Shiva

Advances in ELF Binary
Encryptlon

Shlva Authors Shaun Clowes Neel Mehta

Presented by:
Neel Mehta
(nmehta@iss.net)

Runtlme Blnary Encryptlon

3 An executable executes as normal but
IS encrypted on disk.

= Resistant to analysis and modification.

ELF

= Executable and Linkable Format
= The executable file format on virtually all
modern UNIX platforms.
+Header

+Sections / segments.
+Symbols, string tables, relocations.

Runtime Binary Encryption:
A VERY Brief History

* Mainly confined to MS platforms.
= 1980’s, early 90’s - .COM
+0x100

Wlndows

s Pe Crypt — 1998 — random acplzer kllla

= Now dominated by ASPack, UPX, other
commercial encryptors.

% VVery commonly used in malware of all
kKinds.

= Burneye — 2001 — Scut
x UPX now supports Linux.

X
&
=)

Shlva - 2003

E Shaun Clowes and Neel Mehta

»* Designed to bring many of the
advanced technigues from Windows to
Unix, as well as many new techniques
not implemented elsewhere.

% Designed to encrypt Linux/x86
executables.

The Encryptors Dllemma

To be able to execute, a program’s code
must eventually be decrypted

Binary Encryption:

An Arms Race

* Thus binary encryption is fundamentally
a race between developers and reverse
engineers.

* The encryptors cannot win in the end

+Just make life hard for the determined and
skilled attacker.

+Novices will be discouraged and look
elsewhere.

Encryptlon Keys

= |f the encrypted executable has access
to the encryption keys for the image:

+By definition a solid attack must be able to
retrieve those keys and decrypt the
program
* To reiterate, binary encryption can only
slow a determined attacker

* Introduce some novel new techniques.
* Advance the state of the art:

+Unix executable encryption technology
trails Windows dramatically

* Promote Interest In Reverse
Engineering on Unix platforms

What S the pomt’?

An encryptor can be used to

+Prevent trivial reverse engineering of
algorithms

+Protect setuid programs (with passwords)
+Hide sensitive data/code in programs

Standard Attacks

A gocd encryptor WI|| try td deter
standard attacks:

+strace — System Call Tracing
+|trace — Library Call Tracing
+fenris — Execution Path Tracing
+gdb — Application Level Debugging
+/proc — Memory Dumping

+strings — Don'’t Ask

Deterrlng Standard Attacks

b strlngs

+Encrypting the binary image in any manner
will scramble the strings

Deterrlng Standard Attacks

Itrace strace fenrls and gdb

#+ These tools are all based around the
ptrace() debugging API

+Making that API ineffective against
encrypted binaries would be a big step
towards making them difficult to attack

Deterrlng Standard Attacks

/proc memory dumplng

+Based on the idea that the memory image
of the running process must contain the
unencrypted executable

+A logical fallacy
+A good encryptor will invalidate it

Countermeasures

* The majority of attacks against
encrypted executables (excluding static
analysis) can be detected by the

running program

* Unless the attacker notices and
prevents it, the program can take
offensive action

A Layered Approach

3 Statlc analy3|s IS srgnrﬂcantly harder |f
the executable is encrypted on more
than one level

* The layers act like an onion skin

* The attacker must strip each layer of the
onion before beginning work on the next
level

(Un) Predlctable Behawor

o Efforts to make encryptor behawor dlffer
from one executable to another are
worthwhile

* The less generic the methodology, the
harder it is to create a generic
unwrapper

Shlva s Features

o The encyptor we II present today trles te
implement all of the defences we've
described so far.

Shlva vO 99

b Currently encrypts dynamlc or statlc
Linux ELF executables

= Does not handle shared libraries (yet)

Encryptor / Decryptor

o Development of an ELF encryptor IS
really two separate programs

* Symmetrical operation

Encryptor

S Normal executable WhICh performs the
encryption process, wrapping the target
executable

Decryptor

b Statlcally Imked executable WhICh
performs decryption and handles
runtime processing

= Embedded within the encrypted
executable

#x Self contained
+Cannot link with libc etc.

Shlva ELF Abstractlon API

S Represent any ELF executable as a
structure in memory

= Allows for easy manipulation of ELF
executables within encryptor, not
relevant for decryptor

Dual process Model (EV|I Clone)

b Slave process (maln executable thread)
creates a controller process (the clone)

Inter-ptrace (functional and anti-debug)

x86 Assembly Byte-Code
Generatlon

n AIIows for the generatlon of x86
assembly byte-code from within C (a
basic assembler)

= Pseudo-random code generation,
pseudo-random functionality

Obfuscation Layer
Obfuscated

—
i
O
>
©

i

_
9p)
O
>
©

i |
C

O

e
O
=
ey
O
C

LL]

In|t|al Obfuscatlon Layer

Intended te be S|mple to evade S|mple
static analysis

= Somewhat random, generated
completely by in-line ASM byte-code
generation

Obfuscation Layer
Password Layer
AES Encrypted

AN
i
O
>
©

i

_
9p)
O
>
©

i |
C

O

e
O
=
ey
O
C

LL]

Password Layer

b Optlonal

= Wrap entire executable with 128-bit
AES encryption

= Key is SHA1 password hash, only as
strong as the password

Encryptlon Layers — Layer 3

Obfuscation Layer

Password Layer

Crypt Block Layer

Crypt Blocks

Crypt Blocks

% Two |mportant types — |mmed|ate map,
map on-demand

»* Controller process handles map on-
demand blocks
* Random unmap

+0Only small portion of executable decrypted
at any time

* |[nstruction length parsing — necessary
to create map on-demand blocks

Decrypted Bloc&

Decrypted Block
Decrypted Block

O)
=
Q.
OR
Qo
=
N
O
O
m
i
O
s
@,

WD BIOGE Mappillg

Decrypted Block

Cleared Bloc:kﬂ

|
Decrypted Blo\éé

Decrypted Block

Crypt Block Encryptlon

3 Block content encrypted W|th strong
algorithm

+Guess

»* Code to generate keys made pseudo-
randomly on the fly (asm byte-code)
+Keys are never stored in plain text

* Tries to bind itself to a specific location
in memory (and other memory context)

Dynamlcally Llnked ELF S

b Decryptor mteracts W|th system S
dynamic linker

= Decryptor must map dynamic linker
itself, and then regain control after linker
IS done

Ant| debugglng/dlsassembly

Inherent antl debugglng prowded by
dual-ptrace — link verified
= Catch tracing:
+Check eflags
+Check /proc/self/stat

Ant| debugglng/dlsassembly

s Tlmlng and SIGTRAP
= Simple SIGTRAP catch

#* JMP Into instructions — common anti-
disassembly trick

Byte-Code Manipulation:
Beyond ELF

= Currently x86 specific.
* Requires significant code analysis.
+|nstruction by instruction processing.

+Function recognition, code flow analysis.

+Requires a fairly well designed and
iImplemented framework.

Easy Ways to Manipulate Byte
Code

= Call redirection.
= Jump redirection.
* Jmp tables.

= Other constructs.

Instructlon Emulatlon

s EaS|Iy accompllshed via manlpulatlng
ptrace register structures.

= Virtually every instruction can be
emulated if its operation is understood.

Problems Encountered Solutlons

b CIone ptrace and S|gnals
= Fork processing
= EXxec processing

= Life without libc
+Simple implementations of malloc etc

Current Limitations

* Can’t handle vfork(), threads

% Can’t encrypt static executables that call
fork()

»* On Linux, exec() fails if the calling
process tries to exec a setuid program

% Section Headers

* Nothing that can't be solved by the next
release ©

Demo

C= .
-

el L
0 |
<!
=
it s
=
L

Future Dlrectlon

o Ports to other OS s/Archltectures
= Support for shared libraries

s Advanced anti-debugging

= Adapting when people break it

* Thanks for listening

*Questions?

C
O
il

©
el

c

O

7p)

O
al
(T

O
d

<
LL]

