
An Application of Fuzzy Support Vectors

John Mill
Spokane Falls Community College

Spokane, WA 99224
E-mail: johnmi@spokanefalls.edu

Atsushi Inoue
�

Department of Computer Science
Eastern Washington University

Cheney, WA 99004
E-mail: atsushi.inoue@ewu.edu

Abstract

Support Vector Machines (SVMs) are a recently intro-
duced Machine Learning technique. SVMs approach binary
classification by attempting to find a hyperplane that sepa-
rates the two categories of training vectors. This hyper-
plane is expressed as a function of a subset of the train-
ing vectors. These vectors are called support vectors. In
this paper, we present a method of fuzzifying support vec-
tors based off of the results of an SVM induction. We then
propose a method of enhancing SVM induction using these
fuzzy support vectors. We finish by presenting a computa-
tional example using the IRIS data set.

1 Introduction

Support Vector Machines (SVMs) were first introduced
by Vapnik in 1995[12]. An SVM employs a two part ap-
proach to binary classification. The first part is a transfor-
mation method known as the kernel function. The kernel
function transforms a given set of vectors to a (possibly)
higher dimensional space. The second part of an SVM, of-
ten called the induction engine, attempts to find a hyper-
plane to separate the transformed vectors into two regions.
The hyperplane itself is often defined as a function of a sub-
set of the vectors known as support vectors.

To date, SVMs have been applied in many areas and
have been shown to be extremely successful[5][7][1] [3][9].
When considering SVM performance on a novel/post train-
ing vector, the distance of the point from the induced hy-
perplane is a natural indication of the SVM’s confidence in
its decisions. Points that occur nearer to the hyperplane in-
dicate a less strong decision than points classified further

�
The Director of Inland Northwest Security Systems Initiative (INSSI)

within Department of Computer Science at Eastern Washington Univer-
sity. This research is in part supported by the Congressional Appropriation
for EWU’s Technology Initiative for New Economy (TINE) and a NSF
curriculum development grant (NSF 0230590).

Figure 1. Two Points and their distances to
the hyperplane.

from the hyperplane. Figure 1 shows two points in
���

and
their distance from a hyperplane. In previous work with
SVM classification[9], it was noticed that while SVM in-
duction was extremely successful, that it was prone to pro-
duce a certain class of error. Figure 2 shows a novel point
that has been misclassified. In this figure, the positive and
negative markings represent support vectors. The misclas-
sified point occurs near to the hyperplane, and is thus a case
when the SVM’s decision is not all that strong. Errors such
as these are called near errors and the ideas presented here
were developed to reduce near errors. We first begin with a
more detailed description of SVM induction before moving
to fuzzy support vectors and a computational example.

1.1 Summary of SVM

The basic SVM performs binary classification[3]. It at-
tempts to separate vectors into two separate groups, called
the positive and negative categories. SVMs take as in-
put a training set that consists of � labeled vectors ���	�

��������������
��� � ��� � ���������
��������� �!�#" where each �%$ is 1 if

���$ is in
the positive category, and -1 if

��&$ is in the negative cate-

Figure 2. Misclassified Point A has a small
distance from the hyperplane.

gory. SVMs then attempt to output a hyperplane defined as
follows:

'
(��&� � �)+* ��-,/.0� (1)

A novel point,
��21 is then classified by looking at the out-

put of
'
3��214� . This quantity is known as the margin of the

point or the point margin. The sign of the margin deter-
mines which class the point is classified into. One of the
main strengths of SVM learning is that the output hypoth-
esis is relatively inexpensive to evaluate for post training
inputs.

As mentioned previously, SVMs are composed of the
kernel function and the induction engine. The kernel func-
tion is based off a transformation function. Given some set
of vectors � in

� 1
, we usually define some function 5 that

maps vectors from
� 1

to some other space,
�76

. We call� 1
the input space and

� 6
the feature space. With 5 in

mind, the kernel function 8 is defined as follows:

8
(��9� �:%� �<; 5
(������ 5
(�:=��> (2)

The kernel function appears more prominently in the in-
duction engine, but it also serves the purpose of mapping
the input to a space where induction may be easier[3].

As mentioned previously, the SVM induction engine is
designed to find a hyperplane to separate the two categories
of data in a hopefully linearly separable the feature space. In
doing this, the SVM induction engine must bear two things
in mind. First of all, assuming that the data is linearly sep-
arable, there may be an infinite number of separating hy-
perplanes. As is shown in Figure 3, an infinite number
of hyperplanes are possible. The figure depicts two tight
fit hyperplanes and a more middle of the road hyperplane.
The SVM induction engine needs to choose the hyperplane
that will generalize best to the post-training data. Under

+

+

+
+

+ +
+

++

+

+

+

+

+++

+ +

+

+

_
−

− −

−

−

−

− −

−

−
−

−

−

+

+

+

+

Figure 3. Three out of an infinite number of
separating hyperplanes.

most distributions of post training points, the tightest fit hy-
perplanes would tend to perform poorly. For example, the
hyperplane that is fit snug to the positive points will mis-
classify any novel positive points that happen to occur on
the other side of the hyperplane. Similarly with the other
tightest fit hyperplane. To address this point, the Maximal
Margin SVM (MMSVM) considers the the margin of the
training set. The set margin is the value of the smallest point
margin of the training set vectors. The MMSVM attempts
to choose the hyperplane such that the training set points are
as far away from the hyperplane as possible. They do this
by solving the following optimization problem:

Given: a training set �?�
�

����@���=���A�(�����
���B�����@�C���
minimize:

�)+* �)
subject to: � $
 ; �)D* ���$E>F,G.��IHKJ%��L � J �#MN����� �

The constraint placed on the problem amounts to saying
that the hyperplane must correctly classify the training set.
A basic theorem of MMSVM[3] states that the

�) that satis-
fies the problem also maximizes the margin of the training
set.

SVM induction engines must also concern themselves
with the case when the transformed data is not linearly sep-
arable. The MMSVM cannot be used in this case since
it requires that the hyperplane correctly classify the entire
training set. The Soft Margin SVM (SMSVM) allows the
hyperplane to mis-classify some of the training set exam-
ples. It too solves an optimization problem.

Given: a training set �?�
�

����@���=���A�(�����
���B�����@�C���
minimize:

�� �)+* �)+OQP?R �$�S
�&T $
subject to: � $
 ; �)D* ���$E>F,G.��IHKJUO T $���L � J �#MN����� �T $�HWV4��L � J%�XM4����� �

The T $ ’s are called the slack variables and define how
much slack there is to be in the margin for each vector in the

set � . This allows the hyperplane to mis-classify some of
the examples. The slack variables form the vector

�T which
is known as the margin slack vector. The summation of the
slack variables in the objective function controls the growth
of the margin slack vector. The SMSVM attempts to mini-
mize the total slack in the training set in this way. Finally,
the parameter P defines how much weight is given to the
minimization of the slack vector as compared to the weight
vector. Fundamental theorems of SMSVMs state that the�) that solves this problem provides the weight vector for a
hyperplane1 that generalizes the training set within Proba-
bly Approximately Correct acceptable bounds [3][11]. It is
often computationally infeasible to straightforwardly calcu-
late the solution to this optimization problem. So, a trans-
formation to the dual is often performed. In this case we get
the following optimization problem:

Given: a training set �?�
�
��� � ��� � �A�������
��� � ��� � ���
minimize: O R � $�S
��Y $

, �� R
� $�S9� R �Z S9� � $ � Z Y $ Y Z 8
2�� $ � �� Z �

subject to: R � $�S9� � $ Y $ � V
V[H Y $�H\P]��L � J �(������� �

In this form, the problem is to now find the optimal vec-
tor

�Y . Using this vector, we can compute
'
(���� � �)^* �� as

follows:

'
_��2� �
�`

$�S9� Y $
� $ 8
2�� $ � ��2� (3)

Vectors with their Y $�aGV are called support vectors. We
do not need the other vectors in our computation of

�)<* ��
since their Y $ � V and thus the product Y $!� $ 8
2��2$�� ��&� is
zero and drops out of the summation. Thus, the support
vectors are the vectors that are most crucial to defining the
hyperplane and the must crucial to our post training classi-
fication.

2 Fuzzy SVM Classification

Previous work on Fuzzy SVM classification has ap-
proached the problem using the point margins. In previous
work[1], it is noted that the magnitude of the margin is a
representation of the strength of the classification. Thus, it
is in a way analogous to membership functions[8] of fuzzy
sets. The fuzzy margin is then used to approach the multi-
class classification problem.

In this work, we approach fuzzification of SVM classi-
fication using support vectors. The dual formulation of the
problem and its search for

�Y suggests that some support vec-
tors are better or more influential than others. That is, those

1The offset of the hyperplane be calculated using the solutions to the
optimization problem.

support vectors whose Y $ are greater hold more influence
in the hyperplane (and post training classification) than
vectors with small Y $. This leads us to consider creating
fuzzy support vectors, or membership functions for support
vectors based off

�Y . These membership functions would
provide higher membership values to vectors with large Y $
and lower values to those vectors with small Y $. In the next
subsection, we describe sample fuzzy sets for support vec-
tors.

Once a membership function for support vectors has
been decided upon, the question then becomes how to make
use of them for classification. In this paper, we consider cre-
ating two membership functions over the set of post-training
or test vectors: b2c@d and egf�h . b2c@d represents a novel vec-
tor’s membership in the positive class, while egf(h represents
a novel vector’s membership in the negative class. When
deciding in which class a novel point falls, we will choose
the class for which the corresponding fuzzy set reports the
highest membership. Thus, the new decision function is:

i
(���� � ARGMAX jlk(mXnXo 1 pEq�r%s t k(mXn
(����A� t 1 pEq
(��&�Eu (4)

2.1 Example Membership Functions

Using
�Y the following sample membership function was

considered. Define v as the value for which Y $ is maximal.
Then define t nlw as:

t n�w
&�� $ � � Y $
v (5)

With this definition in hand, we can construct member-
ship functions for b2c@d and egf(h . Very simply, for a given
point

�� , we set set t k(mXn
(���� as:

t k(m�n
(��2� �
1`
�

t nlw
x�eNb $ �y $ (6)

and t 1 pEq
(���� as:

t 1%pEq
(���� �
1`
�

t nlw
z�e�e $E�y $ (7)

where
�eNb $ / �e�e $ is the ith nearest (by Euclidean distance

) positive/negative support vector from
�� and

y $ is the Eu-
clidean distance from between

�eNb $ / �e�e $ and
�� .

These definitions for b2c@d and egf(h amount to nearest
neighbor classification [4]. The difference here is that we
have relied on SVM induction to identify the memorized set
of points. It is hoped that near errors such as those shown
in Figure 2 can be reduced by considering the relationship
of a novel point to its near by support vectors.

The definitions presented in this subsection are by no
means the most desirable or efficient definitions. This is
clearly an avenue of future research.

Table 1. Percent Accuracy: SVM vs. Fuzzy
Support Vectors

Method Setosa Versicolour Virginica

SVM 100% 66.67% 90.61%

Fuzzy SV 100% 94.67% 94.67

3 Experimental Setup and Results

Using the definitions of the previous section, classifica-
tion using fuzzy support vectors was compared to a standard
support vector implementation. Both methods were tested
on the IRIS[2] dataset, a data set of three types of plants in
the iris family. For the experiment, three binary tasks were
created. The first involved separating examples of Setosa
from the other two classes. The second task involved sep-
arating examples of Versicolour from the other two while
the final task was separating examples of Virginica from the
other two classes. For each task, the data was randomly
split in half to form training and testing sets. Both the train-
ing and testing sets contained the same number of examples
from each of the three classes.

SVM Light[6] was the SVM implementation used for
the experiment. In this case, the linear kernel, the kernel
whose transformation function was 5
(���� � �� was used to
generate the support vectors and was then compared against
the method outlined above. For t k(mXn and t 1 plq , e was set at
ten. The percentage accuracies after training are listed in
Table 1.

In two out of the three tasks, Fuzzy Support Vectors per-
formed better than a linear SVM classifier. In the third case,
both methods performed equally well.

4 Discussion

As can be seen by Table 1, the application of fuzzy
support vectors proposed here possesses some utility. Of
course, this is only one example using one kernel. Other
application domains such as image processing[3], text clas-
sification [6][9], and network security [10] should be tested.
In addition, this method should be tested using more than
just the linear kernel.

Another note is that the current definitions for member-
ship in b�c@d and egf�h have a significant run time drawback
with respect to standard SVMs. As discussed above, for
each novel point, the e nearest positive and e nearest neg-
ative support vectors are calculated. Finding M e nearest
fuzzy support vectors per novel point requires more runtime
than computing a dot product of a weight vector with an in-
put vector. So, while in this limited test case, the definitions

seem to be providing a benefit, it is at the cost of runtime ex-
pediency. As discussed earlier, one of the the motivations of
this study was to reduce near errors. One alternative to the
fuzzy classification discussed already that can help balance
the increased runtime and still reduce near errors, is to only
run the fuzzy classification on points whose margin’s abso-
lute value is below some threshold and otherwise accept the
SVM classification. So, unless there are a great number of
potential near errors, the majority of the post-training points
will be processed by the efficient SVM decision function.
Another alternative is to create b�c@d and egf(h membership
functions that are linear combinations of SVM outputs and
fuzzy support vectors.

Other methods to reduce the runtime complextity of the
current definitions invovle reducing the number of support
vectors considered. For example support vectors with t nlw
below a certain threshold could be discarded. Another pos-
sibility is to combine near by fuzzy support vectors into one
ideal or clustered fuzzy support vector.

Finally, we note that it is also possible to redefine support
vector membership functions in terms of the slack variables
output by the SMSVM. Support vectors with smaller slack
variables could be considered to have higher membership
values than support vectors with large slack values.

5 Conclusion

Fuzzy support vectors are introduced and initially shown
to be effective when classifying the IRIS data set. In addi-
tion, many improvements to the proposed fuzzy set defini-
tions are proposed. Finally, it is suggested that more exten-
sive and rigorous tests are required.

References

[1] Shigeo Abe. Support vector machines for pattern clas-
sification, March 2001. Unpublished manuscript pro-
vided by A. Inoue.

[2] C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

[3] Nello Christianini and John Shawe-Taylor. An In-
troduction to Support Vector Machines and Other
Kernel-Based Learning Methods. Cambridge Univer-
sity Press, 2000.

[4] Cover and Hart. Nearest neighbor pattern classifi-
cation. IEEE Transactions on Information Theory,
13:21–27, 1967.

[5] Thorsten Joachims. Text categorization with support
vector machines: Learning with many relevant fea-
tures. In Proceedings of the European Conference on
Machine Learning (ECML). Springer, 1998.

[6] Thorsten Joachims. Making large-scale svm learning
practical. In B. Schlkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1999.

[7] Thorsten Joachims, N. Cristianini, and J. Shawe-
Taylor. Composite kernels for hypertext categorisa-
tion. In Proceedings of the International Conference
on Machine Learning, 2001.

[8] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic:
Theory and Applications. Prentice Hall, 1995.

[9] J. Mill. Support vector machines, n-gram kernels, and
text classification. Master’s thesis, Eastern Washing-
ton University, 2002.

[10] P. Miller, J. Mill, and A. Inoue. Synergistic and per-
ceptual intrusion detection with reinforcement
(spider). In Midwest Conference on Artifical Intelli-
gence and Cognitive Science., 2003.

[11] L. Valiant. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

[12] V. Vapnik. The Nature of Statistical Learning.
Springer, 1995.

