
Attacking Host Intrusion
Prevention Systems

Eugene Tsyrklevich
eugene@securityarchitects.com

Agenda

 Introduction to HIPS
 Buffer Overflow Protection
 Operating System Protection
 Conclusions
 Demonstration

Introduction to HIPS

 Host Intrusion Prevention Systems are
deployed on the end hosts

 Should protect against buffer overflows
 Should protect the underlying operating

system
 Should protect against known and unknown

attacks

Attack Scenario – Stage 1

 The first step in a typical attack involves
gaining remote access to a system

 Usually achieved by means of a remote buffer
overflow

 HIPS solution: buffer overflow protection

Attack Scenario – Stage 2

 Once remote access is gained, attackers usually clean
the logs, trojan the system and install rootkits

 Achieved by tampering with system logs and binaries
and by loading unauthorized malicious code

 HIPS solution: disallow tampering with system files
and registry keys and disallow loading of
unauthorized code

In reality…

 Buffer overflow protection can be trivially
bypassed

 System files and registry keys can be
modified

 And kernel code can still be loaded

Buffer Overflow Protection

 The majority of existing buffer overflow
protection solutions do not actually prevent
buffer overflows

 Instead they try to detect when shellcode
(attacker’s code) begins to execute

Buffer Overflow Protection (2)

 Shellcode detection works by checking
whether code is running from a writable page
(i.e. stack or heap)

 Shellcode detection can be implemented in
 Userland or
 Kernel

Win32 Example

kernel32.dll ntdll.dll kernelapplication

shel lcode hookshooks hooks

Win32 Userland Buffer
Overflow Protection Code

LoadLibraryA: // original function preamble is overwritten by HIPS
jmp Kernel32SampleBufferOverflowProtectionHook
:

void Kernel32SampleBufferOverflowProtectionHook() {
 // retrieve the return address from stack
_asmmov ReturnAddress, [esp]

if (IsAddressOnWritablePage(ReturnAddress))
LogAndTerminateProcess();

ReturnToTheHookedAPI();

Bypassing Userland Hooks

 It is possible to bypass kernel32.dll hooks and call
other entry points directly!

kernelntdll.dllkernel32.dllapplication

shellcode hooks

Bypassing Userland Hooks
Example

 Normal shellcode
void shellcode()
{

LoadLibrary(“library.dll”); // call kernel32.dll which
} // will eventually call ntdll.dll

 “Stealth” shellcode
void shellcode()
{

LdrLoadDll(… “library.dll” …); // call ntdll.dll directly
}

Attacking Userland Hooks

 Userland hooks run with the same privileges as
the shellcode

 Therefore, shellcode, in addition to simply
bypassing the hooks, can attack the protection
mechanism directly

 This applies not only to buffer overflow protection
but also to all security mechanisms implemented
in userland

Attacking Userland Hooks
Example

void shellcode()
{

// bypass GetProcAddress() hook
LoadLibraryAddress =
ShellCodeCopyOfGetProcAddress("LoadLibraryA");

// overwrite LoadLibraryA() hook with the original function preamble
memcpy(LoadLibraryAddress, LoadLibraryAPreamble, 5);

// call “cleansed” LoadLibrary()
LoadLibraryAddress();

}

Bypassing Kernel Hooks

 Create a fake stack frame without the EBP register
and with a return address pointing to a non-writable
segment

kernelntdll.dllkernel32.dllapplication

shellcode hooks
f
a
k
e

?

Bypassing Kernel Hooks
Example

// LoadLibrary(“library.dll”)
push real_return_address

push “library.dll”

// fake a “call LoadLibrary” call with a fake return address
push ret_instruction_in_readonly_segment
jmp LoadLibrary

real_return_address:
:

ret_instruction_in_readonly_segment:
ret

Bypassing Kernel Hooks
Example (2)

Buffer Overflow Protection
Summary

 Hard to implement in a secure manner
 Even harder to implement on a closed source

operating system
 The majority of buffer overflow protection

solutions are simply designed to detect
shellcode

 Can be easily bypassed by attackers

Operating System Protection

 Operating system protection involves protecting the
integrity of system files and registry keys

 Operating system protection also disallows the
loading of arbitrary code

 Similar to buffer overflow protection, operating
system protection can be implemented in
 Userland or
 Kernel

Userland OS Protection

 Userland protection code runs with the same
privileges as the shellcode

 Win32 SAFER appears to be implemented
this way

 Completely ineffective against malicious code
that has already begun to execute

Kernel OS Protection

 Kernel code runs with different privileges
than userland

 Has complete control over the entire system
 Hard to attack directly
 But can still be evaded (if not implemented

properly)

Bypassing Operating System
Protection

 Some HIPS implementations can be
completely bypassed by using symbolic links

 HIPS might be protecting
c:\windows\system32\drivers*

 But is it protecting x:\drivers* ?

Bypassing Operating System
Protection Example

Bypassing Operating System
Protection (2)

 Alternatively, HIPS might be protecting
\Registry\Machine\System*

 But is it protecting
\MyRegistryMachine\System* ?

 NtCreateSymbolicLinkObject() can be used
to create symbolic links in kernel namespace

Bypassing Operating System
Protection Example (2)

 \MyRegistryMachine\System =
\Registry\Machine\System.

Kernel Code Loading Interfaces

 A well-known and well understood interface:
Service Control Manager (SCM) API

 A less known interface:
ZwLoadDriver()

 A little known interface:
ZwSetSystemInformation()
 SystemLoadAndCallImage
 SystemLoadImage

Bypassing Kernel Code
Loading Restriction

 Use a little known interface such as
ZwSetSystemInformation()

 Inject code by directly modifying kernel
memory (\Device\PhysicalMemory or is it
\MyPhysicalMemory? :)

 Exploit a kernel overflow

Bypassing Kernel Code
Loading Restriction

 If a trusted system process is still allowed to
load kernel drivers, use DLL injection to
inject userland code into the trusted process
and then load a malicious kernel driver

 Modify an existing kernel driver on disk

Operating System Protection
Summary

 HIPS are designed to protect operating system files
and registry keys, as well as to disallow the loading of
unauthorized code.

 Similar to buffer overflow protection, userland based
implementations cannot protect against malicious
code that is executing with the same privileges

 Kernel based implementations are a lot more robust,
but can still be evaded by modifying different system
namespaces

Conclusion

 HIPS technology has a promising future
 There are a lot of attack vectors and missing just one

could completely compromise the security and
integrity of the system

 The majority of current HIPS implementations suffer
from a variety of security flaws

 The technology needs time to mature

Thank You

Thanks!

http://www.securityarchitects.com/
eugene@securityarchitects.com

Demonstration

 Live Demo

