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Abstract 

 
 This paper presents an intrusion detection system 
consisting of multiple intelligent agents. Each agent 
uses a self-organizing map (SOM) in order to detect 
intrusive activities on a computer network.  A 
blackboard mechanism is used for the aggregation of 
results generated from such agents (i.e. a group 
decision).  In addition, this system is capable of 
reinforcement learning with the reinforcement signal 
generated within the blackboard and then distributed 
over all agents which are involved in the group 
decision making. 
 Systems with various configurations of agents are 
evaluated for criteria such as speed, accuracy, and 
consistency.  The results indicate an increase in 
classification accuracy as well as in its constancy as 
more sensors are incorporated.  Currently this system 
is primarily tested on the data set for KDD Cup ’99.  

 

1. Introduction 
 
 Intrusion detection systems have become 
important components of major network security 
systems.  The goal of such systems is to identify 
potential violations of the network security policies.  
To this end, a variety of data may be used as the 
input, whether it is TCP/IP traffic, kernel calls, or 
system logs.  Regardless of the nature of the data two 
principal approaches may be included in these 
systems: anomaly detection and signature-based 
detection[1].   
 Both systems have their advantages, and indeed 
many systems, including the one presented here, use 
hybrid methods.   
 A computer network can come under attack from 
a variety of sources, and a variety of methods.  As 
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would be expected, such attacks have massively 
varied signatures as well.  Consequently, a multi-
agent approach is studied; such that each agent 
detects a specific attack type and decisions made by 
the agents are aggregated as a decision of the entire 
system.  This approach is studied because it may be 
more feasible than attempting to design a single 
complex system that detects all forms of attacks. 
 In order to obtain useful patterns of attacks, it is 
necessary to collect a significant number of samples.  
Unfortunately, such a complex problem as intrusion 
detection does not always allow us to collect the 
significant number of samples (a.k.a. base-rate 
fallacy problems) [2].  On the other hand, a cognitive 
study shows that patterns generated with subjective 
estimates based on frequencies closely overcome 
these generated with normative predictions in 
classification tasks [7].  Soft computing (SC) 
approaches are the most suitable for handling such 
subjective estimates [8]. 
 In this paper, a multi-agent intrusion detection 
system consisting of heterogeneous agents using self-
organizing maps (SOM) [4] and ordinary rule-based 
classifiers is sought.  These agents perform pattern 
classification by comparing each input against a 
stored map, finding the closest approximation to that 
input and updating the map to reflect the new data.  
This has the effect of clustering inputs into groups, 
the assumption being that similar inputs will generate 
similar results on the target system.  To improve the 
classification rate for each type of attack, each agent 
has its own learning parameters and analyzes the 
same input simultaneously.  The combined result of 
these agents provides a more reliable output than that 
generated by a single agent. 

All agents are configured within a three-stage 
architecture such that the first stage performs 
signature-based detections for well studied intrusions 
using ordinary rule-based classifiers.  The second 
stage uses an array of SOM-based agents in order to 
perform anomaly detection, and the third stage 



detects specific patterns from abnormal activities for 
further analysis on new signatures of attacks using 
other SOM-based agents.  Preliminary experiments 
have indicated that this multi-agent system with the 
three-stage architecture detects even rare attacks 
amidst a large data set and thus mitigates the effects 
of the base-rate fallacy problem. 
 Such an autonomous intrusion detection system 
should be measured on a number of criteria – 
security, inter-operability, transparency, accuracy, 
speed, scalability, and ease of use.  An application 
framework introduced in this paper is measured with 
a focus on these factors, particularly on speed, 
accuracy, and ease of use.   
 
2. General Framework 
 
 The Synergistic and Perceptual Intrusion 
Detection with Reinforcement (SPIDeR), a general 
intrusion detection framework that consists of 
multiple autonomous agents with heterogeneous 
computational models, is currently begin studied [6].  
Those agents are distributed over a computer 
network, perform intrusion detection tasks 
autonomously and asynchronously.  Their results are 
stored in a single blackboard agent and are 
aggregated by a decision-making agent. 
 

Figure 1.  SPIDeR System Architecture 
 
2.1. Architecture 
 
 SPIDeR consists of the following agents shown 
in Figure 1: 
 

1. Blackboard (BB) maintains information 
regarding intrusion detections in the computer 
network. 

2. Blackboard management subsystem (BBM) 
has two tasks: the aggregation of decisions 
made among agents and housekeeping. 

3. User interface (UI) provides visualization of 
information stored on BB and an interface for 
the administrator to configure intrusion 
detection operations. 

4. Intrusion detection agent (IDA) autonomously 
and independently performs its intrusion 
detection task. 

 
Computational models of IDAs vary, e.g., fuzzy 
logic, neural networks, probabilistic reasoning, 
support logic and string matching based on regular 
expressions.   
 
2.2. Decision Making Model 
 
 Within SPIDeR, the system administrator and 
agents collaboratively make decisions as to whether 
or not intrusions are detected.  All decisions made by 
those agents and the system administrators are 
recorded on BB.  BBM then aggregates them in order 
to determine the most appropriate actions.  Consider 
a set of decisions D corresponding to all intrusions 
and normal cases (i.e. no intrusions).  Then the 
following decisions are made by IDAs:  
 

1. Crisp decision: a particular decision xc in D is 
made  (i.e. probability P(xc) = 1). 

2. Probabilistic decision: a decision xp in D 
associated with a point probability P(xp) such 
that P(xp) + P(not xp) = 1 is made. 

3. Support decision: a decision xs in D associated 
with a support pair, i.e. an interval of     
probability, (Pl(xs),Pu(xs) ) where Pl(xs) 

�
 Pu(xs) 

is made.  Consequently, the support pair for 
the complement is determined such that 
(Pl(not xs), Pu(not xs) ) = (1-Pu(xs), 1-Pl(xs)). 

4. Fuzzy decision: a decision xf in D associated 
with a fuzzy probability Pf(xf), a fuzzy set 
defined over [0,1], is made (e.g., Pf(xf) =  
'high' where 'high' is a fuzzy set defined over 
[0,1].) 

 
Then the team decision x associated with a 
probability P(x) is obtained by aggregating Pi(x) 
where i =1 … n (i.e. the probability that the i-th agent 
makes decision x) such that  
 

P(x) = Hw(P1(x), … , Pn(x)) (1) 
 
where w is the vote weight (usually normalized, i.e. �

i wi=1) representing the influence on the decision 
making.  H is a notation indicating a generic 
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aggregation combination operation such that  
H: [0,1]n → [0,1]. 
 
2.2.1. Point Combination 
 
 The aggregation of decisions can be performed 
by a simple weight averaging combination such that  
 

P(x) = 
�

i (wi • Pi(x))   (2) 
 
where 

�
i wi = 1 (i.e. the summation of normalized 

votes).  Support decisions and fuzzy decisions can 
also be combined if they are represented as point 
probabilities.  For instance, a support decision is 
represented such that Pi(x)=(Pl(x)+Pu(x))/2 and a 
fuzzy decision is represented by a defuzzification 
such that Pi(x) = (

�
y∈[0,1] � Pi(y)•y)/(

�
y� Pi(y)). 

 
2.2.2. Support Combination 
 
 Alternatively, we are currently studying a more 
generic combination operation utilizing Mass 
Assignment Theory (MAT) [3].  MAT provides a 
framework for aggregating multiple decision types 
that are made by a set of agents.  More formally, let 
Dj be a set of decisions that the j-th agent makes.  

Note that Dj ⊆ D and � j Dj=D (D is a set of decisions 
made by an instance of SPIDeR).  Suppose that the j-
th agent has a normalized vote wj (i.e. 

�
j � { 1…n}wj=1).  

Then the probability that a decision x ∈ D is made by 
a team within SPIDeR is given by  
 

PD(x) =   
�

   PDj(x) • wj  (3) 
 Dj⊆D,x∈Dj 

 
PDj(x) is a probability associated with a decision 
made by the j-th agent.  This probability can be 
obtained as follows: 
 

1. Crisp Decision: PDj(x)=1 and PDj(not x)=0 
2. Probabilistic Decision: PDj(x)=p and  

PDj(not x)=(1-p)/(|Dj|-1) assuming no bias. 
3. Support Decision: Consider the following 

procedure: 
 (a)  Generate MA mj corresponding to a support 
   pair (pl, pu) for a decision x such that 
 
 mj({ x} ) = pl 
 mj({ not x}  = Dj - { x} ) = 1 - pu (4) 
 mj(Dj) = pu - pl 

 
 (b) Compute PDj(x) from mj using MAT. 
   Assume the least prejudged distribution  

   1/|A| where A is a focal element of mj, for 
   the selection rules unless it is given. 

4. Fuzzy Decision: Let Fp be a fuzzy probability 
such that PDj(x) = Fp.  Using MAT and the 
representation (decomposition) theorem, we first 
obtain a collection of F � , a crisp set (so-called � -
cut) consisting of elements x such that µFp(x) ���  
(i.e. an interval within [0,1]) and then MA mFp 
corresponding to Fp such that  

 
mFp (F� i)=� i-� i+1   (5) 

 
where, without loss of generality, �  is sorted in 
non-increasing order such that 
1=� 1� …��� n��� n+1=0 and F	  are the only focal 
elements for mFp.  This leads to a collection of 
possible support decisions such that 
 

(pl = MIN[F
 i], pu=MAX[F
 i]) (6) 
 

is true.  Lastly, MA mj for the collection of 
possible support decisions from Fp is obtained 
such that 
 

mj({ x} ) = 
�

i  pli• mFp (F
 i) 
mj({ not x}  = Dj - { x} )   (7) 
  = 

�
i (1 - pui)• mFp (F
 i) 

mj(Dj) = 
� n   (pi - pi) • mFp (F
 i) 

 
then PDj(x) is computed from mj by MAT. 

 
2.3. Reinforcement Learning 
 
 Reinforcement learning[21] in SPIDeR takes 
place within the entire system in such a way that the 
reinforcement signal (either a reward or a penalty) 
obtained as a consequence of an action is distributed 
among IDA’s with respect to their voting weights 
(see Figure 2).  A computational outline follows: 
 

1. A system administrator performs a certain action 
for decision x �  D. 

2. For decision x, determine its reward  
r(x) = � •(1 - PD(x)) where �  ∈ [0,1] is a constant 
(i.e. a learning rate). 

3. For other decisions xi, where xi  x, determine its 
penalty such that 

 

    r(xi) = -r(x) •      PD(xi) 
                            

�
i,x_i� x PD(xi) 

 
4. Update the probability PD(xi) �  P'D(xi) for all  

 i ∈ { 1 … n}  such that P'D(x) = r(xi) + PD(xi). 
5. Obtain the corresponding updated (normalized) 

vote wi �  w'i such that  



 
PD(x) =   �  Dj⊆D,x∈Dj   PDj(x) • wj 

 
6. Determine rewards or penalties rw

i  = w'i - wi for all 
decision makers. 

7.  Propagate rw
i   to all adaptive IDAs. 

8. Adjust the vote wi if the i-th IDA has adapted 
itself to improve performance. 

 
If the agent is capable of handling reinforcement 
learning in addition to the above system bias it may 
update itself internally using whatever methodology 
it has implemented.  The algorithm for reflecting 
those awards may vary depending on the 
computational models implemented within those 
agents.  It can then notify the blackboard or its 
update, and the blackboard may choose to readjust 
that agent’s trust level. 
 

 
Figure 2. SPIDeR Reinforcement Learning 

 
 
3. Specific Implementation Using SOM 
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Figure 3. Overview of SPIDeR-MAN 
 
 The Synergistic and Perceptual Intrusion 
Detection with Reinforcement in a Multi-Agent 
Neural Network (SPIDeR-MAN) shown in Figure 3 is 
an instance of SPIDeR that utilizes agents based on 
self-organizing maps (SOM) and a three-stage 

architecture.  It reads inputs containing a mixture of 
network traffic, system logs, and historical 
information.  These inputs are processed by SOM-
based agents.  Each agent acts independently and is 
initialized with random values.  This causes each 
agent to learn the patterns slightly differently.  The 
responses generated by these networks are 
probabilistic decisions.  These decisions are then 
combined by a point combination that uses a 
weighted voting scheme.  These votes are determined 
based on performance during training.  These votes 
are also updated at run time based on the confidence 
of the majority vote. 
 
3.1. Self Organizing Maps 
 
 A self-organizing map (SOM) used in SPIDeR-
MAN consists of an n-dimensional array (map).  
Each node of the map contains either an input value, 
or a compressed form of the input.  These values may 
be randomly initialized or preset with domain 
specific knowledge.  Additional configuration values 
may be set at initialization time to control the rate 
that the SOM adapts to and learns new inputs.  
During operation, the SOM reads in an input and uses 
a distance function to determine which map node the 
input most closely matches.  The SOM then modifies 
that node, and, to a lesser degree, the nodes within a 
specified radius, to more closely match the current 
input.  This incremental update in conjunction with 
the radius allows the SOM to generate clusters of 
related inputs.  The output for the SOM is then either 
the cluster, or clusters, that most closely represent the 
current input.  More specifically, the SOM algorithm 
is given as follows: 
 
Step 1: (Do in parallel) 
 1.1 Initialize weights wij 
 1.2 Set topological 

neighborhood parameters 
 1.3 Set learning rate 

parameters 
 End in Parallel 
Step 2:  While stopping condition 

is false, do Steps 3-8 
Step 3:  For each input vector x, 

do Steps 4-6 
Step 4:  For each j, compute:  
 D(j)=�i ( wi j  – x i )

2 
St ep 5:   Fi nd i ndex J such t hat  

D( J)  i s  a mi ni mum 
St ep 6:   For  al l  uni t s j  wi t hi n a 

speci f i ed nei ghbor hood of  
J,  and f or  al l  i  

 wi j ( new) =wi j ( ol d) + � [ x i  – wi j ( ol d) ]  
 
St ep 7:  Updat e l ear ni ng r at e 
St ep 8:  Test  st oppi ng condi t i on 

 

SPIDeR 

Environment 

State Reward 
Action 

IDA IDA 
 

IDA 

 



 Although a SOM is inherently an unsupervised 
learning technique, there are conditions where a 
supervised technique would be more appropriate.  
Fortunately, SOMs can also behave like supervised 
learning systems through a variety of methods.  One 
method is to use domain specific information to 
configure the initial values of the SOM so that they 
closely match the final values, and to only use the 
SOM for fine-tuning and to compensate for the 
gradual drift of data over time.  Another quasi-
supervised method is to allow the SOM to train itself 
to perform the clustering in an unsupervised fashion, 
and then to be provided with some supervised data to 
label the clusters.  This is useful for making the 
SOM's output easier to interact with and more human 
readable.   
 The method most explored in our research 
allows the SOM to be fully supervised during a 
training period, but it limits the classification to 
binary decisions.  With this method, multiple SOMs 
are used.  During the training period, a given SOM is 
only fed the training data that matches with its 
particular pattern type.  Such SOMs can be trained 
using smaller datasets, and are more likely to classify 
rarely seen patterns in a large dataset accurately.  In 
this implementation, each SOM is essentially a single 
cluster.  This gives the overriding system and the user 
greater control over the classification of a given type. 
 
3.2. Decision Making Model 
 
 Such SOMs provide a flexible, easy to use, 
method for classifying input vectors.  Although the 
system is flexible, any particular set of initial learning 
conditions may not be equally suited to learn a given 
pattern.  Indeed many patterns are not linearly 
separable and may not be accurately classified by any 
single SOM. 
 To attempt to overcome this potential deficiency, 
multiple, independent SOMs, each with unique 
learning parameters, are used collaboratively in order 
to generate a more reliable classification framework.  
The results from each sensor agent are stored on the 
blackboard system.  The blackboard also contains 
data indicating each agent’s past performance for 
each type of attack.  This data is used as a bias 
against each agent’s vote.  The biased votes are 
summed and the classification with the most votes is 
chosen as the final decision of the system.  An 
overview of decision making in SPIDeR-MAN is 
shown in Figure 3. 
 
 
 
 

3.3. Reinforcement Learning 
 
 For each input in the training process, each SOM 
is asked to evaluate the most recent training input.  
The results of this analysis are used to generate a 
bias.  More specifically, the reinforcement learning of 
SPIDeR-MAN is given as follows: 

 
Gi ven Boar d B wi t h n agent s,  and 
t hat  each i nput  i  i n t he t r ai ni ng 
f i l e has a c l ass C.   
Then f or  each i :  
 For  each n:  

R=Bn. anal yze( i )   
i f  ( R==C)  

Tot al nC++ 
el se 

Tot al nC++ 
Wr ongnC++  
Tot al nR++ 
Wr ongnR++;  

 
 Sensors are assigned a trust level for each 
classification type.  For example, if two sensor 
agents, A and B, analyze the same input and return 
different classification types, the result from the 
sensor with the highest trust rating for the type that it 
returned will be used.  Once this training cycle has 
completed the SOMs are ready for evaluation.  
During this process, each SOM based sensor is 
passed an input vector, but is not allowed to see the 
classification field.  The sensor then returns the 
classification that is the closest match to the input 
data.  Additionally, since SOMs are an incremental 
learning system the SOM assumes that its guess was 
correct, and updates its map to reflect the new input.  
This ability allows the sensors to adapt to new 
variations of attacks.   
 The blackboard system compiles the results, as 
in Figure 3, returned from each sensor and applies the 
reinforcement signal that was assigned during 
training, to each sensor’s response.  These biased 
values are then combined to generate the most likely 
response.  If the closest match is not within a given 
tolerance a new sensor node may be dynamically 
allocated.  
 
4. Experiment 
 
 The following experiment has been conducted 
with the data set for KDD Cup ‘99[5]: 
  

1.  Execut e pr ogr am 
 a)  I ni t i al i ze Boar d B 
 b)  Cr eat e n SOMs and i nf or m B 
 c)  Tr ai n B 

i )  For  each i nput  i  i n t he 
t r ai ni ng f i l e:  



• Tr ai n each n on i  
• Test  each n on i  
• Updat e accur acy r at i ng 

f or  each n 
 d)  Test  B 

i )  St ar t  t i mer  
i i ) For  each i nput  j  i n t he 

t est i ng f i l e:  
• Test  each n on j   
• Compar e each n’ s  

r esponse r  t o t he 
cor r ect  c l ass c .  

• I f  r =c  
o I ncr ement  cor r ect  
o I f  r =” nor mal ”  and c 

⊆ at t ack 
a)  I ncr ement  

f al seNor mal  
o I f  r  ⊆ at t ack and 

c=” nor mal ”  
a)  I ncr ement  

f al seAt t ack 
i i i ) St op t i mer   

e)  Pr i nt  r esul t s 
4.  Cal cul at e aver ages 

 
 

Table 1. Classification of the KDD Cup ‘99 

Spd=Entries/Second  
Acc=Correct/Total 
SDev=Standard deviation of Acc 
FN=(Normal reported when Attack)/Total 
FA=(Attack reported when Normal)/Total 
x--Value*10-2 

 
 The results of these tests using one, two, three, 
five, ten, and twenty sensor agents on the same 
dataset are shown in Table 1.  For consistency these 
tests were run on twenty identical PC’s with 600MHz 
Pentium III processors and 512MB of RAM, each 
running Windows 2000.   
 By using randomly initialized SOMs we were 
assured a relatively low classification rate per agent.  
This was useful in showing the increase in accuracy 
when using multiple agents.  By using multiple 
sensor agents in parallel to analyze the same data the 
accuracy can be increased.  With the addition of one 
extra sensor, the testing results indicated an increase 
of over 7% in accuracy.  The five-agent system was 
shown to classify correctly nearly 10% more events 
then the single sensor system.  This indicates that 

although accuracy increases with the number of 
sensor nodes, this increase is not linear and tapers off 
dramatically after only a few sensors.     
 
5. Conclusion 
 
 A framework of intrusion detection using 
heterogeneous multiple agents and SOM, SPIDeR-
MAN, is discussed.  A computational experiment is 
conducted by using the KDD Cup ’99 data set.  The 
results of this testing indicate an increase in system 
accuracy and consistency with the addition of 
multiple autonomous detection agents.  We are 
planning to incorporate software sensors that capture 
data in real-time basis as well as other heterogeneous 
intrusion detection agents (e.g. SVM, ID3, Fuzzy 
Logic). 
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