Attacking Host Intrusion
Prevention Systems

Eugene Tsyrklevich

eugene(@securityarchitects.com

Agenda

¢ Introduction to HIPS

¢ Buffer Overflow Protection
¢ Operating System Protection
¢ Conclusions

¢ Demonstration

Introduction to HIPS

¢ Host Intrusion Prevention Systems are
deployed on the end hosts

¢ Should protect against buffer overflows

¢ Should protect the underlying operating
system

¢ Should protect against known and unknown
attacks

Attack Scenario — Stage 1

¢ The first step 1n a typical attack involves
galining remote access to a system

¢ Usually achieved by means of a remote buffer
overflow

¢ HIPS solution: buffer overflow protection

Attack Scenario — Stage 2

¢ Once remote access 1s gamed, attackers usually clean
the logs, trojan the system and mstall rootkits

* Achieved by tampering with system logs and binaries
and by loading unauthorized malicious code

¢ HIPS solution: disallow tampering with system files
and registry keys and disallow loading of
unauthorized code

In reality...

¢ Buffer overflow protection can be trivially
bypassed

¢ System files and registry keys can be
modified

¢ And kernel code can still be loaded

Bufter Overtlow Protection

¢ The majority of existing buffer overflow
protection solutions do not actually prevent

)

bufter overflows

¢ Instead they try to detect when shellcode
(attacker’s code) begins to execute

Buffer Overflow Protection (2)

¢ Shellcode detection works by checking
whether code 1s running from a writable page
(1.e. stack or heap)

¢ Shellcode detection can be implemented 1n
= Userland or
= Kernel

Win32 Example

application kernel32.dll ntdll.dll kernel
“« | 4 A
shellcode » hooks |» » hooks p » hooks |-
A

Win32 Userland Buffer
Overtlow Protection Code

LoadLibraryA: // original function preamble is overwritten by HIPS
jmp Kernel32SampleBufterOverflowProtectionHook

void Kernel32SampleBufferOverflowProtectionHook() {
// retrieve the return address from stack
_asmmov ReturnAddress, [esp]

if (IsAddressOnWritablePage(ReturnAddress))
LogAndTerminateProcess();

ReturnToTheHooked API();

Bypassing Userland Hooks

application kernel32.dll ntdll.dll kernel

shellcode hooks j /. /y

—
—

= [t 1s possible to bypass kernel32.dll hooks and call
other entry points directly!

Bypassing Userland Hooks
Example

¢ Normal shellcode
void shellcode()

{
LoadLibrary(“library.d1l”); // call kernel32.d1l which

} // will eventually call ntdll.dll

¢ “Stealth” shellcode
void shellcode()

{
LdrLoadDII(... “library.dll” ...); // call ntdll.dll directly

b

Attacking Userland Hooks

= Userland hooks run with the same privileges as
the shellcode

= Therefore, shellcode, n addition to simply
bypassing the hooks, can attack the protection
mechanism directly

= This applies not only to buffer overtflow protection
but also to all security mechanisms implemented
in userland

Attacking Userland Hooks

Example
void shellcode()
{
// bypass GetProcAddress() hook
LoadLibraryAddress =

ShellCodeCopyOfGetProcAddress("LoadLibraryA");

// overwrite LoadLibraryA() hook with the original function preamble
memcpy(LoadLibraryAddress, LoadLibraryAPreamble, 5);

// call “cleansed” LoadLibrary()
LoadLibraryAddress();

Bypassing Kernel Hooks

application kernel32.dll ntdll.dll kernel

?

4 4 P pe

shellcode

R o » hooks »

O X QO —

¢ Create a fake stack frame without the EBP register
and with a return address pointing to a non-writable
segment

Bypassing Kernel Hooks
Example

// LoadLibrary(“library.dll”)
push real return_address

push “library.dll”

// fake a “call LoadLibrary” call with a fake return address
push ret_instruction_in readonly segment
jmp LoadLibrary

real return address:

ret_instruction in readonly segment:
ret

Bypassing Kernel Hooks
Example (2)

MNormal Stack Fale Stack

function 1 parameter #2

function 1 parameter #1 real return address push real_return_address
return EIF address LoadLibrary parameter push "library. di"
saved EBP I, ret instruction EIP addressk— ﬁ;‘;h f;—a’;ﬁt;’r‘;;m
function? parameter #2 function? parameter #2
function 2 parameter #1 function 2 parameter #1
return EIF address return EIF address

saved EBP || saved EBP -

Bufter Overflow Protection
Summary

¢ Hard to implement in a secure manner

¢ Even harder to implement on a closed source
operating system

)

¢ The majority of buffer overtflow protection
solutions are simply designed to detect

shellcode
¢ Can be easily bypassed by attackers

Operating System Protection

¢ Operating system protection mvolves protecting the
integrity of system files and registry keys

¢ Operating system protection also disallows the
loading of arbitrary code

¢ Smmilar to buffer overflow protection, operating
system protection can be implemented m

m Userland or
m Kernel

Userland OS Protection

¢ Userland protection code runs with the same
privileges as the shellcode

¢+ Win32 SAFER appears to be implemented
this way

+ Completely neffective against malicious code
that has already begun to execute

Kernel OS Protection

¢ Kernel code runs with different privileges
than userland

¢ Has complete control over the entire system
¢ Hard to attack directly

¢ But can still be evaded (1f not implemented
properly)

Bypassing Operating System
Protection

¢ Some HIPS implementations can be
completely bypassed by using symbolic links

¢ HIPS might be protecting
c:\windows\system32\drivers*

¢ But 1s 1t protecting x:\drivers* ?

Bypassing Operating System
Protection Example

e O3 WINDOWS' System32 cmd.exe

Cisdir ciswindowsssystem3Z2sdrivershipfltdrv.sys
Uolume in drive C has no label.
Uolume Serial Numbher is ACHI-HWFBE

Dirvectory of ciswindowsssystem32hdrivers

29-88-28802 13:-88 32,896 dipfltdrv_sys
1 File<s>» 32.896 hytes
B Dirdisl 1.257.808 .88 bytes free

C:hsubst x: ciwindowshssystem32
Con2dir xasdriverssipf ltdre.sys

Uolume in drive ¥ has no lahel.
Uolume Serial Number is ACA3I-HWFBE

Directory of x::drivers
22-,88-2882 13:88 32,876 dipfltdru.sys

1 Fileds> 32.896 bytes
B Dirdisd 1.25%2.808.888 bytes free

Bypassing Operating System
Protection (2)

+ Alternatively, HIPS might be protecting
\Registry\Machine\System*

¢ But is 1t protecting
\MyRegistryMachine\System* ?

¢ NtCreateSymbolicLinkObject() can be used
to create symbolic links 1in kernel namespace

Bypassing Operating System
Protection Example (2)

Fu, YWin0Obj - Systems Internals: http://www.sysinternals.com
File Wiew Help
| Bo e EE|E | |
-] KernelObjects | | Mame Type Syrmlink |
ED File:System 7 MouotBgiat e i Beudiaaio tFointManager i
‘S GLOBAL?Y -WigitvRegistryMachine SymbolicLink. \RegistrviMachine
(] ObjectTypes T s s e
(] Security xh _ILI
| B skl ﬂ l]. | »
|Currently selected: \GLOBALFFMyRegistryMachine o

¢ \MyRegistryMachine\System =
\Registry\Machine\System.

Kernel Code Loading Interfaces

+ A well-known and well understood interface:
Service Control Manager (SCM) API

+ A less known interface:
ZwLoadDriver()

+ A little known mterface:

ZwSetSystemInformation()
= SystemLoad AndCalllmage
= SystemlLoadlmage

Bypassing Kernel Code
Loading Restriction

+ Use a little known interface such as
ZwSetSystemInformation()

¢ Inject code by directly modifying kernel
memory (\Device\PhysicalMemory or 1s it
\MyPhysicalMemory? :)

+ Exploit a kernel overflow

Bypassing Kernel Code
Loading Restriction

¢ [f a trusted system process 1s still allowed to
load kernel drivers, use DLL 1njection to
inject userland code 1nto the trusted process
and then load a malicious kernel driver

¢+ Modify an existing kernel driver on disk

Operating System Protection
Summary

¢ HIPS are designed to protect operating system files
and registry keys, as well as to disallow the loading of
unauthorized code.

¢ Smmilar to buffer overflow protection, userland based
implementations cannot protect against malicious
code that 1s executing with the same privileges

¢ Kernel based implementations are a lot more robust,
but can still be evaded by modifying different system
namespaces

Conclusion

¢ HIPS technology has a promising future

¢ There are a lot of attack vectors and missing just one
could completely compromise the security and
integrity of the system

¢ The majority of current HIPS implementations suffer
from a variety of security flaws

¢ The technology needs time to mature

Thank You

Thanks!

http://www.securityarchitects.com/

eugene(@securityarchitects.com

Demonstration

¢ [.1ve Demo

