
09/07/04 Defcon 2004

Program semantics-Aware
Intrusion Detection

Prof. Tzi-cker Chiueh
Computer Science Department

Stony Brook University
chiueh@cs.sunysb.edu

09/07/04 Defcon 2004

Introduction
 Computer attacks that exploit software flaws

 Buffer overflow: heap/stack/format string
 Most common; building blocks for worm attacks
 Syntax loopholes: SQL injection, Directory traversal
 Race conditions: mostly local attacks

 Other attacks
 Social engineering
 Password cracking
 Denial of service

09/07/04 Defcon 2004

Control- Hijacking Attacks
 Network applications whose control gets hijacked because of

software bugs: Most worms, including MSBlast, exploit such
vulnerabilities

 Three-step recipe:
 Insert malicious code into the attacked application

Sneaking weapons into a plane
 Trick the attacked application to transfer control to the inserted

code
Taking over the victim plane

 Execute damaging system calls as the owner of the attacked
application process

Hit a target with the plane

09/07/04 Defcon 2004

Stack Overflow Attack

 main() {

 input();

}

 input() {

 int i = 0;;

 int userID[5];

 while ((scanf(“%d”, &(userID[I]))) != EOF)

 i ++;

 }

STACK LAYOUT
 128 Return address of input() 100

FP  124 Previous FP

 120 Local variable i

 116 userID[4]

 112 userID[3]

 108 userID[2] INT 80

 104 userID[1]

SP  100 userID[0]

09/07/04 Defcon 2004

Palladium (since 1999…)
 Array bound checking: Preventing code insertion through buffer

overflow
 Integrity check for control-sensitive data structure:

Preventing unauthorized control transfer through over-writing
return address, function pointer, and GOT

 System call policy check: Preventing attackers from issuing
damaging system calls

 Repairable file service:Quickly putting a compromised system
back to normal order after detecting an intrusion

09/07/04 Defcon 2004

Array Bound Checking
 Prevent unauthorized modification of sensitive data structures

(e.g., return address or bank account) through buffer
overflowing  The cleanest solution

 Check each pointer reference with respect to the limit of its
associated object
 Figure out which is the associated object (shadow variable

approach)
 Perform the limit check (major overhead)

 Current software-based array bound checking methods: 3-30
times slowdown

09/07/04 Defcon 2004

Segmentation Hardware
 X86 architecture’s virtual memory hardware supports

both segmentation and paging

Virtual Address = Segment Selector + Offset

Linear Address

Physical Address

segmentation

 paging

 base + offset <= limit

09/07/04 Defcon 2004

Checking Array bound using
Segmentation Hardware

(CASH)
 Exploiting segment limit check hardware to perform

array bound checking for free
 Each array or buffer is treated as a separate segment

and referenced accordingly

 offset = &(B[M]) – B_Segment_Base;

 for (i = M; i < N; I++) { GS = B_Segment_Selector;

 B[i] = 5; for (i = M; i < N; i++) {

 } GS:offset = 5;

 offset += 4;

 }

09/07/04 Defcon 2004

83.77%2.23%Edge Detection

143.77%1.47%Matrix Multiply

92.40%1.61%Gaussian Elimination

72.19%3.95%2D FFT

126.38%3.26%Volume Rendering

120.00%1.82%SVDPACK

Performance Overhead

CASH BCC

09/07/04 Defcon 2004

Return Address Defense
(RAD)

 To prevent the return address from being modified,
keep a redundant copy of the return address when
calling a procedure, and make sure that it has not been
modified at procedure return

 Include the bookkeeping and checking code in the
function prologue and epilogue, respectively

09/07/04 Defcon 2004

Binary RAD Prototype
 Aims to protect Windows Portable Executable (PE)

binaries
 Implementing a fully operational disassembler for X86

architecture
 Inserting RAD code at function prolog and epilog

without disturbing existing code
 Transparent initialization of RAR

09/07/04 Defcon 2004

Performance Overhead

1.29%Outlook Express

3.44%PowerPoint

1.23%DHCP Server

1.05%BIND

OverheadProgram

09/07/04 Defcon 2004

Repairable File Service (RFS)
 There is no such thing as unbreakable computer systems, e.g.,

insider job and social engineering
 A significant percentage of financial loss of computer security

breaches is productivity loss due to unavailability of
information and personnel

 Instead of aiming at 100% penetration proof, shift the
battleground to fast recovery from intrusion: reliability vs.
availability  MTTF/(MTTF+MTTR)

 Key problem: Accurately identify the damaged file blocks and
restore them quickly

09/07/04 Defcon 2004

RFS Architecture
Transparent to protected network file server

NFS
Client

NFS
Client

NFS
Client

RFS Protected
NFS Server

Mirroring
NFS
Server

09/07/04 Defcon 2004

Fundamental Issues
 Keeping the before image of all updates so that every update is

undoable: transparent file server update logging
 Tracking inter-process dependencies for selective undo
 Contamination analysis based on inter-process dependencies

and ID of the first detected intruder process, P
 All updates made by P and its children
 All updates by processes that read in contaminated blocks after P’s

birth time

09/07/04 Defcon 2004

RFS Prototype
 Implemented on Red Hat 7.1
 Works for both NFSv2 and NFSv3
 A client-side system call logger whose resulting log is

tamper proof
 A wire-speed NFS request/response interceptor that

deals with network/protocol errors
 A repair engine that performs contamination analysis

and selective undo
 Undo operations are themselves undoable

09/07/04 Defcon 2004

Performance Results
 Client-side logging overhead is 5.4%
 Additional latency introduced by interceptor is between

0.2 to 1.5 msec
 When the write ratio is below 30%, there is no

throughput difference between NFS and NFS/RFS
 Logging storage requirement: 709MBytes/day for a

250-user NFS server in a CS department  a 100-
Gbyte disk can support a detection window of 8 weeks

09/07/04 Defcon 2004

Program semantics-Aware
Intrusion Detection (PAID)

 As a last line of defense, prevent intruders from
causing damages even when they successfully take
control of a target victim application

 Key observation: Most damages can only be done
through system calls, including denial of service
attacks

 Idea: prohibit hijacked applications from making
arbitrary system calls

09/07/04 Defcon 2004

System Call Policy/Model
 Manual specification: error-prone, labor intensive, non-scalable
 Machine learning: error-prone, training efforts required
 Our approach: Use compiler to extract the sites and ordering of

system calls from the source code of any given application
automatically

 Only host-based intrusion detection systems that guarantees
zero false positives and very-close-to-zero false negatives

 System call policy is extracted automatically and accurately

09/07/04 Defcon 2004

PAID Architecture

ApplicationApplication

Compiler

System Call
 Policy

System Call
 Pattern

Legitimacy
 Check

User

Kernel

Compile Time
Extraction Run Time Checking

09/07/04 Defcon 2004

The Mimicry Attack
 Hijack the control of a victim application by over-

writing some control-sensitive data structure, such as
return address

 Issue a legitimate sequence of system calls after the
hijack point to fool the IDS until reaching a desired
system call, e.g., exec()

 None of existing commercial or research host-based
IDS can handle mimicry attacks

09/07/04 Defcon 2004

Mimicry Attack Details
 To mount a mimicry attack, attacker needs to

 Issue each intermediate system call without being
detected

 Nearly all syscalls can be turned into no-ops
 For example (void) getpid() or open(NULL,0)
 Grab the control back during the emulation process
 Set up the stack so that the injected code can take

control after each system call invocation

09/07/04 Defcon 2004

Countermeasures
 Checking system call argument values whenever

possible
 Checking the return address chain on the stack to

verify the call chain
 Minimize ambiguities in the system call model

 If (a>1) { open(..)} else {open(..); write(..)}
 Multiple calls to a function that contains a system call

09/07/04 Defcon 2004

Example
Entry(main)

call(foo)

return(foo)

call(foo)

return(foo)

Exit()

Exit(main)

Entry(foo)

sys_foo

sys_foo

Exit(foo)

main()
{

foo();
foo();
exit();

}

foo()
{

for(….){
sys_foo();

 sys_foo();
}

}

09/07/04 Defcon 2004

System Call Policy Extraction
 From a given program, build a system call graph from

its function call graph (FCG) and per-function reduced
control flow graph (RCFG)

 For each system call, extract its memory location, and
derive the following system call set

 Each system call site is in-lined with the actual code
sequence of entering the kernel (e.g., INT 80), and
thus can be uniquely identified

09/07/04 Defcon 2004

Dynamic Branch Targets
 Not all branch targets are known at compile time:

function pointers and indirect jumps
 Insert a notify system call to tell the kernel the target

address of these indirect branch instructions
 The kernel moves the current cursor of the system call

graph to the designated target accordingly
 Notification system call is itself protected

09/07/04 Defcon 2004

Asynchronous Control
Transfer

 Setjmp/Longjmp
 At the time of setjmp(), store the current cursor
 At the time of longjmp(), restore the current cursor

 Signal handler
 When signal is delivered, store the current cursor
 After signal handler is done, restore the current

cursor
 Dynamically linked library

 Load the library’s system call graph at run time

09/07/04 Defcon 2004

From NFA to DFA
 Use graph in-lining to disambiguate the return address for a

function with multiple call sites
 Every recursive call chain is in-lined and turned into self-recursive

call
 Use system call stub in-lining to disambiguate two system calls

that are identical and that are at two arms of a conditional
branch
 Does not completely solve the problem: F1 system_call()
 Difficult to implement because some glibc functions are written in

assembly
 Adding extra notify() for further disambiguation

09/07/04 Defcon 2004

PAID Example
Entry(main)

sys_foo_call_site_1

sys_foo_call_site_2

sys_foo_call_site_1

sys_foo_call_site_2

exit_call_site_1

Exit(main)

main()
{

foo();
foo();
exit();

}

foo()
{

for(….){
sys_foo();

 sys_foo();
}

}

foo()
{ for(….){

 { int ret;
 __asm__ (“movl sys_foo_n, %eax\n”

 “int $0x80\n”
 “sys_foo_call_site_1:\n”
 “movl %eax, ret\n”

 ….);
 }

 { int ret;
 __asm__ (“movl sys_foo_n, %eax\n”

 “int $0x80\n”
 “sys_foo_call_site_2:\n”
 “movl %eax, ret\n”

 ….);
 }
}

}

09/07/04 Defcon 2004

PAID Checks
 Ordering
 Site
 Insertion of random notify() at load time

 Different for different instance
 Stack return address check

 Ensure they are in the text area
 Checking performed in the kernel

In most cases, only two comparisons are needed

09/07/04 Defcon 2004

Ordering Check Only
main

Buffer Overflow

setreuid read open stat write

setreuid

read

open

stat

write Compromised

Call chain
Call sequence

09/07/04 Defcon 2004

Ordering and Site Check

main

Buffer Overflow

setreuid read open stat write

Compromised

Call chain
Call sequence

int 0x80

09/07/04 Defcon 2004

Ordering, Site and Stack Check (1)

main

Buffer Overflow

setreuid read open stat write

Call chain
Call sequence

int 0x80

09/07/04 Defcon 2004

Ordering, Site and Stack Check (2)

main

Buffer Overflow

exec

Call chain
Call sequence
int 0x80

Stack check passes

09/07/04 Defcon 2004

Random Insertion of Notify Calls

Call sequence
int 0x80

main

Buffer Overflow

exec

Call chain

notify

notify

Attack
failed

09/07/04 Defcon 2004

Alternative Approach
 Check the return address chain on the stack every time a system

call is made
 Every system call instance can be uniquely identified by a function

call chain and the return address for the INT 80 instruction
 Main F1 F2  F4  system_call_1 vs.
 Main F3 F5  F4  system_call_1

 Need to check the legitimacy of transitioning from one system
call to another

 No graph or function in-lining is necessary

09/07/04 Defcon 2004

System Call Argument Check
 Start from each “file name” system call argument, e.g.,

open() and exec(), and compute a backward slice,
 Perform symbolic constant propagation through the

slice, and the result could be
 A constant: static constant
 A program segment that depends on initialization-

time inputs only: dynamic constant
 A program segment that depends on run-time inputs:

dynamic variables

09/07/04 Defcon 2004

Dynamic Variables
 Derive partial constraints, e.g., prefix or suffix,

“/home/httpd/html”
 Enforce the system call argument computation path by

inserting null system calls between where dynamic
inputs are entered and where the corresponding system
call arguments are used

09/07/04 Defcon 2004

Vulnerabilities

Buffer Overflow

Buffer Overflow

exec

execnotify

notify

Call chain
Call sequence
int 0x80

Desired system call follows
Immediately

Argument
replacement

09/07/04 Defcon 2004

Prototype Implementation
 GCC 3.1 and Gnu ld 2.11.94, Red Hat Linux 7.2
 Compiles GLIBC successfully
 Compiles several production-mode network server

applications successfully, including Apache-1.3.20,
Qpopper-4.0, Sendmail-8.11.3, Wuftpd-2.6.0, etc.

09/07/04 Defcon 2004

Throughput Overhead

Apache

Qpopper

Sendmail

Wuftpd

PAID PAID/stack PAID/random PAID/stack
 random

4.89% 5.39% 6.48% 7.09%

5.38% 5.52% 6.03% 6.22%

6.81% 7.73% 9.36% 10.44%

2.23% 2.69% 3.60% 4.38%

09/07/04 Defcon 2004

Conclusion
 Paid is the most efficient, comprehensive and accurate host-

based intrusion prevention (HIPS) system on Linux
 Automatically generates per-application system call policy
 System call policy is in the form of deterministic finite automata to

eliminate ambiguities
 Extensive system call argument checks
 Can handle function pointers and asynchronous control transfers
 Guarantee no false positives
 Very small false negatives
 Can block most mimicry attacks

09/07/04 Defcon 2004

Future Work
 Support for threads
 Integrate it with SELinux
 Derive a binary PAID version for Windows platform
 Further reduce the latency/throughput overhead
 Reduce the percentage of “dynamic variable” category

of system call arguments

09/07/04 Defcon 2004

For more information

Project Page: http://www.ecsl.cs.sunysb.edu/PAID

Thank You!

