
Click Next to Continue

Exploits & Information about Shatter Attacks

Chris Paget <foon@ngssoftware.com>



Click Next to Continue

Introduction

• Software – 3 exploits to be released
• Techniques for code injection and execution
• User impersonation and UI manipulation
• Fun stuff to do with GDI messages
• Possible solutions



Click Next to Continue

Shatter – The WM_TIMER Issue

• Released August 7, 2002
• Accepted as a problem by MS a month later
• Patched in December 2002
• Code injection through an Edit control
• Code execution through WM_TIMER



Click Next to Continue

Smashing – An Exploit

• Works against any LocalSystem process
• Extensible to other issues
• Bruteforce capabilities
• Code injection through window titles
• Code execution by window handle or thread



Click Next to Continue

Smashing Internals

• Shellcode simply runs Smashing again
• Named pipe communication
• Fails over to a named file
• High-privileged instance creates process
• Bruteforcing is within the limits of SEH
• Code injection through a message box



Click Next to Continue

Code Injection – Window Titles

• WM_SETTEXT / SetWindowText()
• >500KB of shellcode space
• Shared heap segment (for performance)
• Message boxes from calling process
• Unicode is your friend!
• Window captions are read-only

• No self-modifying shellcode



Click Next to Continue

Code Injection – Alternatives

• Edit boxes!
• Named pipes
• Files
• Network streams
• Other I/O mechanisms
• Hook libraries



Click Next to Continue

Code Execution

• Two techniques available
• Direct vulnerability: callback functions
• Indirect vulnerability: UI manipulation
• Indirect techniques dependant upon a buffer
overflow or other exception



Click Next to Continue

Direct Code Execution

• Highly reliable
• DefWindowProc jumps to the address
• EM_SETWORDBREAKPROC
• LVM_SORTITEMS(EX)
• EM_STREAMIN / EM_STREAMOUT
• TVM_SORTCHILDRENCB
• Hooks



Click Next to Continue

Indirect Execution

• Cause an exception due to unexpected input
• LB_ADDSTRING
• LVM_INSERTITEM
• CB_ADDSTRING
• Many, many more
• EM_SETHANDLE - screws up the target
process, might be exploitable



Click Next to Continue

User Impersonation (1)

• Disable antivirus software
• Example: Disable NAV2003 with:

HWND Norton = FindWindow(0,"Norton Antivirus");

HWND Button = FindWindowEx(Norton,0,0,"&Disable");

SendMessage(Norton,WM_COMMAND,0x3eb,(LPARAM)Button);



Click Next to Continue

User Impersonation (2)

• Anything you like!
• WM_SYSCOMMAND
• WM_CHAR
• WM_LBUTTONUP
• SendInput()



Click Next to Continue

UI Manipulation

• Complete control is possible
• WM_SIZE
• WM_MOVE
• WM_SETTEXT
• CreateWindow()
• WM_CLOSE
• InsertMenuItem()



Click Next to Continue

Consequences for the UI

• User cannot trust the interface
• Neither can the application
• Any security measure based on the GUI is
trivially breakable.
• Example: “Shutdown” button on Logon
screen



Click Next to Continue

Attack Goals (1)

• Privilege Escalation
• Many LocalSystem windows on Win2K
• MS02-071 states:
“It’s possible for a highly privilege(sic) process to coexist safely
with less privileged processes on the interactive desktop”, as well
as “None of them could be subverted without the WM_TIMER
flaw”

• MS03-025 – privilege escalation in Utility
Manager (Windows 2000 only)



Click Next to Continue

Attack Goals (2)

• Interesting trojans / worms
• Scriptable UI redesigner
• Use the UI instead of the API!
• Automatically disable AV / PFW software
• PFW’s have another problem – IEKill.



Click Next to Continue

Solutions

• Current Win32 API does not allow for global
protection from Shatter attacks
• Architectural changes or API additions will be
required
• Applications will probably need recoding
• There’s no easy solution
• X11 is good from the ground up



Click Next to Continue

X11 vs. Win32

• X11 messages are notifications, not
commands
• X11 send_event flag allows apps to filter
synthesised events
• Cross-window messages can be disabled in
X11
• X11 isn’t perfect, but it has advantages



Click Next to Continue

Architectural changes

• Prevent cross-process GDI messages
• Could use ACLs based on SID or PID

• Permissions-based
• Admins decide which apps are OK

• Many applications will break (eg PGP)
• Not a complete solution



Click Next to Continue

API Extensions

• Extend GetMessage() to GetMessageEx()
• New structure would identify source
• Source may be PID or X11-style “synthetic”
flag
• Applications decide to accept external
messages
• Wouldn’t break existing software



Click Next to Continue

Problems

• Architecture change would break lots of
software
• API extension would require developers to
rework software for new calls
• Existing vuln-by-vuln patching leaves systems
open
• Kernel may not actually track message
source!



Click Next to Continue

Summary

• Any app with a TreeView, multiline edit box,
ListView or RichEdit control is trivially
exploitable
• Many other standard controls are vulnerable
• Users can no longer trust their UIs!
• Shatter attacks aren’t just for privilege
escalation!



Click Next to Continue

Exploits & Information about Shatter Attacks

Chris Paget <foon@ngssoftware.com>


