs

 Genetic regulatory network (proteins, dependence)

 Cardiovascular (organs, veins) [also transmission]

 Food (predator, prey)

 Neural (neurons, axons)

Biological
biological ‘entities’ interacting

Social
Set of people/groups with
some interaction between
them

 Chemistry (conformation of polymers, transitions)Physical Science
physical ‘entities’ interacting

 Power grid (power station, lines)

 Telephone

 Internet (routers, physical links)

Technology
(Transmission)
resource or commodity
distribution/transmission

 Citation (paper, cited)

 Thesaurus (words, synonym)

 www (html pages, URL links)

 Friendship (people, friendship bond)

 Business (companies, business dealings)

 Movies (actors, collaboration)

 Phone calls (number, call)
Information
Information linked together

Example (nodes, edge)Category



Measures: Centrality
Centrality tries to measure the ‘importance’ of a
vertex

Degree centrality: “How many nodes are
connected to me?”
Closeness centrality: “How close am I from
all other nodes?”
Betweenness centrality: “How important
am I for any two nodes?”

Freeman metric computes centralization for
entire graph



Measure:
Degree centrality

Degree
centrality: “How
many nodes are
connected to me?”
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Measure:
Closeness centrality

Closeness
centrality: “How
close am I from all
other nodes?”
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Measure:
Betweenness centrality

Betweenness
centrality: “How
important am I for
any two nodes?”

∑
≠≠

=
ikj

jkijkiB gngnC /)()(
2/)2)(1(

)(
)('

−−
=

NN

nC
nC iB
iB

Normalized:



Local structure:
 Clusters and Motifs

Graphs can be decomposed into constitutive
subgraphs

Subgraph: A subset of nodes of the original
graph and of edges connecting them (does not
have to contain all the edges of a node)

Cluster: Connected subgraph

Motif: Recurring subgraph in networks at
higher frequencies than expected by random
chance



Measure: Clustering Coefficient

Slide from Albert (Penn State)



Measure: Network motifs
A motif in a network is a
subgraph ‘pattern’

Recurs in networks at
higher frequencies than
expected by random
chance

Motif may reflect underlying generative
processes, design principles and
constraints and driving dynamics
of the network



Motif example:

Found in
Biochemistry (Transcriptional regulation)
Neurobiology (Neuron connectivity)
Ecology (food web)
Engineering (electronic circuits) ..

and maybe Computer Science (PDGs) ??

Feed-forward loop:

X regulates Y and Z
Y regulates Z



Graph measures as a fingerprint

Binaries represented as a System
Dependence Graph (SDG)
Tally distributions on graph measures:

Edge weights (weight is jump distance)
Node weight (weight is number of statements in basic block)
Centrality (“How important is the node”)
Clustering Coefficient (“probability of connected neighbours”)
Motifs (“recurring patterns”)

 Statistical structural fingerprint



Summary: SDG measures

Goal: Compare ‘graph structure’ fingerprint of
unknown binaries across non-malicious software and
malware classes for identification, classification and
prediction purposes

Synopsis: Represent binaries as a System
Dependence Graph, extract graph features to construct
‘graph-structural’ fingerprints for particular software
classes

Main result: Work in progress



Related Work
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