

Modern Intrusion Practices

Jul. 2003 | Gerardo Richarte · gera@coresecurity.com | CoreLabs – Security Consulting Services – IMPACT

Introduction

Current pen-testing practices focus on hosts or networks as targets, and start with a noisy reconnaissance and information gathering phase regardless of the mission. We'll start reviewing this practices, and showing how some examples of targets not commonly used open new dimensions for planning attacks and creating new tools.

The main focus of this talk is to start walking the path to a new perspective for viewing cyberwarfare scenarios, by introducing different concepts and tools (a formal model) to evaluate the costs of an attack, to describe the theatre of operations, targets, missions, actions, plans and assets involved in cybernetic attacks. We'll talk about current and immediate uses of this tools for attack and defence, as well as some future-but-not-sci-fi applications of it.

1

• • • •	Introduction
Why?	 Who are we?
Who?	
What?	 Who is this for?
When?	 Why have we done it?
Where?	
	 What is it?

	Initialization
•	• • • • • • • • • • • • • • • • • • • •

Initialization – Current intrusion practices

• What is your current pen-testing/hacking methodology?

Modern Intrusion Practices

1

Initialization – Current intrusion practices

Modern Intrusion Practices

 $\bullet \bullet \bullet \bullet$

Initialization – Current intrusion practices

Modern Intrusion Practices

. . . .

Outline	 Initialization
	More Targets
	 Information Gathering Planning
	 Boyd Cycle / OODA Loop
	 A Model for Cyberwarfare Scenarios
	 Using the Model

•	More Targets
•	• • • • • • • • • • • • • • • • • • • •

More Targets – Organization as target

quick notes

- Public information (whois/dns/www/etc)
- Commercial relationships
- Security beyond the perimeter
- The people is part of it
- Phisical security
- Denial of service Public image attacks

	More Targets – Person as target
quick notes	 Some examples
	 Representations of a Person
	 Impersonation attacks
	 Use the front door (not the backdoor)
	 Person vs. Workstation vs. Client side
	 Internal honeypots / IDS

More Targets – Person as target

Modern Intrusion Practices

 $\bullet \bullet \bullet \bullet$

pros• Lighter maintenance• Less skilled enemy• More software (and lots of bugs)• More targets		More Targets – Person as target
 Less skilled enemy More software (and lots of bugs) More targets 	pros	 Lighter maintenance
 More software (and lots of bugs) More targets 		 Less skilled enemy
More targets		 More software (and lots of bugs)
		 More targets
 Right to the inside 		 Right to the inside
 Diversity is better 		 Diversity is better

• • • • M	ore Targets – Person as target
cons	 Tougher tuning
	 It may be more noisy
	 Asynchronous nature
	 Communication channel
	Uptime

More Targets – Person as target

reconnaissance

- Network mapping using email headers
- Person discovery tools
- Craft profiles / trust relationships graphs
- OS and Application Detection
- Reverse traceroute

Information Gathering – Current practices starting the attack Establish candidate target hosts Determine host liveness Network mapping

- OS Detection
- Identification of target services

Information Gathering – Current practices How do we use the outcome of IG? • quick questions Do we use all the information we gather? Does it really matter if port 9 is open? Does help to know the OS of every host? Is it really worth using a Vuln. Scanner?

Information Gathering Planning – Example 1

• Information Gathering Planning – Example 1

quick notes

- Planning for exploits we already have
- Planning for services on standard ports
- Simple goal
- Different priorities would influence the plan
- Do we really need to port probe?
- How could we use an OS detector?

doa

IIS x

80

port 2

port

Information Gathering Planning – Example 2

Goal: To gain control of all possible hosts on a given network

I have: Target netblock Control of my box

I can: test if a given port is open (port probe) test if a given host is alive (host probe) exploit ssh (on an OpenBSD) exploit wu-ftpd (on a Linux) exploit IIS (on a Windows) exploit apache (on a Linux)

Plan: We won't use the host probe first. Again, first probe port 80, across the net. Launch exploit for every open port.

Keep probing other ports if exploit fails. [Host probe remaining hosts] [Probe nonstandard ports]

Modern Intrusion Practices

host

proh

Boyd cycle / OODA loop

- Observe, Orient, Decide, Act
- Maneuver vs. Attrition warfare
- Attacker vs. Attacker
- Attacker vs. Defender
- OODA Loop vs. Technology race

Modern Intrusion Practices

observations

1

Boyd cycle / OODA loop / Technology Race

defensive	 Bug -> Patch -> Patched system
	 IDS/Logs/Alerts -> Reaction
	 Vulnerability Scan -> Fix
	 Pen-test/Audit -> Fix
offensive	 IG -> Analysis -> Planning -> Attack
	 Find service -> Find bug -> code x -> attack
	 Publish advisory vs. Save bug for future

Modern Intrusion Practices

. . . .

The Model – Introduction

components	 Actions 	Things you can do
	 Assets 	Things you can have or know
	 Agents 	The actors, who can do Actions
	• Goals	Mission or single Action Goal
	Costs	The cost of a given Action
	• Plan	Actions needed to fulfil a Goal
	 Attack Graph 	Union of all possible plans

Modern Intrusion Practices

 $\bullet \bullet \bullet \bullet$

••• The Model – Assets, Goals and the Environment

Asset	Any information or resource the attacker may need in the course of an attack, either as intermediate result or to complete the mission.
	host 192.168.1.1 TCPConnectivity to port 80 of host 192.168.1.1 OS of host 10.1.1.2 Banner for port 21 of host 10.1.1.2 Agent installed on host 192.0.34.166
Goal	Goals are expressed as questions or requests whose answers are Assets . To fulfil a given Goal some Action will be executed.
	I want an Agent installed on host 192.0.34.166 What is the OS of host 10.1.1.2?
Environment	The Environment is the current knowledge about the world, and it's expressed as a collection of Assets .

••• **The Model** – Actions, Plan and Attack Graph

Actions	Anything an Agent can do is represented as an Action . Each Action will have a cost some results and requirements (expressed as Assets).
	Apache chunked encoding Exploit Banner grabber TCP/UDP/ARP/ICMP/DNS host probe Connect/SYNRST/FIN TCP port probe Password sniffer
Plan	Chain of actions needed to fulfil a Goal . A Plan is a path from a given initial Environment to the desired Goal .
Attack Graph	Union of all possible Plans , and description of how all Actions are related to each other. It's a directed graph, starting in the initial Environment and ending in the final Goal .

The Model – Agents One who acts for, or in the place of, another. Agent The attacker is the **Agent** who will start an attack by formulating the mission Goal. Also, some Actions may require human intervention (actions for social Human Agent engineering or perception management, usually when the target is a Person who has to be fooled). There are two types of **Software Agents**, those which given a Goal can create a Plan to fulfil it, and probably require or install new Agents in the process, to whom it assigns Goals, Plans or Software Agent Actions to execute. And those who offer a certain set of capabilities, like accessing the file system of a host, or establishing TCP connections. The capabilities of each agent determine which Actions that **Agent** will be able to execute.

The Model – Cost

- Produced noise / Stealthiness
- Running time
- Probability of success
- Trust
- Traceability
- Oday-ness

Modern Intrusion Practices

 $\bullet \bullet \bullet \bullet$

dimensions

The Model – Building an attack graph

Goal: To gain control of all possible hosts on a given domain

 $\bullet \bullet \bullet \bullet$

The Model – Building an attack graph

subgoal: To obtain possible target hosts for a given domain

 $\bullet \bullet \bullet \bullet$

$\bullet \bullet \bullet \bullet$

The Model – Building an attack graph

subgoal: To obtain possible target hosts for a given netblock

 Attack planning Some Uses Risk assessment Attacker profiling • Higher level IDS Assisted intrussion Automated intrussion Action development prioritizing

Modern Intrusion Practices

Outline	 Current practices
	 More Targets
	 Information Gathering Planning
	 Boyd Cycle / OODA Loop
	 A Model for Cyberwarfare Scenarios
	 Using the Model

 $\bullet \bullet \bullet \bullet$

Breaking into computer networks from the internet. Roelof Temmingh & SensePost http://www.sensepost.com

Security - Hacking Methodology Ryan Net Works, LLC http://www.cybertrace.com/papers/hack101.html

Attack Methodology hack-gear http://web.archive.org/web/20020610051120/http://www.hack-gear.com/methods.html

Training "Hacking Inside-Out" Ascure nv/sa http://www.ascure.com/education/Sheet%20Training%20HackingInsideOut%20v4.pdf

ISS's from Ethical Hacking course (public material only) http://www.iss.net/education/pacasia/course_descriptions/vendor_neutral_courses/ethical_hacking.php http://www.iss.net/education/course_descriptions/security_courses/ethicalhacking.php

Ethical Hacking course material: Reto Baumann / SANS http://www.giac.org/practical/GSEC/Reto_Baumann_GSEC.pdf.

Ultimate Hacking course (public material only) Foundstone http://www.foundstone.com/services/ultimate_hacking-outline.html

Hacking: An analysis of Current Methodology John Tobler and Kevin O'Connor http://www.cs.wisc.edu/~tobler/_private/Hacking.pdf

Automated Penetration Testing: *A new challenge for the IS industry?* Ivan Arce and Maximiliano Caceres – Core Security Techonolgies – BlackHat Breafings 2001 http://www1.corest.com/common/showdoc.php?idxseccion=13&idx=136

Security Consulting Services Core Security Technologies http://www1.corest.com/services/consulting/index.php

Attack Trends - The Weakest Link Revisited Elias Levy – Ivan Arce IEEE Computer Society - Security & Privacy Magazine, Vol. 1, No. 2. http://www1.corest.com/common/showdoc.php?idx=320&idxseccion=51&idxmenu=32

Widows of Vulnerability: A Case Study Analysis William A.Arbaugh – William L. Fithen – John McHugh IEEE – COMPUTER http://csdl.computer.org/comp/mags/co/2000/12/rz052abs.htm

Timing the Application of Security Patches for Optimal Uptime Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle and Chris Wright WireX Communitications, Inc. http://wirex.com/%7Ecrispin/time-to-patch-usenix-lisa02.ps.gz

Offensive Fundamentals I United States Marines Corps – Basic Officer Course http://www.leatherneck.marines.usna.edu/images/Pubs/b0354.pdf

Historical Applications Of Maneuver Warfare In The 20th Century Major Peter E. Higgins, USMC http://www.globalsecurity.org/military/library/report/1990/HPE.htm

Introduction to Asymmetric Warfare (AW), 4th Generation Warfare (4GW) and Maneuver Warfare (MW) GySgt Bob Howard, USMC http://www.d-n-i.net/fcs/ppt/howard_intro_to_4GW.ppt

Building Computer Networks Attacks Ariel Futoransky, Luciano Notarfrancesco, Gerardo Richarte, Carlos Sarraute Soon to be published

Lessons Learned Writing Exploits I Ivan Arce, Gerardo Richarte CanSecWest 2002 http://www1.corest.com/common/showdoc.php?idx=226&idxseccion=13&idxmenu=35

Lessons Learned Writing Exploits II Gerardo Richarte G-Con 1 http://www.g-con.org/speakers/Automated_Pen_Testing

CORE SECURITY TECHNOLOGIES · Contact Information

Headquarters · Boston, MA 46 Farnsworth St Boston, MA 02210-1211 | USA Ph: (617) 399-6980 info.usa@coresecurity.com

Sales Office · New York, NY

44 Wall Street | 12th Floor New York, NY 10005 | USA Ph: (212) 461-2345 | Fax: (212) 461-2346 info.usa@coresecurity.com

Research and Development Center Florida 141 | 2° cuerpo | 7° piso (C1005AAC) Buenos Aires | Argentina Tel/Fax: (54 11) 5032-CORE (2673) info.argentina@coresecurity.com

www.coresecurity.com