
Attacking Host Intrusion
Prevention Systems

Eugene Tsyrklevich
eugene@securityarchitects.com

Agenda

 Introduction to HIPS
 Buffer Overflow Protection
 Operating System Protection
 Conclusions
 Demonstration

Introduction to HIPS

 Host Intrusion Prevention Systems are
deployed on the end hosts

 Should protect against buffer overflows
 Should protect the underlying operating

system
 Should protect against known and unknown

attacks

Attack Scenario – Stage 1

 The first step in a typical attack involves
gaining remote access to a system

 Usually achieved by means of a remote buffer
overflow

 HIPS solution: buffer overflow protection

Attack Scenario – Stage 2

 Once remote access is gained, attackers usually clean
the logs, trojan the system and install rootkits

 Achieved by tampering with system logs and binaries
and by loading unauthorized malicious code

 HIPS solution: disallow tampering with system files
and registry keys and disallow loading of
unauthorized code

In reality…

 Buffer overflow protection can be trivially
bypassed

 System files and registry keys can be
modified

 And kernel code can still be loaded

Buffer Overflow Protection

 The majority of existing buffer overflow
protection solutions do not actually prevent
buffer overflows

 Instead they try to detect when shellcode
(attacker’s code) begins to execute

Buffer Overflow Protection (2)

 Shellcode detection works by checking
whether code is running from a writable page
(i.e. stack or heap)

 Shellcode detection can be implemented in
 Userland or
 Kernel

Win32 Example

kernel32.dll ntdll.dll kernelapplication

shel lcode hookshooks hooks

Win32 Userland Buffer
Overflow Protection Code

LoadLibraryA: // original function preamble is overwritten by HIPS
jmp Kernel32SampleBufferOverflowProtectionHook
:

void Kernel32SampleBufferOverflowProtectionHook() {
 // retrieve the return address from stack
_asmmov ReturnAddress, [esp]

if (IsAddressOnWritablePage(ReturnAddress))
LogAndTerminateProcess();

ReturnToTheHookedAPI();

Bypassing Userland Hooks

 It is possible to bypass kernel32.dll hooks and call
other entry points directly!

kernelntdll.dllkernel32.dllapplication

shellcode hooks

Bypassing Userland Hooks
Example

 Normal shellcode
void shellcode()
{

LoadLibrary(“library.dll”); // call kernel32.dll which
} // will eventually call ntdll.dll

 “Stealth” shellcode
void shellcode()
{

LdrLoadDll(… “library.dll” …); // call ntdll.dll directly
}

Attacking Userland Hooks

 Userland hooks run with the same privileges as
the shellcode

 Therefore, shellcode, in addition to simply
bypassing the hooks, can attack the protection
mechanism directly

 This applies not only to buffer overflow protection
but also to all security mechanisms implemented
in userland

Attacking Userland Hooks
Example

void shellcode()
{

// bypass GetProcAddress() hook
LoadLibraryAddress =
ShellCodeCopyOfGetProcAddress("LoadLibraryA");

// overwrite LoadLibraryA() hook with the original function preamble
memcpy(LoadLibraryAddress, LoadLibraryAPreamble, 5);

// call “cleansed” LoadLibrary()
LoadLibraryAddress();

}

Bypassing Kernel Hooks

 Create a fake stack frame without the EBP register
and with a return address pointing to a non-writable
segment

kernelntdll.dllkernel32.dllapplication

shellcode hooks
f
a
k
e

?

Bypassing Kernel Hooks
Example

// LoadLibrary(“library.dll”)
push real_return_address

push “library.dll”

// fake a “call LoadLibrary” call with a fake return address
push ret_instruction_in_readonly_segment
jmp LoadLibrary

real_return_address:
:

ret_instruction_in_readonly_segment:
ret

Bypassing Kernel Hooks
Example (2)

Buffer Overflow Protection
Summary

 Hard to implement in a secure manner
 Even harder to implement on a closed source

operating system
 The majority of buffer overflow protection

solutions are simply designed to detect
shellcode

 Can be easily bypassed by attackers

Operating System Protection

 Operating system protection involves protecting the
integrity of system files and registry keys

 Operating system protection also disallows the
loading of arbitrary code

 Similar to buffer overflow protection, operating
system protection can be implemented in
 Userland or
 Kernel

Userland OS Protection

 Userland protection code runs with the same
privileges as the shellcode

 Win32 SAFER appears to be implemented
this way

 Completely ineffective against malicious code
that has already begun to execute

Kernel OS Protection

 Kernel code runs with different privileges
than userland

 Has complete control over the entire system
 Hard to attack directly
 But can still be evaded (if not implemented

properly)

Bypassing Operating System
Protection

 Some HIPS implementations can be
completely bypassed by using symbolic links

 HIPS might be protecting
c:\windows\system32\drivers*

 But is it protecting x:\drivers* ?

Bypassing Operating System
Protection Example

Bypassing Operating System
Protection (2)

 Alternatively, HIPS might be protecting
\Registry\Machine\System*

 But is it protecting
\MyRegistryMachine\System* ?

 NtCreateSymbolicLinkObject() can be used
to create symbolic links in kernel namespace

Bypassing Operating System
Protection Example (2)

 \MyRegistryMachine\System =
\Registry\Machine\System.

Kernel Code Loading Interfaces

 A well-known and well understood interface:
Service Control Manager (SCM) API

 A less known interface:
ZwLoadDriver()

 A little known interface:
ZwSetSystemInformation()
 SystemLoadAndCallImage
 SystemLoadImage

Bypassing Kernel Code
Loading Restriction

 Use a little known interface such as
ZwSetSystemInformation()

 Inject code by directly modifying kernel
memory (\Device\PhysicalMemory or is it
\MyPhysicalMemory? :)

 Exploit a kernel overflow

Bypassing Kernel Code
Loading Restriction

 If a trusted system process is still allowed to
load kernel drivers, use DLL injection to
inject userland code into the trusted process
and then load a malicious kernel driver

 Modify an existing kernel driver on disk

Operating System Protection
Summary

 HIPS are designed to protect operating system files
and registry keys, as well as to disallow the loading of
unauthorized code.

 Similar to buffer overflow protection, userland based
implementations cannot protect against malicious
code that is executing with the same privileges

 Kernel based implementations are a lot more robust,
but can still be evaded by modifying different system
namespaces

Conclusion

 HIPS technology has a promising future
 There are a lot of attack vectors and missing just one

could completely compromise the security and
integrity of the system

 The majority of current HIPS implementations suffer
from a variety of security flaws

 The technology needs time to mature

Thank You

Thanks!

http://www.securityarchitects.com/
eugene@securityarchitects.com

Demonstration

 Live Demo

