BLACKHAT BRIEFINGS 2005

The Art of SIP fuzzing and
Vulnerabilities Found in VolP

Ejovi Nuwere — Mikko Varpiola

Ejovi Nuwere

Ejovi Nuwere is the founder of
SecurityLab Technologies. Nuwere
gained media attention and
international recognition for his
highly publicized security audit of

Japan's National ID system--JukiNet.

Nuwere is the Chief Technology
Officer of SecurityLab Technologies
where he heads the companies
VolIP security auditing group. He
currently lives in Boston and is
working on his second book,
Practical Penetration Testing
(O'Reilly).

Mikko Varpiola

Mikko Varpiola is the head of test
tool development at Codenomicon
Ltd. His specific area of expertise is
in anomaly design - e.g. what to
feed into software to make it fail.
Before Codenomicon he worked as
a researcher in the acclaimed
PROTOS project at Oulu University
Secure Programming Group
(OUSPG). He is the author of the
ASN.1 encoding anomalies first
deployed in the widely-publicized
PROTOS LDAP and SNMP test
suites.

1. Proof of concept

2. Current state of the VolP security

3. The art of SIP fuzzing

¢+ Two user agents

¢ One infrastructure
component

Demonstrate the loss of
availability

Potential security
implications of found bugs
still under investigation

+ Vendors have been
notified

SIP UA
TCP

SIP PROXY

UDP

sip uA @

+ Open-source vs. proprietary
» Large product companies are doing fairly well
» Some telcos and hardware vendors lacking?
* How to measure the differences between products?

+ Military and private usage
Multilevel Precedence and Preemption (MLPP)
Small businesses at risk
Off shoring by large corporations

* Progress since 20007?
» Lack of basic coding flaws (sorry no easy overflows)
+ PROTOS (2001), discovered most basic bugs

+ Some companies begin to have very mature threat
modeling

+ Back to 1999...

» Some VolP vendors have no concept of
vulnerabilities (usual call the lawyers, downplay,...)

» Make it work mentality
» Closed network assumptions

¢ Defining fuzzing terminology
* Products evaluated

 sipXphone (sip foundry stack)

» PartySIP (GNU SIPo stack)

» SlIPset (vovida/vocal stack)

* linPhone (GNU SIPo stack)

« Commercial Brand X (unknown stack, proprietary?)
+ Doesn’t look too promising!

At least two critical bugs per product

¢ Share and share alike
« Many are using the same flawed code base
» No one admits they are using the same code base

+ No update mechanisms for most products
* Hardware devices
» Consumer products

+ Writing parsers are inherently complex
» Ethereal (150+ vulnerabilities since 1999)

It is essential to understand the
enviroment

Some errors trigger in only SIP UA ‘
certain environments and TCP
certain configurations

In context of SIP — just think of
UDP vs. TCP as a transport UDP

» Stream vs. Da.tagra.lm. . SIP UA ?
 alternate physical limitations for
maximum message size
Beyond the parser lies the
application

SIP PROXY

+ What’s all the fuzz about?\ \"--._\
+ Deciding what to fuzz :

+ |solated bug fault model

+ A systematic approach

¢+ What ASCII (as in SIP)
brings to the table

+ Types of anomalies

Positive tests to prove
coverage/conformance
To guarantee:
+ Safety
+ Security
+ Dependability

Negative tests

Bug symptoms usually locatgh:
+ Crashes Infinity of possible tests

¢ Performance degradation
¢ Other unexpected behaviour

Decision need to relate to available Bl R =tz

protocols and surrounding - SIP REQUEST LINE

environment - SIP URIs in headers

. below
|dea”y teSt a” Open Intel’faCGS - Authorization headers

Environment - Contact header
- CSe
» What are the open interfaces : Frorg header

« History of identified protocols - Route header
* Risk analysis - Record-Route header

Protocol - To header
- Via Header
* Only test the actual behaviour

* Check common sources for known
vulnerabilities -> Improvise

YOU CAN’T TEST EVERYTHING AT SAME TIME — NEITHER YOU CAN
DO EVERYTHING IN SAME MESSAGE/ELEMENT!

3. update state, generate output

2. check semantics

1. decode input, Ches‘l»: syntax”

test case

test case

invalid invalid
syntax state

. Identify sub
structures (required

and Cfptional)
- Identify data types of - [SipJuserlipassword@example.com|[5060]
identified fields

. Anomalise fields one

at the time Wlﬂ'!
proper anomalies for rom: [sipJuser]:passwordjj@example.com|[5060]
data type

. Or apply structural
mutations

¢ ASCII (as in SIP) allows various levels of
freedom

Human readable protocols tend to be harder to parse
Binary vs. ASCII protocols

It is easier to create huge amount of (redundant?) test
cases with ASCII based protocols

SDP and other content payloads a task of their own
(may requre special injection arrangements)

¢ For each anomaly we present
» Examples up close and personal
* Them applied to SIP message
+ We cover:
+ standard overflows (ascii, c-format strings, control/non-asciiiu
» standard integers (negative, 'float', big)
» addresses (IPv4, IPv6, ISDN (tel uris))
 structural (repetitions (header, header element), underflows)
» protocol specifics (by closely observing the SIP & related specs)
+ Why different lengths / values for each data type?
» All rules of boundary value testing apply to fuzzing as well
¢ Different software, different limits
« Different routines likely get excercised with different strings

ASCII (alpha vs.
Alphanumeric)

C-format string
Control character
UTF8

INVITE sip:user@to.example.com SIP/2.0
To: <sip:user@to.example.com>
From: "user' <sip:user@from.example.com:5060:-;tag=00017756
Via: SIP/2.0/ 192.168.2.8 ;branch=eez9hG4bK17756
Call-ID: s0c0001775610t11109063909102£rom, example .com
"user" <sip:user@from.example.com;transport=udp>

+ Cover the data
range with
presentative
values

+ Examine
specification for
enumerations IHVITE sip:user@to.example.com SIPf2.0

To: <sip:user@to.example.com>
From: "user' <sip:user@fram.example.com:50603;tag=00006944
- [via: SIP/2.0/UDP fram.example.com:5060 :branch=z9hG4bK6944t1110905098730

Contact: "user" <sip:us call-ID: s0c! 44i0t111 730@from. example . com
Content-Length: -1 Contact: 'user' <sip:user@from.example.com;transport=udp>
Content-Type: applicati Content-Length: 177

Content-Type: application/sdp

CSeq: 4444444444444444444944 THVITE

Mo Fooro e, o0

IHVITE sip:user@[?::1] SIPf2.0
To: «<sip:user@to.example.com-
From: "user" <sip:userEfrom.example|
Via: SIP/2.0/UDP from.example.com:5
Call-ID: s0c00000545i0t111090429066
Contact: "user" <sip:userGfrom.exam
Content-Length: 177

Content-Type: application/sdp

* Repetitions Content-Type: applicationfsdp

CSeq: 7038 IRVITE al a? a3 a4 a5 a6 a7 a8 a9 4 al5s alé g

Max-Forwards: 70

» Header
o Sub elements Eifsdiiesiinratiaiti

From: "user' <sip:user¢from.example.com:5060>:tag=00031912\r
Via: SIP/2.0/UDP from.example.com:5060:hranch=zShG4bK31912t1110908159733\r

L3 Under‘ﬂows Call-ID: s0c00031912i0t1110908159733@from.example. com\r
Contac "user" <sip:user@from.example.com;transport=udp>\r
Cont
+ Unexpected
d t INVITE sip:user@to.example.com SIP/2.0
a a To: <sip:user@to.example.com-

From: "user' <sip:user@from.example.com:5060>-:tay=00001889
Wia: SIPf2.0/UDP from.example.com: 5060 hranch=z9hG4bK1889t1110904451140

application/sdp L

application/sdp

application/sdp

application/sdp

application/sdp

application/sdp

application/sdp

application/sdp

application/sdp

application/sdp

SIP Tokens as in RFC3261
SIP line continuations as in RFC3261
URI escapes as in RFC2616/RFC1945

Embedded BASEG64 encoding of RFC2617
headers

U T F8 (see ttp://www.cl.cam.ac.uk/~mgk25/unicode.html)

Other SIP specific escapings
MIME multipart bodies
You name it!

IRVITE http:user@to.example.com SIPf2.0
To: <sip:user@to.example.com>
From: "user" <sip:user@from.example.com:5060>;tag=00000154
Via: SIP/2.0fUDP from.example.com:5060 :branch=z9hG4bK154t1110904245845
Call-ID: s0c00000154i0t11109042458453from. eHample . Com
Contact: "user" <sip:user@from.example.com;transport=udp:-
Content-Length: 177
Content-Type: applicationfsdp INVITE :gip:user@to.example.com SIPf2.0
CSeyq: 155 IHVITE To: <sip:user@to.example.com-
Max-Forwards: 70 S i s

From: "user" <sip:user@from.example.co
To: <sip:user@to.example.com> ¥ia: SIP/f2.0fUDP from.example.com: 5060
From: 'Displayname" <sip:%25%32%35%25%33%36%25%33%310t0. e X 2
Via: SIP/2.0/UDP from.example.com: 5060 :branch=z9hG4bK3706 Call-ID: Sl]l:!l]l]l]l]UD§510t1110904235150@f
Call-TD: s0c00008708i0t1110905304013&from. example . com Contact: "user" <sip:user@from.example.
Contact: "user"' <sip:user@from.example.com;transport=udp> Content—Length: 177

Content-Type: application/sdp

Authorization:Basic YWFhYWFhYWFhY¥WFhYWEhYWFhYWFhYHRFhYWFhY¥WFhYWEG
Call-ID: sO0c00003568i0t11109046665625from. example . com

“Thrill to the excitement of the chase! ‘_._
Stalk bugs with care, methodology, and reason.
Build traps for them..... [Beizer]”

“Testers! Break that software (as you must) and
drive it to the ultimate - but don’t enjoy the
programmer’s pain. [Beizer]” #

“The tester in you must be suspicious,
uncompromising,
hostile, and compulsively obsessed with
destroying, utterly destroying, the programmer’s
software.
The tester in you is your Mister Hyde ...
[Beizer]”

+ VoIP is going prime time — lets fix it before its
too late!!!

+ Find out what stacks your vendors are using
and how they are testign them!

¢+ |ts not only the signaling - there is voice and
management among others to be worried about
as well

+ Beyond presented fundamental problems there
are other cans of worms to be opened:

» Tapping, session hijacking, etc....

Ejovi Nuwere
ejovi

Mikko Varpiola

13

