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1 Crisp Set

In order to study fuzzy sets, it is necessary to understand (crisp) sets and its
operations. In addition, characterization of sets by means of indicator functions
is described.

Definition 1 Let X be a universal set. Then a (crisp) subset A C X is char-
acterized by an indicator function pa : X — {0,1} such that

1 ifzeA
pa(z) = { 0 otherwise

Example 1 Subset of Z (set of integers) include (but are not limited to)

e Z7T (positive integers)

N (natural numbers)

0Odd numbers

FEven numbers

e Prime numbers

1.1 crisp partition

Definition 2 A family of disjoint nonempty subsets of a set A denoted by w(A)
such that
m(A) = {4;]i € IandA; C A}

where A; # 0 is a (crisp) partition on A iff
AiNA=0Vijel,i#j

and
Uierdi = A
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Example 2 A partition w(A) for set A = {a,b,c,d} consists of the following
(disjoint nonempty) subsets

o Ay ={a}
o Ay ={b,c}
o Az ={d}

1.2 Cardinality

Consider a countable set A: a set whose elements are labeled by positive integers
(formally 3f : A — N s.t. f is a bijection). Cardinality of set A4 is the number
of elements in this set denoted by |A| and it is computed as follows

| Al = Zzeapa(z)
Example: Let A = {a,b,c,d,e}. The cardinality of set A is

|4 =5

1.3 Crisp Set Operations (Standard-Algebraic)

(Two) Indicator functions of set operations are determined as follows (standard—
algebraic)

1. Intersection AN B
pang(x) = min(pa(x), up(x)) = pa(r) x pp(z)
2. Union AU B
paus(z) = maz(pa(z), pe(z)) = pa(®) + pp(2) — pa(z) X pB(2)

3. Complement A
p(®) = 1= ia(a)

4. Set difference (relative Complement) B— A = BNA
pp-A(w) = min(up(x), 1 — pa(r))

1.4 Properties of Set Operations

Properties of set operations include

1. Commutativity
AUuB=BUA
ANB=BnNA
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2. Associativity

. Distributivity
AN(BUC)=(ANB)U(ANCQC)
AU(BNC)=(AUuB)N(AUCQC)
. Idempotency
ANA=A AUA=A
. Identity
AUP=A4 AnX=A
. Involution _
A=A
. Law of Contradiction .
ANA=0
. Law of Excluded Middle _
AUA=X
. De Morgan’s Law o
ANB=AUB
AUB=ANnB

Fuzzy Set

2.1 Basics

Introduced in 1965 by Prof. L. A. Zadeh, as a modest extension of the classical
notion of set, the notion of fuzzy set proved to have far reaching, unexpected
impact. The idea is that unlike for a crisp set, which is completely determined
by an indicator function taking values in {0, 1}, a fuzzy set is characterized
by a membership function taking values in [0, I]. A fuzzy set f is said to be
normal if there exists « € X such that py(x) = 1. (it is said to be subnormal,

otherwise.)

Definition 1 Let X be a universal set. Then a fuzzy (sub)set £ is defined by

means of its membership function:

py: X [0,1]
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Example 1 Fuzzy sets tall, average, and short are defined by means of their
membership functions as shown in Figure 1:

0 if h < 170
peau(h) = 250 if 170 < h < 180
1 otherwise
0 if h <160,k > 180
h—160 .
_ 60 jf 160 < h < 170
Haverage () L80=h £ 170 < h < 180
1 if h =170
1 if h < 160
pshore(h) = ¢ Y%= if 160 < h < 170
0 if h > 170

2.2 Other Types of Fuzzy Sets
There are other types of fuzzy sets as follows

e Interval valued Fuzzy Sets

A: X o €0,1]
where € is a family of intervals [0, 1]

e Type 2 Fuzzy Sets
A: X — F([0,1])
where F is a set of fuzzy sets defined on the interval [0, 1]

e Level 2 Fuzzy Sets
A:F(X) 0,1

where F is a set of fuzzy sets defined on the universal set X

They certainly have more powerful representation of uncertainties, and they
are interesting from theoretical aspects. Unfortunately, it will be too compu-
tationally expensive from practical aspects. Besides, equivalence models using

ordinary fuzzy sets (with certain restrictions) can be drawn from aspects of
fuzzy relations.
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1 . Short _ Average LoTall

160 170 180
(&) Crisp (Classical) Partition

160 170 180
(b) Fuzzy Partition

Figure 1: Partitions of Set of Height
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2.3 Representation of Fuzzy Set

Definition 2 Given o fuzzy set f and 0 < a < 1 the a-cut (to be read alpha
cut) of f (a.k.a. level set), denoted by f, is the crisp set defined as

fo = A{zlps(x) 2 a} (2)

Definition 3 Given a fuzzy set f and 0 < a < 1 the strong a-cut of f (a.k.a.
strong level set), denoted by fo is the classical (crisp) set defined as

for ={zlps(z) > o} 3)

Example 2 In the fuzzy sets defined on height shown as Figure 1, a-cuts of
these fuzzy sets are defined respectively as follows:

Lall — (B wgau(R) > 0.5} = [175, 00)
fois" " = {h|paverage(h) > 0.5} = [165,175]
short = {h|pshort(h) > 0.5} = (—o0,165]

The a-cuts provide the connection between fuzzy sets and classical sets.
This is going to be shown as representation theorem shortly. In its most
general formulation this theorem states the necessary and sufficient conditions
for a family of classical sets to be level sets (a-cuts) of a fuzzy set. For the
particular case of finite fuzzy sets, these conditions reduce to only one, namely
that the classical sets must be nested. This is the base of Mass Assignment
Theory.

2.4 Convexity

Fuzzy set f is convez if all a-cuts of f are convex V a € (0, 1].

Shape of membership functions can be any (convex) functions. For the sake of
simplifications, the following shapes are often used for computational models
without losing too much consistencies

e Trapezoid: 4 parameters
e Triangular: 3 parameters (can be treated as a special case of trapezoid)

(Note that this representation issue is still being discussed among leading schol-
ars.)

2.5 Decomposition (Representation) Theorem
For every fuzzy set A € F(X),
A =Uqe(0,11Fa
where F, is a fuzzy set defined by means of the membership function
pr, (7) = o - pa,(z)

and A, is an a-cut (i.e. level-set) with the degree of a (pa, () is the indicator
function).
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2.6 Extension Principle

A crisp function
f: XY

is fuzzified if it is extended to act on fuzzy sets defined on X and Y such that
[ F(X) = F(Y)
The membership function is determined such that
s (Y) = Vp@)=yi(@)

Consequently, any functions are able to be adopted within fuzzy models.

2.7 Fuzzy Set Operations

The following standard set operations namely complement (not), intersection
(and), and union (or) are introduced by Zadeh:

Standard Complement

A(z) =1 - A(a) (4)
Standard Intersection
(AN B)(z) = min[A(z), B(z)] (5)
Standard Union
(AU B)(z) = maz[A(z), B(z)] (6)

These operations perform precisely as the corresponding operations for the crisp
sets.

There are classes of binary operations on the unit interval for complement,
intersection (generally referred as t-norm) and union (generally referred as t-
conorm) satisfying certain axioms such as boundary, monotonicity, commutativ-
ity, and associativity. For complement operator, the following properties must
be satisfied:

Axiom: Boundary Condition

c(0)=1
(1) =0 ™)
Axiom: Monotonicity
Va,b € [0,1],a < b= c(a) > c¢(b) (8)

Axiom: Continuity (*) c is a continuous function.
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Axiom: Involution (**)

c(e(a)) =aVae€|0,1]

Axioms with * and ** are required to support the involution property. The
following classes of complement supports the involution.

e Sugeno class
1-a
. -1
cx(a) 1+A.awhere)\€( ,00)
e Yager class )
cw(a) = (1 —a*)% where w € (0,00)

Both classes include the standard fuzzy complement.
Let ¢ be an operator in t-norm (intersection) Va, b, c € [0,1]. Then we have
the following properties:

Axiom: Boundary Condition

i(a,1)=a (9)
Axiom: Monotonicity
b<d=i(a,b) <i(a,d) (10)
Axiom: Commutativity
i(a,b) = i(b,a) (11)
Axiom: Associativity
i(a,i(b,d)) = i(i(a,b),d) (12)

The following operators are examples of t-norm (intersection) other than the
standard intersection operator:

Algebraic Product
(4N B)(z) = A(z) - b(x) (13)

Bounded Difference
(AN B)(z) = mazx[0, A(z) + B(z) — 1] (14)

Drastic Intersection

A(z) if B(z)=1
(ANB)(z) =< B(z) if A(x)=1 (15)

0 otherwise

Similarly for t-conorm (unions) u, the following properties must be satisfied:
Then we have the following for t-norm:
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Axiom: Boundary Condition

u(a,0) =a (16)
Axiom: Monotonicity
b<d= u(a,b) <u(a,d) (17)
Axiom: Commutativity
u(a,b) = u(b,a) (18)
Axiom: Associativity
u(a,u(b,d)) = u(u(a,b),d) (19)

Examples for t-conorm operators are as follows:

Algebraic Sum
(AU B)(z) = A(z) + B(z) — A(z) - B(x) (20)
Bounded Sum
(AU B)(z) = min[l, A(z) + B(z)] (21)
Drastic Union
A(z) if B(z)=0

(ANB)(z) =< B(z) if A(z)=0 (22)
1 otherwise

There are classes of t-norm and t-conorm. As of now, only the standard
operations are consistent on the operations of a-cuts (level sets). In addition, it
is important to maintain compatibilities of fuzzy set operations and operations
on mass assignments described later.

2.8 Aggregation

Aggregation operations on fuzzy sets combine several fuzzy sets in order to
generate a single fuzzy set.

H:[0,1]" — [0,1] wheren > 2
We denote aggregation function #H
A(z) = H(A1(z),..., An(x)) V2 € X

There are three required axioms and two additional essential axioms
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e Axiom: Boundary conditions

7(0,...,0) =0
H(1,...,1) =1

e Axiom: Monotonicity
H(at,---an) < HD1,...,bn) if a; < b; Vi€ [1,n]
e Axiom: Continuity H is a continuous function.
e Axiom: Symmetric (*)
H(ar,. .-, an) = H(apay, - - - > Gp(n))

for any permutation p on [1,n].

Axiom: Idempotency

Examples

e Generalized mean

e Harmonic mean

Arithmetic mean

Weighted average

where > w; =1
Ordered weighted average (OWA)

H(ala---aan)zzwi'bi

where b; is the i-th largest element € aq,...,a,

Aggregations can be viewed as a generalization of fuzzy set operations.
This view offers interfaces in order for fuzzy sets to adopt or to be adopted
by other computational frameworks such as neural networks and genetic algo-
rithms. (Note that such consortium of computational methods is the principle
of so-called Soft Computing.)
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2.9 Comparison of Fuzzy Sets

Unlike comparing classical sets, there are multiple ways of determining the com-
parison for fuzzy sets because of their membership values. Ways of determining
a similarity degree between two fuzzy sets, F and C, include:

o index of intersection/inclusion

_IFng

d
|F|

(23)
o centroid

d= HFnc(fULcJ) +(c—lel) - (MFnc(fULcHl) - anc(fﬂLcJ))

where n '
Zj:l prnc (@) - Jj
c= - (24)
Zj:l prac(T;)
assuming that membership degrees p(z;) are in non-decreasing order.
o truth value interval (support pairs)

d=(n,p) (25)
where
n= A\ -po()Vpr() (26)
and ’
p=\ nr (@) A po(o) (27)

In equations (26) and (27), A and \/ denote minimum and maximum
operations respectively. In fuzzy set theory, n and p are referred to as
necessity and possibility respectively.

In examples of comparison methods shown above, the cardinality of fuzzy
set becomes an issue. Note that several definitions of cardinality of fuzzy sets
are available. They include:

o sigma count: fuzzy cardinality of a fuzzy set A with support {z1,...,z,}
is given as a real number such that

Cards,_count(A) = Z wa(zs) (28)

o fuzzy number: fuzzy cardinality is given as a fuzzy number (introduced
by A. L. Ralescu), i.e. a fuzzy set on natural numbers, such that

Cardﬁ (i) = px (o) px (z;) px (Tn)
A ... A ... A
(1 - px(z1)) (1 - px(@it1)) (1= px(@nt1))

(29)
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where

1=px(xo) 2 px(z1) > ... 2 px(@n) > px(Tnt1) =0

The similarity degree d is given by a fuzzy number when the second definition
Cardg is chosen. In such a case, a defuzzification process is necessary to come
up to single value in [0, 1], which represents the fuzzy set.

2.10 Fuzzy Partitions

Fuzzy partitions are introduced as the counterpart of the crisp partitions. They
provide a kind of summary and sufficient description of the universal set X. For
comparison, we have the following for classical (crisp) and fuzzy partitions of a
universe of discourse X:

Definition 4 Let X be a universal set,

Classical (crisp) Partition of X A collection (4;)"—,, A; C X forms a par-
tition of X if

AiNA;=0Vi#j (30)
and "
U4i=x (31)
i=1
Fuzzy Partition of X A collection of fuzzy sets (pi)?, forms a fuzzy parti-
tion of X if
Vi#j Vo e X mi(z) <1 - pya) (32)
and
Vi€ X MAX;=;,. npi(z) > 0 (33)

With the definition of set operations on fuzzy sets obtained as a straight forward
extension of those on classic sets, conditions of fuzzy partition of X are nothing
but fuzzy set version of conditions of classical (crisp) partition of X. (30, 31).

Using fuzzy sets, transition from membership to non-membership to a class
defined as a fuzzy set is gradual (on the other hand, it is abrupt in classical sets).
Comparing fuzzy sets to classical (crisp) sets, set elements belong to more than
one fuzzy set. For instance, the height of 173.33 can be treated as both average
and tall with degree of 0.67. Such a feature represents these concepts more
naturally and smoothly comparing to classical sets defined as interval values
such as tall = [180, 200], average = [160, 180], and short = [140, 160].

Fuzzy partitions are utilized in many successful applications including (but
are not limited to) fuzzy controls and data analysis methods such as fuzzy
clustering.
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2.11 Fuzzy Sets and Probability

Probability, including Bayesian probability, and fuzzy sets are known to be
fundamentally different. From the probability model (axioms) it follows that the
probability of an event A completely determine the probability of its complement
A and vice versa. For example, when the probability of 1 by rolling a dice is
determined, the complement i.e. the probability of either 2, 3, 4, 5, or 6, is
determined at the same time. In contrast, fuzzy sets are not complementary,
i.e. afuzzy set and its complement do not construct the universe. In Example 1,
fuzzy sets tall and short are complements of each other, i.e. 1 — uan = Wshort-
However, their union, pigen V fshort, does not cover the entire universe, i.e.
membership values of their union are not always 1.0, as it is seen in Figure 1.

Second, fuzzy sets do not have to be uniquely determined like probability.
Fuzzy sets for height shown above should be defined based on user’s perception
because a particular height, say 170, is not considered to be tall for a user but
it might be for another. This property enables us to represent user’s perception
on computers.

According to J. F. Baldwin,

"Fuzzy set theory expects one to be able to give a degree of applica-
bility and therefore have some measure of closeness of match. This
assumption accepts that there can be degrees of possibility and not
simply possible and not possible.’

A voting model model introduced by J. F. Baldwin meets such criteria and gives
an interpretation of fuzzy sets. It says that the membership degree of an element
in a fuzzy set is determined based on how many people of a representative
population accept it. For example, we have 10 representatives and 4 items,
namely a,b,c, and d. Let’s say that 10 people vote for item a, 7 people vote
for item b, 4 people vote for item c, and 2 people vote for item d. Then the
membership values of these items are 1.0, 0.7, 0.4, and 0.2 respectively under
the constant threshold assumption such that a person who votes for an item is
assumed to vote all other items whose membership values are higher than that
item.

Finally, there is a relation between fuzzy sets and probabilities. In the
example of height, there is a certain threshold such that everybody agrees that
it is tall although the fuzzy set of tall is different for each user. This means that
the order of significance is preserved in both fuzzy sets and probabilities.

3 Computing with Words

Fuzzy sets offer maps between linguistic labels and actual data known as lin-
guistic values. For example, height of 173.33 is interpreted as ’tall’ with a degree
of 0.67. Using linguistic values relieves computation of handling numeric value
intervals and generates descriptive results in a natural language.

Moreover, a variable containing a linguistic value is called linguistic variable.
For example, a linguistic variable ' HEIGHT’ contains some linguistic values such
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as 'tall’, "average’, and ’short’. Considering the range of heights shown in Figure
1,1i.e. [140,200], it is now represented as a simple discrete set of linguistic values
{tall, average, short} instead of the continuous value interval.

The notion of Computing With Words is introduced by Zadeh by treating
linguistic variables as constraints between detailed numerical data and macro
linguistic description. Fuzzy sets play key roles in this computational scheme
as mediator between numerical data and linguistic representation.

From a different aspect, fuzzy sets are viewed as a bag of data covered by
these sets, and this determines the granulation of data.

The map between numerical values and linguistic labels is a representation of
user’s concepts biased based on their perception. In this framework it is possible
to represent a concept with the same linguistic description but the associated
numerical data is different based on user’s perception.



