

Collaborative Intrusion Detection System

Patrick Miller* and Atsushi Inoue**

Department of Computer Science
Eastern Washington University
Cheney, WA 99004-2412 U.S.A

.

Abstract

 This paper presents an intrusion detection system
consisting of multiple intelligent agents. Each agent
uses a self-organizing map (SOM) in order to detect
intrusive activities on a computer network. A
blackboard mechanism is used for the aggregation of
results generated from such agents (i.e. a group
decision). In addition, this system is capable of
reinforcement learning with the reinforcement signal
generated within the blackboard and then distributed
over all agents which are involved in the group
decision making.
 Systems with various configurations of agents are
evaluated for criteria such as speed, accuracy, and
consistency. The results indicate an increase in
classification accuracy as well as in its constancy as
more sensors are incorporated. Currently this system
is primarily tested on the data set for KDD Cup ’99.

1. Introduction

 Intrusion detection systems have become
important components of major network security
systems. The goal of such systems is to identify
potential violations of the network security policies.
To this end, a variety of data may be used as the
input, whether it is TCP/IP traffic, kernel calls, or
system logs. Regardless of the nature of the data two
principal approaches may be included in these
systems: anomaly detection and signature-based
detection[1].
 Both systems have their advantages, and indeed
many systems, including the one presented here, use
hybrid methods.
 A computer network can come under attack from
a variety of sources, and a variety of methods. As

* E-mail: patrick@doriathproject.com
** Director of the Inland Northwest Security Systems Initiative
(INSSI) within the Department of Computer Science at Eastern
Washington University. Research partially supported by the
Congressional Appropriation of Technology Initiative for the New
Economy (TINE). E-mail: atsushi.inoue@ewu.edu

would be expected, such attacks have massively
varied signatures as well. Consequently, a multi-
agent approach is studied; such that each agent
detects a specific attack type and decisions made by
the agents are aggregated as a decision of the entire
system. This approach is studied because it may be
more feasible than attempting to design a single
complex system that detects all forms of attacks.
 In order to obtain useful patterns of attacks, it is
necessary to collect a significant number of samples.
Unfortunately, such a complex problem as intrusion
detection does not always allow us to collect the
significant number of samples (a.k.a. base-rate
fallacy problems) [2]. On the other hand, a cognitive
study shows that patterns generated with subjective
estimates based on frequencies closely overcome
these generated with normative predictions in
classification tasks [7]. Soft computing (SC)
approaches are the most suitable for handling such
subjective estimates [8].
 In this paper, a multi-agent intrusion detection
system consisting of heterogeneous agents using self-
organizing maps (SOM) [4] and ordinary rule-based
classifiers is sought. These agents perform pattern
classification by comparing each input against a
stored map, finding the closest approximation to that
input and updating the map to reflect the new data.
This has the effect of clustering inputs into groups,
the assumption being that similar inputs will generate
similar results on the target system. To improve the
classification rate for each type of attack, each agent
has its own learning parameters and analyzes the
same input simultaneously. The combined result of
these agents provides a more reliable output than that
generated by a single agent.

All agents are configured within a three-stage
architecture such that the first stage performs
signature-based detections for well studied intrusions
using ordinary rule-based classifiers. The second
stage uses an array of SOM-based agents in order to
perform anomaly detection, and the third stage

detects specific patterns from abnormal activities for
further analysis on new signatures of attacks using
other SOM-based agents. Preliminary experiments
have indicated that this multi-agent system with the
three-stage architecture detects even rare attacks
amidst a large data set and thus mitigates the effects
of the base-rate fallacy problem.
 Such an autonomous intrusion detection system
should be measured on a number of criteria –
security, inter-operability, transparency, accuracy,
speed, scalability, and ease of use. An application
framework introduced in this paper is measured with
a focus on these factors, particularly on speed,
accuracy, and ease of use.

2. General Framework

 The Synergistic and Perceptual Intrusion
Detection with Reinforcement (SPIDeR), a general
intrusion detection framework that consists of
multiple autonomous agents with heterogeneous
computational models, is currently begin studied [6].
Those agents are distributed over a computer
network, perform intrusion detection tasks
autonomously and asynchronously. Their results are
stored in a single blackboard agent and are
aggregated by a decision-making agent.

Figure 1. SPIDeR System Architecture

2.1. Architecture

 SPIDeR consists of the following agents shown
in Figure 1:

1. Blackboard (BB) maintains information
regarding intrusion detections in the computer
network.

2. Blackboard management subsystem (BBM)
has two tasks: the aggregation of decisions
made among agents and housekeeping.

3. User interface (UI) provides visualization of
information stored on BB and an interface for
the administrator to configure intrusion
detection operations.

4. Intrusion detection agent (IDA) autonomously
and independently performs its intrusion
detection task.

Computational models of IDAs vary, e.g., fuzzy
logic, neural networks, probabilistic reasoning,
support logic and string matching based on regular
expressions.

2.2. Decision Making Model

 Within SPIDeR, the system administrator and
agents collaboratively make decisions as to whether
or not intrusions are detected. All decisions made by
those agents and the system administrators are
recorded on BB. BBM then aggregates them in order
to determine the most appropriate actions. Consider
a set of decisions D corresponding to all intrusions
and normal cases (i.e. no intrusions). Then the
following decisions are made by IDAs:

1. Crisp decision: a particular decision xc in D is
made (i.e. probability P(xc) = 1).

2. Probabilistic decision: a decision xp in D
associated with a point probability P(xp) such
that P(xp) + P(not xp) = 1 is made.

3. Support decision: a decision xs in D associated
with a support pair, i.e. an interval of
probability, (Pl(xs),Pu(xs)) where Pl(xs)

�
 Pu(xs)

is made. Consequently, the support pair for
the complement is determined such that
(Pl(not xs), Pu(not xs)) = (1-Pu(xs), 1-Pl(xs)).

4. Fuzzy decision: a decision xf in D associated
with a fuzzy probability Pf(xf), a fuzzy set
defined over [0,1], is made (e.g., Pf(xf) =
'high' where 'high' is a fuzzy set defined over
[0,1].)

Then the team decision x associated with a
probability P(x) is obtained by aggregating Pi(x)
where i =1 … n (i.e. the probability that the i-th agent
makes decision x) such that

P(x) = Hw(P1(x), … , Pn(x)) (1)

where w is the vote weight (usually normalized, i.e. �

i wi=1) representing the influence on the decision
making. H is a notation indicating a generic

UI

BB

BBM

IDA

IDA

Admin

Workstations

Servers

IDA

Infrastructure

aggregation combination operation such that
H: [0,1]n → [0,1].

2.2.1. Point Combination

 The aggregation of decisions can be performed
by a simple weight averaging combination such that

P(x) =
�

i (wi • Pi(x)) (2)

where

�
i wi = 1 (i.e. the summation of normalized

votes). Support decisions and fuzzy decisions can
also be combined if they are represented as point
probabilities. For instance, a support decision is
represented such that Pi(x)=(Pl(x)+Pu(x))/2 and a
fuzzy decision is represented by a defuzzification
such that Pi(x) = (

�
y∈[0,1] � Pi(y)•y)/(

�
y� Pi(y)).

2.2.2. Support Combination

 Alternatively, we are currently studying a more
generic combination operation utilizing Mass
Assignment Theory (MAT) [3]. MAT provides a
framework for aggregating multiple decision types
that are made by a set of agents. More formally, let
Dj be a set of decisions that the j-th agent makes.

Note that Dj ⊆ D and � j Dj=D (D is a set of decisions
made by an instance of SPIDeR). Suppose that the j-
th agent has a normalized vote wj (i.e.

�
j � { 1…n}wj=1).

Then the probability that a decision x ∈ D is made by
a team within SPIDeR is given by

PD(x) =
�

 PDj(x) • wj (3)
 Dj⊆D,x∈Dj

PDj(x) is a probability associated with a decision
made by the j-th agent. This probability can be
obtained as follows:

1. Crisp Decision: PDj(x)=1 and PDj(not x)=0
2. Probabilistic Decision: PDj(x)=p and

PDj(not x)=(1-p)/(|Dj|-1) assuming no bias.
3. Support Decision: Consider the following

procedure:
 (a) Generate MA mj corresponding to a support
 pair (pl, pu) for a decision x such that

 mj({ x}) = pl
 mj({ not x} = Dj - { x}) = 1 - pu (4)
 mj(Dj) = pu - pl

 (b) Compute PDj(x) from mj using MAT.
 Assume the least prejudged distribution

 1/|A| where A is a focal element of mj, for
 the selection rules unless it is given.

4. Fuzzy Decision: Let Fp be a fuzzy probability
such that PDj(x) = Fp. Using MAT and the
representation (decomposition) theorem, we first
obtain a collection of F � , a crisp set (so-called � -
cut) consisting of elements x such that µFp(x) ���
(i.e. an interval within [0,1]) and then MA mFp
corresponding to Fp such that

mFp (F� i)=� i-� i+1 (5)

where, without loss of generality, � is sorted in
non-increasing order such that
1=� 1� …��� n��� n+1=0 and F	 are the only focal
elements for mFp. This leads to a collection of
possible support decisions such that

(pl = MIN[F
 i], pu=MAX[F
 i]) (6)

is true. Lastly, MA mj for the collection of
possible support decisions from Fp is obtained
such that

mj({ x}) =
�

i pli• mFp (F
 i)
mj({ not x} = Dj - { x}) (7)
 =

�
i (1 - pui)• mFp (F
 i)

mj(Dj) =
� n (pi - pi) • mFp (F
 i)

then PDj(x) is computed from mj by MAT.

2.3. Reinforcement Learning

 Reinforcement learning[21] in SPIDeR takes
place within the entire system in such a way that the
reinforcement signal (either a reward or a penalty)
obtained as a consequence of an action is distributed
among IDA’s with respect to their voting weights
(see Figure 2). A computational outline follows:

1. A system administrator performs a certain action
for decision x � D.

2. For decision x, determine its reward
r(x) = � •(1 - PD(x)) where � ∈ [0,1] is a constant
(i.e. a learning rate).

3. For other decisions xi, where xi x, determine its
penalty such that

 r(xi) = -r(x) • PD(xi)

�
i,x_i� x PD(xi)

4. Update the probability PD(xi) � P'D(xi) for all

 i ∈ { 1 … n} such that P'D(x) = r(xi) + PD(xi).
5. Obtain the corresponding updated (normalized)

vote wi � w'i such that

PD(x) = � Dj⊆D,x∈Dj PDj(x) • wj

6. Determine rewards or penalties rw

i = w'i - wi for all
decision makers.

7. Propagate rw
i to all adaptive IDAs.

8. Adjust the vote wi if the i-th IDA has adapted
itself to improve performance.

If the agent is capable of handling reinforcement
learning in addition to the above system bias it may
update itself internally using whatever methodology
it has implemented. The algorithm for reflecting
those awards may vary depending on the
computational models implemented within those
agents. It can then notify the blackboard or its
update, and the blackboard may choose to readjust
that agent’s trust level.

Figure 2. SPIDeR Reinforcement Learning

3. Specific Implementation Using SOM

Multiple Evaluation System
Training

Data

Output
DataReinforcement

Data

Testing
Data

Neural
NetNeural

NetNeural
Net

Train

Network
Rating
Matrix

Reinforce

RateTest

Evaluate

Figure 3. Overview of SPIDeR-MAN

 The Synergistic and Perceptual Intrusion
Detection with Reinforcement in a Multi-Agent
Neural Network (SPIDeR-MAN) shown in Figure 3 is
an instance of SPIDeR that utilizes agents based on
self-organizing maps (SOM) and a three-stage

architecture. It reads inputs containing a mixture of
network traffic, system logs, and historical
information. These inputs are processed by SOM-
based agents. Each agent acts independently and is
initialized with random values. This causes each
agent to learn the patterns slightly differently. The
responses generated by these networks are
probabilistic decisions. These decisions are then
combined by a point combination that uses a
weighted voting scheme. These votes are determined
based on performance during training. These votes
are also updated at run time based on the confidence
of the majority vote.

3.1. Self Organizing Maps

 A self-organizing map (SOM) used in SPIDeR-
MAN consists of an n-dimensional array (map).
Each node of the map contains either an input value,
or a compressed form of the input. These values may
be randomly initialized or preset with domain
specific knowledge. Additional configuration values
may be set at initialization time to control the rate
that the SOM adapts to and learns new inputs.
During operation, the SOM reads in an input and uses
a distance function to determine which map node the
input most closely matches. The SOM then modifies
that node, and, to a lesser degree, the nodes within a
specified radius, to more closely match the current
input. This incremental update in conjunction with
the radius allows the SOM to generate clusters of
related inputs. The output for the SOM is then either
the cluster, or clusters, that most closely represent the
current input. More specifically, the SOM algorithm
is given as follows:

Step 1: (Do in parallel)
 1.1 Initialize weights wij
 1.2 Set topological

neighborhood parameters
 1.3 Set learning rate

parameters
 End in Parallel
Step 2: While stopping condition

is false, do Steps 3-8
Step 3: For each input vector x,

do Steps 4-6
Step 4: For each j, compute:
 D(j)=�i (wi j – x i)

2
St ep 5: Fi nd i ndex J such t hat

D(J) i s a mi ni mum
St ep 6: For al l uni t s j wi t hi n a

speci f i ed nei ghbor hood of
J, and f or al l i

 wi j (new) =wi j (ol d) + � [x i – wi j (ol d)]

St ep 7: Updat e l ear ni ng r at e
St ep 8: Test st oppi ng condi t i on

SPIDeR

Environment

State Reward
Action

IDA IDA

IDA

 Although a SOM is inherently an unsupervised
learning technique, there are conditions where a
supervised technique would be more appropriate.
Fortunately, SOMs can also behave like supervised
learning systems through a variety of methods. One
method is to use domain specific information to
configure the initial values of the SOM so that they
closely match the final values, and to only use the
SOM for fine-tuning and to compensate for the
gradual drift of data over time. Another quasi-
supervised method is to allow the SOM to train itself
to perform the clustering in an unsupervised fashion,
and then to be provided with some supervised data to
label the clusters. This is useful for making the
SOM's output easier to interact with and more human
readable.
 The method most explored in our research
allows the SOM to be fully supervised during a
training period, but it limits the classification to
binary decisions. With this method, multiple SOMs
are used. During the training period, a given SOM is
only fed the training data that matches with its
particular pattern type. Such SOMs can be trained
using smaller datasets, and are more likely to classify
rarely seen patterns in a large dataset accurately. In
this implementation, each SOM is essentially a single
cluster. This gives the overriding system and the user
greater control over the classification of a given type.

3.2. Decision Making Model

 Such SOMs provide a flexible, easy to use,
method for classifying input vectors. Although the
system is flexible, any particular set of initial learning
conditions may not be equally suited to learn a given
pattern. Indeed many patterns are not linearly
separable and may not be accurately classified by any
single SOM.
 To attempt to overcome this potential deficiency,
multiple, independent SOMs, each with unique
learning parameters, are used collaboratively in order
to generate a more reliable classification framework.
The results from each sensor agent are stored on the
blackboard system. The blackboard also contains
data indicating each agent’s past performance for
each type of attack. This data is used as a bias
against each agent’s vote. The biased votes are
summed and the classification with the most votes is
chosen as the final decision of the system. An
overview of decision making in SPIDeR-MAN is
shown in Figure 3.

3.3. Reinforcement Learning

 For each input in the training process, each SOM
is asked to evaluate the most recent training input.
The results of this analysis are used to generate a
bias. More specifically, the reinforcement learning of
SPIDeR-MAN is given as follows:

Gi ven Boar d B wi t h n agent s, and
t hat each i nput i i n t he t r ai ni ng
f i l e has a c l ass C.
Then f or each i :
 For each n:

R=Bn. anal yze(i)
i f (R==C)

Tot al nC++
el se

Tot al nC++
Wr ongnC++
Tot al nR++
Wr ongnR++;

 Sensors are assigned a trust level for each
classification type. For example, if two sensor
agents, A and B, analyze the same input and return
different classification types, the result from the
sensor with the highest trust rating for the type that it
returned will be used. Once this training cycle has
completed the SOMs are ready for evaluation.
During this process, each SOM based sensor is
passed an input vector, but is not allowed to see the
classification field. The sensor then returns the
classification that is the closest match to the input
data. Additionally, since SOMs are an incremental
learning system the SOM assumes that its guess was
correct, and updates its map to reflect the new input.
This ability allows the sensors to adapt to new
variations of attacks.
 The blackboard system compiles the results, as
in Figure 3, returned from each sensor and applies the
reinforcement signal that was assigned during
training, to each sensor’s response. These biased
values are then combined to generate the most likely
response. If the closest match is not within a given
tolerance a new sensor node may be dynamically
allocated.

4. Experiment

 The following experiment has been conducted
with the data set for KDD Cup ‘99[5]:

1. Execut e pr ogr am
 a) I ni t i al i ze Boar d B
 b) Cr eat e n SOMs and i nf or m B
 c) Tr ai n B

i) For each i nput i i n t he
t r ai ni ng f i l e:

• Tr ai n each n on i
• Test each n on i
• Updat e accur acy r at i ng

f or each n
 d) Test B

i) St ar t t i mer
i i) For each i nput j i n t he

t est i ng f i l e:
• Test each n on j
• Compar e each n’ s

r esponse r t o t he
cor r ect c l ass c .

• I f r =c
o I ncr ement cor r ect
o I f r =” nor mal ” and c

⊆ at t ack
a) I ncr ement

f al seNor mal
o I f r ⊆ at t ack and

c=” nor mal ”
a) I ncr ement

f al seAt t ack
i i i) St op t i mer

e) Pr i nt r esul t s
4. Cal cul at e aver ages

Table 1. Classification of the KDD Cup ‘99

Spd=Entries/Second
Acc=Correct/Total
SDev=Standard deviation of Acc
FN=(Normal reported when Attack)/Total
FA=(Attack reported when Normal)/Total
x--Value*10-2

 The results of these tests using one, two, three,
five, ten, and twenty sensor agents on the same
dataset are shown in Table 1. For consistency these
tests were run on twenty identical PC’s with 600MHz
Pentium III processors and 512MB of RAM, each
running Windows 2000.
 By using randomly initialized SOMs we were
assured a relatively low classification rate per agent.
This was useful in showing the increase in accuracy
when using multiple agents. By using multiple
sensor agents in parallel to analyze the same data the
accuracy can be increased. With the addition of one
extra sensor, the testing results indicated an increase
of over 7% in accuracy. The five-agent system was
shown to classify correctly nearly 10% more events
then the single sensor system. This indicates that

although accuracy increases with the number of
sensor nodes, this increase is not linear and tapers off
dramatically after only a few sensors.

5. Conclusion

 A framework of intrusion detection using
heterogeneous multiple agents and SOM, SPIDeR-
MAN, is discussed. A computational experiment is
conducted by using the KDD Cup ’99 data set. The
results of this testing indicate an increase in system
accuracy and consistency with the addition of
multiple autonomous detection agents. We are
planning to incorporate software sensors that capture
data in real-time basis as well as other heterogeneous
intrusion detection agents (e.g. SVM, ID3, Fuzzy
Logic).

Acknowledgment

Gratitude is extended for the instrumental help of
fellow researcher, Kristopher Smith. The authors
also would like to recognize students working on the
intrusion detection project in the machine learning
class at EWU in Spring 2003.

References

[1] S. Axelsson, “ Intrusion Detection Systems: A

Taxonomy and Survey,” Technical Report No
99-15, Dept. of Comp. Engr., Chalmers
University of Technology, Sweden, 1999.

[2] S. Axelsson, “On a Difficulty of Intrusion
Detection,” RAID, West Lafiyette, IN, 1999.

[3] J. F. Baldwin, T. P. Martin, B. W. Pilsworth,
FRIL: Fuzzy and Evidential Reasoning in AI,
Research Studied Press, 1995.

[4] L. Fausett, Fundamentals of Neural Networks:
Architectures, Algorithms, and Applications,
Prentice-Hall, 1994.

[5] KDD Cup 1999 data set,
http://kdd.ics.uci.edu/databases/kddcup99/kddcu
p99.html.

[6] P. Miller, J. Mill, A. Inoue, “ Synergistic and
Perceptual Intrusion Detection with
Reinforcement (SPIDeR),” MAICS, Cincinnati,
OH, 2003.

[7] G. Gigerenzer and U. Hoffrage, “How to
improve Bayesian reasoning without instruction:
Frequency formats.” Psychological Review
102(4):684-704, 1995.

[8] L. A. Zadeh, “ Fuzzy Logic, Neural Networks,
and Soft Computing” , Comm. ACM, vol. 37, no.
3, pp. 77-84, 1994.

 Spd Acc SDev FA FNx
1 60.26 78.52 12.53 13.15 4.797
2 37.98 85.66 2.302 11.56 1.611
3 18.04 85.33 3.839 13.30 5.155
5 8.786 87.66 1.493 10.08 1.872
10 5.628 86.51 2.130 11.09 1.974
20 2.700 87.70 0.992 9.763 1.916

