IIIIIlIlllIllllIlIIIIIIllIIIIlllllllllllllllllllllllllllllll

G
INTERNET

SECURITY
SYSTEMS®

Trust No-one, Not Even
Yourself OR The Weak Link
Might Be Your Build Tools

David Maynor
Research Engineer
ISS X-Force R&D

Thank god my source tree is safel (@hmmeriStaummvisystens:

“Developers normally expect attacks against their
code, just not while it is being built”

 Simple security holes are becoming a thing of the past.
— Strcpy() and gets() problems are all but extinct.

— Heap overflows can make reliable compromise across platforms and
patch levels hard.

— Increase in built-in stack protection.

(@ INTERNET|SECURITY | SYSTEMS”

Thank god my source tree is safe!

(cont)

* Developers becoming better educated, they can find
their own “low hanging fruit.”

— Increased security awareness has forced developers to consider
security in the design process.

— More educated bug hunters lead to a higher discovery rate.

(& INTERNET|SECURITY | SYSTEMS™

Thank god my source tree is safe!
(cont)

* New security technologies making remote attacks less
likely to succeed.

— Widespread use of IDS/IPS/firewall/gateway antivirus technologies

— Stateful inspection and deep threat analysis technologies becoming
commonplace

— Remote attacks becoming less likely to succeed even with Oday

« HTTP Proxies make things like connect back shells over port 80 less
effective

« NAT makes connecting directly to target machines harder

(@ INTERNET|SECURITY | SYSTEMS”™

Thank god my source tree is safe!
(cont)

 Where are the weak links in security now?
— Development is outsourced more
— Cost cutting is making strange bedfellows

— Open source projects are gaining more popularity in mission critical
roles.

My compiler? You MUST be joking!@nmerisecunmyiSystens:
“The weak link might not be in you code content,
but how you build it.”

* Is it possible?
— Can attackers really backdoor code as it is being built?
— Yes, otherwise this would be a boring speech

— Will it be noticed?
« Depends on the payload
« Different affects on different file formats
« Subtle OS changes like patching can break it

(@ INTERNET|SECURITY | SYSTEMS”

My compiler? You MUST be joking! (cont)

* Is it easy?
— No. This is a very complex attack.

— Requirements before one could even hope to succeed
« Access to build machine
« Expert knowledge of compiler and output file format

« Expert creation of payload

— Payload is the code that is being added, this can range from shell access to
remote tracking

(& INTERNET|SECURITY |SYSTEMS”

My compiler? You MUST be joking! (cont)

 What can the results of an attack like this yield?

— Email encryption program
« A copy of the plaintext is saved during creation of the ciphertext.
« A different key is used that the intended

— SSL
« Weaken server keys
« Allow for sniffing of ssl communications
— Banking application
« Create secret store of personal information
« Transmission of information to 3 parties

— Kernel
« Allow for unauthorized elevated privileges
« Allow process to be hidden from sysadmins and users

(@ INTERNET|SECURITY | SYSTEMS”

My compiler? You MUST be joking! (cont)

« How portable is this?

— Across operating systems?

« Win32 vs. linux vs. *nix
— Depends on the actual payload
— More than likely not

— Across file formats?

« PE vs. ELF vs. COFF

— This depends on where the payload is hidden
— More than likely not

— Across architectures?

e RISC vs. CISC

— This depends on how the payload is encoded.
— More than likely not

| use gcc, can | be affected by this?@nmeriSecurmviSystEms:
“Open source tools may appear to be easy but still
present a challenge.”

* A brief overview of gcc.

— Where does it come from? Who writes it?
« http://gcc.gnu.org
* 1.0 released May 23, 1987
« Current version (as of writing) 3.4.0
« Written by the Free Software Foundation
— What is it?
« More of a suite than a single tool.

— Supports C, C++, Objective-C, java, ada, fortran frontends
— List of backend support at http://gcc.gnu.org/backends.html

(@ INTERNET | SECURITY | SYSTEMS™

| use gcc, can | be affected by this? (cont)

« What does gcc actually do to code?
— Phases of compiling
— Points where gcc modifies original code
— Optimizations

(@ INTERNET|SECURITY | SYSTEMS”

| use gcc, can | be affected by this? (cont)

 How can an attacker use this to their advantage?

— Best Places to attack?

« start
— glibc-2.3/sysdeps/i386/elf/start.S
— It set up initial environment variables
— Sets up command line arguments
— Calls main()

— Analysis of frontend/backend for attack points

« Things to consider
— Breaking the program
— compatibility

(# INTERNET|SECURITY|SYSTEMS”

| use gcc, can | be affected by this? (cont)

 The payload
— C code
— X86 asm
— “shellcode”

(@ INTERNET|SECURITY | SYSTEMS”

| use gcc, can | be affected by this? (cont)

« EXAMPLE: Linking fun

— Add a stub to _start to call code in object file that is automatically
added by a trojaned linker.

« EXAMPLE: _start fun

— Code added to _start that creates a single udp packet every time
the program is run.

(@ INTERNET|SECURITY | SYSTEMS”
My compiler is not open source, | must be safe...right?
“How to trojan a compiler you do not have the source for...”

* Visual Studio 6.0
— Written by Microsoft

— Integrated development environment, compiler, assembler, linker.
— Used for windows development only, no cross compiling abilities.

e Weak links?

— crt0.c

« From the comments at the beginning of the file: “This is the actual
startup routine for apps. It calls the user's main routine [wlmain() or [w]
WinMain after performing C Run-Time Library initialization.”

« lts in C, does not require asm to craft a payload.

(& INTERNET | SECURITY|SYSTEMS”

My compiler is not open source, | must be safe...right?
(cont)

* Payload code:
— EXAMPLE: code in C++
— EXAMPLE: code is asm
— EXAMPLE: Adding code before main() or winmain()

(@ INTERNET | SECURITY | SYSTEMS™

| use an obscure compiler, | MUST be safe!
“Auditing less popular compilers for attack points.”

« LCC

— http://www.cs.princeton.edu/software/lcc/

— Covered in book “A Retargetable C Compiler ©
 Awesome book
« Overheard at party “It's the new dragon book”

— Popular for learning compiler internals
 How it differs from Visual Studio and gcc

— Less popular, not often used for mission critical apps
— Less optimazations

(# INTERNET|SECURITY|SYSTEMS”

| use an obscure compiler, | MUST be safe! (cont)

* Binary analysis
— Best way to learn about something is use it:
« Build simple “hello world” program with Icc

(# INTERNET|SECURITY|SYSTEMS”

| use an obscure compiler, | MUST be safe! (cont)

— Use nm to examine symbols created by Icc

(# INTERNET|SECURITY|SYSTEMS”

| use an obscure compiler, | MUST be safe! (cont)

— Use objdump to examine code generated by compiler

(@ INTERNET | SECURITY | SYSTEMS™

| use an obscure compiler, | MUST be safe! (cont)

* How to interpert your findings.
— Determining what the compiler does to the code
— Finding stuff you didn’t write
— Finding where the compiler stores its code

(@ INTERNET|SECURITY | SYSTEMS”™

Thankfully there are only basic attacks!!

“Aside from simple code injection, what else could be done?”

 Advance attack methods
— Adding code to getopt()
— Replacing safe functions with unsafe versions

 Dependent attack
— Do nothing if DEBUG is defined
— Only attack if there if it is a socket app
— Only attack if it is a setuid app

(@ INTERNET|SECURITY | SYSTEMS”

Thankfully there are only basic attacks!!
(cont)

« EXAMPLE: bye-bye bounds checking

II\TEHI‘\ET SECURITY SYSTEMS”

Thankfully there are only basic attacks!!
(cont)

* Tools compilers work with and how they can turn
against you!
— Linker
— Assembler
— Libtool
— ar

i i i (@ INTERNET|SECURITY |SYSTEMS™
Other than Own1ng things, is this useful?
“There are often better ways to do these things, but in case of last resort, they
work.”

 Tracking code
— Every binary built with the compiler has a machine specific hash
added for better forensics.
— Every binary built has code added that creates a UDP packet that is
sent to an arbitrary address.

« Useful for honeypots
» Internal apps that should not leave a company

(@ INTERNET|SECURITY | SYSTEMS”

How do | detect this?

“Creating the problem is easy, creating the solution is...not.”

« Stack backtrace
— Standard library code should look the same
— Backtrace comparison of ELF bin should yield same known good
results.
« Signatures for compiler operations
— Optimizations
— standard functions
— Step by step verification of code at runtime

(@ INTERNET|SECURITY | SYSTEMS”™

Thanks!!

* This speech was inspired by Ken Thompson’s excellent
piece for the ACM: Reflections on Trusting Trust.
— http://www.acm.org/classics/sep95/

