
Shiva
Advances in ELF Binary

Encryption

Shiva Authors: Shaun Clowes, Neel Mehta

Presented by:
Neel Mehta

(nmehta@iss.net)

Runtime Binary Encryption

An executable executes as normal, but
is encrypted on disk.

Resistant to analysis and modification.

ELF

Executable and Linkable Format

The executable file format on virtually all
modern UNIX platforms.
Header

Sections / segments.

Symbols, string tables, relocations.

Runtime Binary Encryption:
A VERY Brief History

Mainly confined to MS platforms.

1980’s, early 90’s - .COM
0x100

Windows

Pe-Crypt – 1998 – random, acpizer, killa

Now dominated by ASPack, UPX, other
commercial encryptors.

Very commonly used in malware of all
kinds.

Unix

Burneye – 2001 – Scut

UPX now supports Linux.

Shiva - 2003

Shaun Clowes and Neel Mehta

Designed to bring many of the
advanced techniques from Windows to
Unix, as well as many new techniques
not implemented elsewhere.

Designed to encrypt Linux/x86
executables.

The Encryptor’s Dilemma:

 To be able to execute, a program’s code
must eventually be decrypted

Binary Encryption:
An Arms Race

Thus binary encryption is fundamentally
a race between developers and reverse
engineers.

The encryptors cannot win in the end
Just make life hard for the determined and
skilled attacker.

Novices will be discouraged and look
elsewhere.

Encryption Keys

If the encrypted executable has access
to the encryption keys for the image:
By definition a solid attack must be able to
retrieve those keys and decrypt the
program

To reiterate, binary encryption can only
slow a determined attacker

Our Aim

Introduce some novel new techniques.

Advance the state of the art:
Unix executable encryption technology
trails Windows dramatically

Promote interest in Reverse
Engineering on Unix platforms

What’s the point?

An encryptor can be used to:
Prevent trivial reverse engineering of
algorithms

Protect setuid programs (with passwords)

Hide sensitive data/code in programs

Standard Attacks

A good encryptor will try to deter
standard attacks:
strace – System Call Tracing
ltrace – Library Call Tracing
fenris – Execution Path Tracing
gdb – Application Level Debugging
/proc – Memory Dumping
strings – Don’t Ask

Deterring Standard Attacks

strings
Encrypting the binary image in any manner
will scramble the strings

Deterring Standard Attacks

ltrace, strace, fenris and gdb
These tools are all based around the
ptrace() debugging API

Making that API ineffective against
encrypted binaries would be a big step
towards making them difficult to attack

Deterring Standard Attacks

/proc memory dumping
Based on the idea that the memory image
of the running process must contain the
unencrypted executable

A logical fallacy

A good encryptor will invalidate it

Countermeasures

The majority of attacks against
encrypted executables (excluding static
analysis) can be detected by the
running program

Unless the attacker notices and
prevents it, the program can take
offensive action

A Layered Approach.

Static analysis is significantly harder if
the executable is encrypted on more
than one level

The layers act like an onion skin

The attacker must strip each layer of the
onion before beginning work on the next
level

(Un) Predictable Behavior

Efforts to make encryptor behavior differ
from one executable to another are
worthwhile

The less generic the methodology, the
harder it is to create a generic
unwrapper

Shiva’s Features

The encyptor we'll present today tries to
implement all of the defences we’ve
described so far.

Shiva v0.99

Currently encrypts dynamic or static
Linux ELF executables

Does not handle shared libraries (yet)

Encryptor / Decryptor

Development of an ELF encryptor is
really two separate programs

Symmetrical operation

Encryptor

Normal executable, which performs the
encryption process, wrapping the target
executable

Decryptor

Statically-linked executable, which
performs decryption and handles
runtime processing

Embedded within the encrypted
executable

Self contained
Cannot link with libc etc.

Shiva ELF Abstraction API

Represent any ELF executable as a
structure in memory

Allows for easy manipulation of ELF
executables within encryptor, not
relevant for decryptor

Dual-process Model (Evil Clone)

Slave process (main executable thread)
creates a controller process (the clone)

Inter-ptrace (functional and anti-debug)

x86 Assembly Byte-Code
Generation

Allows for the generation of x86
assembly byte-code from within C (a
basic assembler)

Pseudo-random code generation,
pseudo-random functionality

Encryption Layers – Layer 1

Obfuscated

Obfuscation Layer

Initial Obfuscation Layer

Intended to be simple, to evade simple
static analysis

Somewhat random, generated
completely by in-line ASM byte-code
generation

Encryption Layers – Layer 2

Obfuscation Layer

AES Encrypted

Password Layer

Password Layer

Optional

Wrap entire executable with 128-bit
AES encryption

Key is SHA1 password hash, only as
strong as the password

Encryption Layers – Layer 3

Obfuscation Layer

Crypt Blocks

Crypt Block Layer

Password Layer

Crypt Blocks

Two important types – immediate map,
map on-demand
Controller process handles map on-
demand blocks
Random unmap
Only small portion of executable decrypted
at any time

Instruction length parsing – necessary
to create map on-demand blocks

Crypt Block Mapping

Decrypted Block

Decrypted Block

Decrypted Block

Fault

Crypt Block Mapping

Decrypted Block

Decrypted Block

Decrypted Block

Cleared Block

Crypt Block Encryption

Block content encrypted with strong
algorithm
Guess

Code to generate keys made pseudo-
randomly on the fly (asm byte-code)
Keys are never stored in plain text

Tries to bind itself to a specific location
in memory (and other memory context)

Dynamically Linked ELF’s

Decryptor interacts with system’s
dynamic linker

Decryptor must map dynamic linker
itself, and then regain control after linker
is done

Anti-debugging/disassembly

Inherent anti-debugging provided by
dual-ptrace – link verified

Catch tracing:
Check eflags

Check /proc/self/stat

Anti-debugging/disassembly

Timing and SIGTRAP

Simple SIGTRAP catch

JMP into instructions – common anti-
disassembly trick

Byte-Code Manipulation:
Beyond ELF

Currently x86 specific.

Requires significant code analysis.
Instruction by instruction processing.

Function recognition, code flow analysis.

Requires a fairly well designed and
implemented framework.

Easy Ways to Manipulate Byte
Code

Call redirection.

Jump redirection.

Jmp tables.

Other constructs.

Instruction Emulation

Easily accomplished via manipulating
ptrace register structures.

Virtually every instruction can be
emulated if its operation is understood.

Problems Encountered, Solutions

Clone, ptrace, and signals

Fork processing

Exec processing

Life without libc
Simple implementations of malloc etc

Current Limitations

Can’t handle vfork(), threads

Can’t encrypt static executables that call
fork()

On Linux, exec() fails if the calling
process tries to exec a setuid program

Section Headers

Nothing that can’t be solved by the next
release ☺

Shiva in Action

Demo

Future Direction

Ports to other OS’s/Architectures

Support for shared libraries

Advanced anti-debugging

Adapting when people break it

End of Presentation

Thanks for listening

Questions?

