
Runtime
Decompilation

The ‘GreyBox’ process for
Exploiting Software

By: Greg Hoglund
hoglund@hbgary.com

Introduction

¡ This presentation is an overview of
the lab process used by HBGary™
to locate and exploit software bugs

¡ The value is reduced time
investment and formalizing a ‘black
art’

The Deconstructionist

¡ Taking a system apart is about
uncovering mysteries

¡ Having secret knowledge attracts
the human psyche at the deepest
level

¡ There is an age old battle between
those that create systems and those
who take them apart
l i.e, crytoanalysis

Why Exploit Software?

¡ Exploits are worth money
l A vulnerability can be worth over $100K

¡ The vendor costs are huge for a public
vulnerability

l An exploit costs less than physical ‘bugs’

¡ Exploits are worth lives
l An exploit is safer than physical penetration

¡ Exploits are strategic
l Disable or control the information systems of

your enemies decision cycle

Survivability

¡ Exploits have a lifetime
¡ Every use of an exploit has the

potential to compromise the asset
¡ Exploits depend on bugs and your

enemy may also find the same bug
¡ The public may find the same bug
¡ Once public, many exploits can be

protected against or detected via an
IDS

In order to maintain a battle
advantage, your offensive

information capability must include
a lab process for finding and
exploiting new software bugs

Chapter One

The Bugs!

The Bugs

1. Buffer Overflows
a. Lack of bounds checking
b. Arithmetic errors

2. Parsing Problems
a. Input filters and normalization

3. General State Corruption
4. Race Conditions

Buffer Overflows

¡ Old News, but still most common
today
l Because of speed, most server

software is still developed in c/c++

¡ Will remain common until old
compiler technologies are
abandoned
l Strongly typed languages, such as C#,

eliminate simple string overflows

Parsing Problems

¡ Not solved by better compilers
¡ Solved only by good algorithms
¡ To eliminate parsing problems

requires standardized algorithms
l Similar to peer review on crypto

systems

¡ This will never happen
l Parsing problems here to stay

General State Exploits

¡ States control decisions
¡ Users can cause state transitions
¡ Some states are insecure by nature
¡ State exploits are found by sending

commands in the exact order and
context to arrive at the insecure
state

¡ Only solved by provably correct
systems
l Humans are never going to build

provably correct systems

Race Conditions

¡ State problems are going to be
difficult to measure and control

¡ When state is managed over many
nodes, the problem becomes even
harder
l When state must be synchronized

among nodes, we have race conditions
l The problem is compounded greatly
l This is the ‘buffer overflow’ of the

future

Chapter Two

What is the
‘GreyBox’ process?

GreyBox:
Combining both static analysis
and runtime fault injection to
maximize coverage of a
software programs’ state-
space. Typically used to
detect and isolate fault states
in a software system.

White Box

¡ In theory, operating with full knowledge
about the inner workings of the system
l At best, we only have an approximate

understanding of the builder’s intent

¡ White box analysis involves “deadlistings”
static disassemblies of the binary
l Source code is an added advantage, like

having really good documentation for the
deadlisting

¡ The software is not being executed

First Pass

¡ When confronted with a new binary, the
HBGary team fires the binary through
BugScan™

¡ We obtain a report within minutes to
assess whether the programmers use
secure coding practices
l Typically they do not

¡ We use the BugScan report to prioritize
which binaries will be analyzed first
l Binaries with bad reports are hit first

Manage the Deadlisting

¡ IDA-Pro allows you to manage and
comment a large deadlisting

Is it actually exploitable?

¡ Depends on many variables in the
environment

¡ All automatic analysis tools have
this problem

¡ It almost always takes an expert
reverse engineer to determine if a
condition is exploitable

Does it matter?

¡ Even if a vulnerability cannot be
reached today – what can you say
about tommorow?

¡ What if interface changes?
¡ What if code gets used from other

locations?
¡ Is the original author going to be

maintaining this code in 10 years?

Automatic Bug Detection

¡ The bug must have a defined
pattern, it must be schematic in
nature

¡ Effective when certain conditions
exist
l Availability of type information
l Separation of data and code
l All instructions can be recovered
l Data that drives control flow can be

mapped

Branching Decisions

¡ Many branches are made based on
values that are calculated at
runtime

¡ The static analyzer must emulate
execution to determine these values

¡ At some point, the emulation
becomes computationally equivalent
to running the program in the first
place. How much emulation is
enough?

Backtraces reach dead ends

¡ We backtrace up to 64 steps from a
vulnerable function
l Every branch is exercised

¡ Back traced cross references can be
used to connect input with a code
location
l For example, does a previous function

take input from the network?

¡ Many times a static backtrace dead-
ends
l Windows message handler

Black Box

¡ All we see are the outputs from the
software – no inner workings

¡ Requires deep protocol knowledge

¡ ‘Fuzzers’:
l Hailstorm and Spike

Black Box is not stand alone

¡ Black box testers take FOREVER to
complete their input sequences.

¡ If the program is slow, this
compounds the problem

¡ Amounts to ‘brute forcing’
¡ Finding bugs with pure brute force

is mostly luck

Blackbox State

¡ Typical network software is highly
stateful

¡ A client must be able to maintain a
complex state in order to
communicate effectively with the
target

¡ Modeling highly stateful clients from
scratch is very time consuming and
prone to error

Instrumented Clients

¡ Using a real client program
eliminates most of the state issues

¡ You don’t need to rebuild the wheel
¡ Fault injection is inserted in-transit

by modifying the code within the
client program

¡ The client program becomes a
hostile mutant

Fault Injection Clients

¡ If the protocol is proprietary you
have two choices
l Modify in the middle the packets

¡ Only works is protocol is not overly
complex and not encrypted – beware of
authentication/encryption

l Instrument proprietary client
¡ Requires difficult call-hooking, time

consuming

Hooking clients

¡ Find location where pointer is held in
register

¡ Put breakpoint on this location and modify
the given string in memory
l Cannot BO string w/o corruption

¡ Or, replace the pointer with another
pointer
l May cause state problems in some clients

¡ Using ‘debugger’ technology makes this
whole process easier – no EXE patching
required

GreyBox

¡ Combine black-box injection with
code analysis

¡ If you use a program debugger,
your performing grey-box analysis

¡ Performed at runtime so software
can be observed

¡ All instructions which are executed
can be obtained. All data involved
at these points can be tracked

Interactive

¡ Grey-box testing is an interactive
process between a skilled engineer
and the target program

¡ Tools used include SoftIce, OllyDbg,
Aegir, Fenris, GDB, Tempest, and
the MS-Visual C debugger*

*IDA-Pro has an integrated debugger, but the current
version is not evolved enough for industrial level
work

Fenris www.bindview.com

Chapter Three

How to use
Bug Scan™

Easy Stuff – Introducing BugScan!

¡ BugScan is extremely simple to
use

¡ Submit binary and get report
¡ Report cannot verify is conditions

are actually exploitable
l But it takes 30 seconds, not 30 hours
l Defensive stance – don’t wait for

someone to attack before you protect
yourself

Submit a File

View the Report

Latest BugScan Reports from the Field

TO BE REVEALED AT CONFERENCE

FREE BUGSCAN for BLACKHAT

¡ Use this logon to scan any binary,
free for blackhat attendees for the
next 60 days

l HTTP://www.hbgary.com/freeblackhat

Chapter Four

How
HBGary
Uses GreyBox

Hard Stuff

¡ Designed for experts
l Not a product!

¡ Requires reverse engineering skills
not limited to:
l Runtime debugging
l Assembly code
l Protocols
l Technical knowledge of programming

bugs

Introducing TEMPEST

Free technology available for

download from

www.hbgary.com

TEMPEST

¡ Connect the inputs with the bugs
¡ Verify the exploit
¡ Build a working exploit
¡ Offensive stance – find working

injection vectors
¡ Defines a WORKFLOW

Static backtrace from suspect locations

sprintf call

Blocks of code that
lead to sprintf

‘Self Learning Coverage’

¡ We start with user-supplied data
¡ We can detect when decisions are

calculated from user input
¡ We can freeze and restore the

program at any point and test new
values

¡ Thus, we can map how user-
controlled values influence state
transitions

Location Coverage

¡ As program is used, if a code block
is visited it will be highlighted
‘grey’*

Code

Block

Breakpoint

Process Snapshots

0x00000000

0xFFFFFFFF

VirtualQueryEx

MEM_COMMIT
&&
NOT PAGE_READONLY
&&
NOT PAGE_EXECUTE_READ
&&
NOT PAGE_GUARD
&&
NOT PAGE_NOACCESS

Fly-By’s & Drill Downs

¡ If we hit code blocks ‘above’ a
suspect location we are alerted to
potential operations that will cause
the target to be exercised

¡ Coverage helps us tune our input
data to drill down to a target
location
l This is the fundamental advantage

Tracing

Selected
Code Block

The code block
exits to all these
points

Trillian IRC DLL

Signed/Unsigned
mismatch in
subroutine
at 0x1000FE40

Boron Tagging

¡ Traces from known points
¡ Breakpoints on suspect calls
¡ Can be used as a strategy to skip

large sections of the graph
l These become ‘clusters’
l We cannot create a spanning tree

graph unless everything is connected

Leap Frogging

recv(…)
Change page protection
in order to track access

mov edx, [esi]

lea edx,
[esi]

mov [ecx], eax

Leapfrog with Boron

¡ Read memory to find all boron
strings

¡ Set memory breakpoints on all
these locations

¡ Locations are typically re-used
¡ Doesn’t always work because

memory is cleared after use

Data Flow Analysis

EAX
EDI

HEAP

STACK

HEAP

STACK

Registers

Heap or
stack

Write

Read

Graphing Problems

¡ Graph complexity increases with the
number of back traces

¡ Using tempest on more than a few
target points at a time results in a
huge, unwieldy graph

Advanced Graphing

¡ Different graphing algorithms can
be used

¡ Hyperbolic graphs serve better for
browsing a large number of nodes

All code paths leading to sprintf call in commercial FTP server,
information obtained statically

WALRUS

www.caida.org

Filtering the set

¡ Don’t worry about sprintf if the
format string doesn’t contain %s

¡ Don’t worry about off by ones if the
size parameter is less than the
stack correction

¡ Don’t worry about anything if the
source data is not obtained from
outside the function

ID locations
using static

analysis

Backtrace from
potentially vulnerable
API call or location

Static traces

ID locations
using static

analysis Static traces

FUZZ

Locations which
are visited are
tagged grey

This is a HIT

- This causes
a work item to
be exercised.

Is user-supplied data used in the suspect call?

ID locations
using static

analysis Static traces

FUZZ

Faults?

Faults?

Unresolved
Branches?

Use Data Flow
Analysis to
determine if

branch is
calculated from
user-controlled

data

Incomplete
branch
coverage

Modify input
fuzzer to

compensate

This location is the nearest fly-by. To
solve the problem we must visit this
location and determine what data is being
used to make the branching decision.

In most cases, the value is not directly
controlled by the fuzzer. This means that
we must trace back further to determine if
the value is calculated from user input.
This is both tedious and time consuming.

wsprintf that uses
%s **

** this graph generated from commercial proxy server (vendor not revealed)

Conclusion

¡ There exists a process to connect
user-input to potential
vulnerabilities

¡ By tracing data and control flow at
runtime, a fuzzer can be tuned to
target a location

¡ Only a certain percentage of those
bugs identified statically will be
exploitable

Closing Remarks

BugScan is a commercial product
that can be obtained from

www.hbgary.com

Spike is free and can be obtained
from

www.immunitysec.com

Closing Remarks

¡ The Tempest debugging system is
used internally by HBGary and is
not a commerical product

¡ Many components of the tempest
system are open source and can be
obtained for study

www.hbgary.com

Thank You

Greg Hoglund
HBGary, LLC.

hoglund@hbgary.com

