
1




Ejovi Nuwere – Mikko Varpiola

The Art of SIP fuzzing and
Vulnerabilities Found in VoIP

BLACKHAT BRIEFINGS 2005



About the authors

Mikko Varpiola

Mikko Varpiola is the head of test
tool development at Codenomicon
Ltd. His specific area of expertise is
in anomaly design - e.g. what to
feed into software to make it fail.
Before Codenomicon he worked as
a researcher in the acclaimed
PROTOS project at Oulu University
Secure Programming Group
(OUSPG). He is the author of the
ASN.1 encoding anomalies first
deployed in the widely-publicized
PROTOS LDAP and SNMP test
suites.

Ejovi Nuwere

Ejovi Nuwere is the founder of
SecurityLab Technologies. Nuwere
gained media attention and
international recognition for his
highly publicized security audit of
Japan's National ID system--JukiNet.
Nuwere is the Chief Technology
Officer of SecurityLab Technologies
where he heads the companies
VoIP security auditing group. He
currently lives in Boston and is
working on his second book,
Practical Penetration Testing
(O'Reilly).



2



Agenda

1. Proof of concept

2. Current state of the VoIP security

3. The art of SIP fuzzing



Proof of concept test setup

 Two user agents
 One infrastructure

component
 Demonstrate the loss of

availability
 Potential security

implications of found bugs
still under investigation

 Vendors have been
notified



3



Current state...

 Open-source vs. proprietary
• Large product companies are doing fairly well

• Some telcos and hardware vendors lacking?

• How to measure the differences between products?

 Military and private usage
• Multilevel Precedence and Preemption (MLPP)

• Small businesses at risk

• Off shoring by large corporations



Current state continued...

 Progress since 2000?
• Lack of basic coding flaws (sorry no easy overflows)
• PROTOS (2001), discovered most basic bugs
• Some companies begin to have very mature threat

modeling

 Back to 1999…
• Some VoIP vendors have no concept of

vulnerabilities (usual call the lawyers, downplay,…)
• Make it work mentality
• Closed network assumptions



4



Testing Approach

 Defining fuzzing terminology

 Products evaluated
• sipXphone (sip foundry stack)

• PartySIP (GNU SIPo stack)

• SIPset (vovida/vocal stack)

• linPhone (GNU SIPo stack)

• Commercial Brand X (unknown stack, proprietary?)

 Doesn’t look too promising!
• At least two critical bugs per product



The problems with SIP

 Share and share alike
• Many are using the same flawed code base
• No one admits they are using the same code base

 No update mechanisms for most products
• Hardware devices
• Consumer products

 Writing parsers are inherently complex
• Ethereal (150+ vulnerabilities since 1999)



5



Don’t forget the environment

 It is essential to understand the
enviroment

 Some errors trigger in only
certain environments and
certain configurations

 In context of SIP – just think of
UDP vs. TCP as a transport
• Stream vs. Datagram

• alternate physical limitations for
maximum message  size

 Beyond the parser lies the
application

UDP

TCP

SIP PROXY

SIP UA

SIP UA



The Art of SIP fuzzing

 What’s all the fuzz about?

 Deciding what to fuzz

 Isolated bug fault model

 A systematic approach

 What ASCII (as in SIP)
brings to the table

 Types of anomalies



6




Bug symptoms usually located:

 Crashes

 Performance degradation

 Other unexpected behaviour

What’s all the fuzz about

Infinity of possible tests

Negative tests

To guarantee:

 Safety

 Security

 Dependability

Positive tests to prove
coverage/conformance



Deciding what to fuzz

WITH SIP  TRY THESE:

- SIP REQUEST LINE
- SIP URIs in headers
   below
- Authorization headers
- Contact header
- CSeq
- From header
- Route header
- Record-Route header
- To header
- Via Header

 Decision need to relate to available
protocols and surrounding
environment

 Ideally test all open interfaces

 Environment
• What are the open interfaces

• History of identified protocols

• Risk analysis

 Protocol
• Only test the actual behaviour

• Check common sources for known
vulnerabilities -> Improvise



7



Isolated bug fault model

YOU CAN’T TEST EVERYTHING AT SAME TIME – NEITHER YOU CAN
DO EVERYTHING IN SAME MESSAGE/ELEMENT!



A systematic approach

1. Identify sub
structures (required
and optional)

2. Identify data types of
identified fields

3. Anomalise fields one
at the time with
proper anomalies for
data type

4. Or apply structural
mutations



8



Fuzzing SIPFuzzing SIP

 ASCII (as in SIP) allows various levels of
freedom
• Human readable protocols tend to be harder to parse

• Binary vs. ASCII protocols

• It is easier to create huge amount of (redundant?) test
cases with ASCII based protocols

• SDP and other content payloads a task of their own
(may requre special injection arrangements)



Anomalies for ASCII based
protocols

 For each anomaly we present

• Examples up close and personal
• Them applied to SIP message

 We cover:

• standard overflows (ascii, c-format strings, control/non-ascii,utf8)

• standard integers (negative, 'float', big)

• addresses (IPv4, IPv6, ISDN (tel uris))

• structural (repetitions (header, header element), underflows)

• protocol specifics (by closely observing the SIP & related specs)

 Why different lengths / values for each data type?

• All rules of boundary value testing apply to fuzzing as well

• Different software, different limits
• Different routines likely get excercised with different strings



9



Standard overflows

 ASCII (alpha vs.
Alphanumeric)

 C-format string

 Control character

 UTF8

16x 0x61 ; (’aaaaaaaaaaaaaaaa’)

1024x 0x62

2048x 0x34

’%s%s%s%s’ , ’%n%a’, ’%99d’, %.9999f’

128x 0x00, 512x 0x07, 1024x 0x7f, ...



Standard integer anomalies

 Cover the data
range with
presentative
values

 Examine
specification for
enumerations

STANDARD:
-1, 0, 1, 2, 4, 5, 6, 7, 15, 16, 32, 63, 64, 127,
128, 255,256 ,1023, 1024, 4095, 4096, ...

FLOATS:
0.1, 0.9, -0.1, 0.0, -0.0, ....

UNEXPECTED NUMERIC SYSTEMS:
000b, 0x01, 042364



10



Addresses

0.0.0.0/8          "This" Network                 [RFC1700, page 4]
10.0.0.0/8         Private-Use Networks                   [RFC1918]
14.0.0.0/8         Public-Data Networks         [RFC1700, page 181]
24.0.0.0/8         Cable Television Networks                    --
39.0.0.0/8         Reserved but subject to allocation     [RFC1797]
127.0.0.0/8        Loopback                       [RFC1700, page 5]
128.0.0.0/16       Reserved but subject to allocation
169.254.0.0/16     Link Local                                   --
172.16.0.0/12      Private-Use Networks                   [RFC1918]
191.255.0.0/16     Reserved but subject to allocation
192.0.0.0/24       Reserved but subject to allocation
192.0.2.0/24       Test-Net
192.88.99.0/24     6to4 Relay Anycast                     [RFC3068]
192.168.0.0/16     Private-Use Networks                   [RFC1918]
198.18.0.0/15      Network Interconnect Device Benchmark Testing
223.255.255.0/24   Reserved but subject to allocation
224.0.0.0/8        Various multicast
240.0.0.0/4        Reserved for Future Use        [RFC1700, page 4]
255.255.255.255    Broadcast

"FF01:0:0:0:0:0:0:1" | #     All Nodes Address                  [RFC2373]
"FF01:0:0:0:0:0:0:2" | #     All Routers Address                [RFC2373]
"FF02:0:0:0:0:0:0:1" | #     All Nodes Address                  [RFC2373]
"FF02:0:0:0:0:0:0:2" | #     All Routers Address                [RFC2373]
"FF02:0:0:0:0:0:0:3" | #     Unassigned                         [JBP]
"FF02:0:0:0:0:0:0:4" | #     DVMRP Routers                      [RFC1075,JBP]
"FF02:0:0:0:0:0:0:5" | #     OSPFIGP                            [RFC2328,Moy]
"FF02:0:0:0:0:0:0:6" | #     OSPFIGP Designated Routers         [RFC2328,Moy]
. . . . .

”-1.-1.-1.-1”
”10.10.10.-1"”
”%s.%x.%n.%d”

"[ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff]"
"[0::0]"
"[?::1]"



Structural anomalies

 Repetitions
• Header

• Sub elements

 Underflows

 Unexpected
data



11



Protocol specific anomalies

 SIP Tokens as in RFC3261

 SIP line continuations as in RFC3261

 URI escapes as in RFC2616/RFC1945

 Embedded BASE64 encoding of RFC2617
headers

 UTF8 (see ttp://www.cl.cam.ac.uk/~mgk25/unicode.html)

 Other SIP specific escapings

 MIME multipart bodies

 You name it!



Protocol specifics continued



12



Is that all about anomalies?

    “Thrill to the excitement of the chase!
               Stalk bugs with care, methodology, and reason.

                      Build traps for them..... [Beizer]”

     “Testers! Break that software (as you must) and
          drive it to the ultimate - but don’t enjoy the

programmer’s pain. [Beizer]”

    “The tester in you must be suspicious,
uncompromising,

            hostile, and compulsively obsessed with
destroying, utterly destroying,  the programmer’s

software.
                       The tester in you is your Mister Hyde ...

[Beizer]”



Conclusions

 VoIP is going prime time – lets fix it before its
too late!!!

 Find out what stacks your vendors are using
and how they are testign them!

 Its not only the signaling - there is voice and
management among others to be worried about
as well

 Beyond presented fundamental problems there
are other cans of worms to be opened:
• Tapping, session hijacking, etc....



13



Questions?

Ejovi Nuwere

ejovi@securitylab.net

Mikko Varpiola

mvarpio@codenomicon.com


