Yuan Fan, CISSP, has worked in the network security area
for more than 7 years. He currently works for ArcSight as a
Software Engineer. He holds a Master of Computer
Engineering degree from San Jose State University. The
tool he is writing for master graduate research project
related to this topic is a Java-based, multilayer anomaly
intrusion detection system.

Yuan Fan
Arcsight

Advance SQL Injection Detection by
Join Force of Database Auditing and
Anomaly Intrusion Detection

This topic will present the proposal/idea/work from the author’s
master graduate project about effective detection of SQL Injection
exploits while lowering the number of false positives. It gives
detail analysis example of how database auditing could help this
case, and also presents the challenge with anomaly detection for
this attack and how the author tried to solve them. Finally a
correlation between the two will be presented.

SONIJFIdLG LVH MOVI9 ¢

Advance SQL Injection
detection by join force of
Database Auditing and
Anomaly intrusion detection

Yuan Fan, CISSP

BlackHat 2005

E

Related Topics

“Detection of Web Application Attacks”
[BlackHat 2004]

This topic:
Presents an idea/work and a detailed example

for database auditing to help SQL Injection
detection.

Presents a master program project about
anomaly intrusion detection for SQL Injection
and correlation ideas between database
auditing and anomaly intrusion detection.

digital self defense

SONIdd1dd LVH MDV14a

Web Application Security
Vulnerabilities Trends

@ All other vulnerabilities

= Web application
vulnerabilities

Source:
Symantec
Threat
Report

What portion of production web applications do not use a database?

What is SQL Injection?

E An attack method that exploits the vulnerability
of web applications by using deliberate input
data to generate a SQL query against the
backend database to achieve goals such as
unsolicited data exploitation and manipulation.

E Examples:

— SELECT Username FROM Users WHERE Username =" OR "="
AND Password =" OR "="

—union select username from all_users where rownum<2;

digital self defense

Existing mechanisms to protect
against SQL Injection

E Input validation from client side to server
side
E Web Application IDS/Firewall

E Homegrown methods using raw regular
expressions (A simplified signature-based
detection plus a little fuzziness?)
Nw*((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)|r|(\%52))/ix

Quote: “Either leads to many false positives or leads to too
many signatures...”

Limitations of Existing Signature-
based Solutions

E Many false-positives

No one looks at flood alerts anymore...
E Vulnerable to attack evasion

E Unnecessary restrictions for the end user

“O’Connor” is no longer allowed as username or
password?

digital self defense

SONIdd1dd LVH MDV14a

Reverse Direction

WebServer

Database

Suggejigd direction
of dete®fon/protection

Currently with correlation

popular
detection
method

One Thing Never Forget for Web
Applications

E Database

No matter how powerful fragmentation,
encoding and other advanced evasion
techniques are...

After all, what does this attack turn to, and
what does it target?

digital self defense

Database Auditing
E Auditing what?

What we will suffer from SQL Injection attack!
(Privilege escalation, unexpected actions, etc.)

EWWWW
Who is doing what on which object at when

Database Independent — Oracle, MS SQL, etc.

Start as a Process

1. Grant
Set RIGHT privilege for the db account
that is connecting from web application.

. Define triggers
3. Audit!

digital self defense

SONIdA1Idg9 LVH MOVT14a

Auditing Examples

E Audit DROP ANY TABLE BY WEB BY ACCESS;
E Audit NOT EXISTS;

Auditing all SQL statements that fail because the target object does
not exist. (Isn’t this very nice for the SQL Injection case?)

F Audit ALTER, DELETE, UPDATE ON
SALARYTABLE;

F Audit SELECT ANY TABLE WHENEVER NOT
SUCCESSFUL;

E..

Fine-grained audit using triggers

E Database Triggers can detect the number
of rows returned; general audit cannot

E Triggers can expose the full SQL used by
the user action (ora_sql_txt function in 9i
or doms_fga in 10Q)

E MS SQL Server: Trigger is one of very few
choices available for fine-grained auditing.

digital self defense

Abnormal Web application attack
Intrusion Detection

E Method

1. Modeling
Neural network training

3. Real time abnormal detection and
scoring

Abnormal Web Intrusion Detection wmodeiing

E Challenges of modeling
How to score/digitalize items?

UN/**/ION/**/ SE/**ILECT/**/

How to lower the number of false alarms while
trying not to miss the real abnormal alert?

digital self defense

SONIdA1Idg9 LVH MOVT14a

SONIdd1dd LVH MDV14a

Abnormal Web Intrusion Detection coinue

E Value length

E Parameter abnormal score (see next slide)
E Status Code

E InTraffic

E OutTraffic

Note: Every item is a number!

Abnormal Web Intrusion Detection continued

E Training
- Web Log parsing, normalization, scoring (we
also have TCPDUMP parsing module)
- Each URL has its own pattern
- How is the Parameter abnormal score
generated?
- Fuzzy but half awareness (eg: status code 500)

E Detection
Neural network space distance

digital self defense

Abnormal Web Intrusion Detection continued

E Sample web log:

2004-10-04 00:16:06 192.168.20.231 -
192.168.1.80 80 GET
/nt80_21/nt80no/iGetCodedS.asp 62166.39 200
04480
Mozilla/4.0+(compatible;+MSIE+6.0;+Windows+
NT+5.0)
http://192.168.1.80/nt80no/list.asp?lname=Comp
uterNetwork'%20and%20%201=(select%20id%2
0from%20admin%20where%20len(name)>2)%2
0and%20'1'="1

Abnormal Web Intrusion Detection continued

E Snippet of training results of HTTP request URL
parameters

<?xml version="1.0" encoding="UTF-8" 7>

<WebCGlData version="0.1">

<entry URL="/nt80_21/nt80no/login.asp" />

<entry URL="/nt80_21/nt80no/iGetCodeJS.asp"
paralength="7" paraname="NONAME" parascore="18" />

<entry URL="/nt80_21/nt80no/shop.asp" paralength="2"
paraname="id" parascore="2" />

<entry URL="/nt80_21/nt80no/bbs3.asp" paralength="14"
paraname="bbs2" parascore="3" />

<entry URL="/nt80_21/nt80no/cong.asp" paralength="5"
paraname="name" parascore="3"/> ...

digital self defense

SONId31Id9 LVH MOVT14a

Correlation

E What is common between attacks?

An SQL Injection is not exceptional

E Timestamp (short range) is still the key, but you
can do more.

Web side: ‘ union selec@d frowgrs where ‘="
—

DB AUdlt Iog USERMAME | 0BJ_NAME | ACTION_MNAME |RETURNCODE |
TESTUSER USERS SELECT [547

Normal and Abnormal Events

digital self defense

Visualization — Normal vs.
Abnormal Data

Distance Space between normal data and attack data(Red is normal)

Ly

Further Research/\Work

E HTTP Post
- Internal module for web server to intercept
- Use TCPDump + ngrep + perl
- Use Snort + HomeMadeHTTPPostRule

E More abnormal pattern detection on Database
audit side (similar to the mechanism we used for
web log!)

E More Real Attack Env Testing

digital self defense

SONIdA1Idg9 LVH MOVT14a

SONIdd1dd LVH MDV14a

Some Commercial Products

E ArcSight (SIM/SEM)

E Offers audit agents for Oracle, MSSQL, and other databases
E Aggregate events from devices, system and apps

E Correlate events between Web apps and db audits

E Visualization, Reports, Data-mining, Incident-mgmt

E Netcontinuum, Imperva, etc. (Web IDS/firewall)
E Lumigent, apexSql (Database auditing)
E And many more...

References

E Timo Honkela: Self-Organizing Maps in Natural Language
Processing http://www.cis.hut.fi/~tho/thesis

“Anomaly Detection of Web-based Attacks”

Christopher Kruegel, Giovanni Vigna
http://www.securityfocus.com/infocus/1768
http://www.securityfocus.com/infocus/1714

“Detection of Web Application Attacks.ppt” Blackhat 2004
http://Asktom.oracle.com
www.imperva.com/application_defense _center/white_papers/sql_i
njection_signatures _evasion.html

gg&antec Internet Threat Report Volume VII, published March

digital self defense

Many Thanks To:

My professor Xiao,
BlackHat & Everyone here
and all my friends!

Q&A

digital self defense

SONIdA1Idg9 LVH MOVT14a

