
BGP Vulnerability Testing:
Separating Fact from FUD

Sean Convery (sean@cisco.com)
Matthew Franz (mfranz@cisco.com)

Cisco Systems
Critical Infrastructure Assurance Group (CIAG)

http://www.cisco.com/go/ciag

Black Hat USA - July 2003

Agenda

n Introduction
n BGP Vulnerability Testing
n Analysis of BGP Best Practices
n “Active” ISP Survey
n Conclusions

If you believe what you read…

n BGP is…highly vulnerable to a variety of attacks due to the
lack of a scalable means of verifying the authenticity and
authorization of BGP control traffic. - S-BGP Website[1]

n Any outsider can inject believable BGP messages into the
communication between BGP peers and thereby inject
bogus routing information or break the peer to peer
connection. - draft-murphy-bgp-vuln-02.txt[2]

n Outsider sources can also disrupt communications
between BGP peers by breaking their TCP connection with
spoofed RST packets. - draft-murphy-bgp-protect-
01.txt[3]

n The border gateway protocol…is rife with security holes
and needs to be replaced, a security consultant warned. -
news.com[4]

Research Objectives

n Conduct a systematic analysis of BGP
vulnerabilities based on testing of multiple
implementations—current assumptions are
largely speculative

n Measure the effectiveness of best practices in
mitigating likely attacks—in the near term,
hardening vendor implementations and applying
best practices is all we have

n Collect data on the security posture of real-
world routers and BGP implementations

Methodology

n Conduct BGP-relevant TCP attacks
n Evaluate robustness of BGP parsers using fuzz-

testing (similar to PROTOS)
n Conduct selected attacks in BGP Attack Tree[6]

under the following conditions:
n Blind Attacker / Non-Blind Attacker / Compromised

Router
n BGP best practices ON and OFF

n Conduct an “Active” survey of ISP best practices
n Probe Admin ports (22/23/80)
n Identify Permissive BGP speakers (179)

Vulnerabilities & Vulnerability Disclosure

n Three types of vulns are considered in
this talk:
n Design – does what it is supposed to do
n Implementation – bug based on coding error
n Misconfiguration – weak passwords, failure to use

security features, block admin ports, etc.
n Vendors have been notified of all

implementation flaws
n CERT/CC has been given a set of BGP

test cases to distribute to vendors
n No vendors will be identified in this talk

Attack Tree Example (Graphical)

Graphic tree representations are generated from the source
attack tree.

Blue = OR

Red = AND

Reset a Single BGP Session (Graphical)

Blue = OR

Red = AND

Building on draft-convery-bgpattack-00.txt[6]

Atomic Goals
n “Compromise” MD5

Auth
n Establish unauth

BGP session
n Originate unauth

prefix into peer
n Change path pref

of a path
n DoS BGP Session
n Spoof BGP

Message

Attack Scenarios
n Disable critical

portions of
Internet…

n Disable single-
homed AS

n Disable multi-
homed AS

n Blackhole traffic

Supp. Atomic Goals
n Compromise

router
n DoS router
n MITM attack
n TCP Sequence #

attack
n Sniff traffic

Agenda

n Introduction
n BGP Vulnerability Testing
n Analysis of BGP Best Practices
n "Active" ISP Survey Results
n Conclusions

BGP & TCP Testing

n TCP/BGP Connection Behavior*
n TCP Resource Exhaustion*
n TCP Resets and Sequence Numbers
n MD5 (RFC 2385) Attacks

n MD5 Dictionary Attack
n MD5 DoS*

n Update Flooding*
n BGP Route Insertion (TCP Hijack)
n BGP Peer Hijack (ARP Spoofing)
n Malformed BGP Messages*

n OPEN
n UPDATE

*Conducted against multiple implementations

Testing BGP Implementations

n Goal: sample the responses of a variety of
implementations to known and potential attacks

n 7 different BGP implementations were evaluated
using “default” BGP configs

n When present, parenthetical notations in test
result slides identify the number of
implementations that exhibited that behavior

n Statistics (times/CPU utilization, etc.) were on a
lightly loaded test network, so impact of certain
attacks is likely to be different (greater)

Tools We Used

n Packet Generation &
Injection
n Hping[7], Nemesis-tcp[8],

Netcat[9], Naptha
(synsend)[10]

n Bgpcrack*
n MD5 attacks

n TCP Test Tool (ttt)*
n Sequence number

guessing, MD5 flooding

n Tcphijack*
n BGP route insertion

n Dsniff[11]
n ARP spoofing

n Protocol Independent
Fuzzer (pif)*
n Invalid Message

Generation
n Pyupdate/Pyopen*

n Valid message
generation

n “Active” ISP Survey
Tools*

Some of these new tools available at:
http://www.cisco.com/security_services/ciag/tools

Connection Establishment Tests

n Identify implementation behavior during session
establishment—what is necessary for successful
peer negotiation? How far can the attacker get?

n How much of the message is processed and how
far the state can be advanced determines risk
and impact of attacks:
n Initial SYN – SYN flooding
n Connect() – ESTABLISHED/FIN_WAIT flooding
n BGP OPEN – Remote Identification/Malformed messages
n UPDATE – Route insertion/deletion

Connection Establishment (TCP)

n No standard behavior was observed across
the implementations we tested

n Results varied, from least permissive (reject
quietly) to most permissive (full 3-way
handshake)
n SYN from non-configured peer

n Silent Drop (1)
n RST-ACK (3)
n SYN-ACK (3)

n Spoofed SYN from configured peer (session est.)
n RST-ACK (4)
n SYN-ACK (3)

Connection Establishment (BGP)

n Test Results:
n OPEN from non-configured peer

n RST (6)
n NOTIFICATION: OPEN Message

Error/Authentication Failure (1)

n OPEN from configured peer with invalid AS
n NOTIFICATION: OPEN Message

Error/Authentication Failure (2)
n NOTIFICATION: OPEN Message Error

Bad Peer AS (5)

Connection Establishment (BGP)

n Wildcards
n Timeouts – delay between session renegotiation

(especially after NOTIFICATION)
n Delay of 1-3 minutes before new connection (4)
n No timeouts (3)

n Send OPEN immediately after reaching established
state (1)

n No implementation allowed BGP OPENs with
the wrong AS or from non-configured peer to
reach BGP ESTABLISHED state—as a result,
TCP spoofing is required to inject data

TCP Resource Exhaustion vs. BGP

n Goal: prevent new BGP sessions from being
established or impact existing sessions

n Why: many BGP implementations are tightly
integrated with TCP stacks and there may be
“collateral damage”

n Should be the easiest to conduct and require
the least amount of knowledge and access
n SYN Flooding
n ESTABLISHED Flooding
n FIN_WAIT1 Flooding

SYN Flooding

n Exhaust number of sessions in
SYN_RCVD state

Attacker# synsend 10.89.168.101 10.89.168.89 1
Randomizing port numbers.
Sending SYN packets.

Victim# netstat -an | grep --tcp
tcp 0 0 10.89.168.101:179 10.89.168.99:4189 SYN_RECV
tcp 0 0 10.89.168.101:179 10.89.168.99:8017 SYN_RECV
tcp 0 0 10.89.168.101:179 10.89.168.99:56477 SYN_RECV
tcp 0 0 10.89.168.101:179 10.89.168.99:41185 SYN_RECV

ESTABLISHED Flooding

n Stress peer establishment or overflow
socket file descriptors

Attacker# synsend 10.89.168.101 10.89.168.89 1
Randomizing port numbers.
Sending SYN packets.

Attacker# srvr -SAa 10.89.168.10

Victim# netstat -an | grep --tcp
tcp 0 0 10.89.168.101:179 10.89.168.99:36601 ESTABLISHED
tcp 0 0 10.89.168.101:179 10.89.168.99:59545 ESTABLISHED
tcp 0 0 10.89.168.101:179 10.89.168.99:49340 ESTABLISHED

FIN_WAIT 1 Flooding

n Stress peer deletion or exhaustion of
socket file descriptors

Attacker# synsend 10.89.168.101 10.89.168.89 1
Randomizing port numbers.
Sending SYN packets.

Attacker# srvr -SAfa 10.89.168.10

Victim# netstat -an | grep --tcp
tcp 0 1 10.89.168.101:179 10.89.168.99:35734 FIN_WAIT1
tcp 0 1 10.89.168.101:179 10.89.168.99:15142 FIN_WAIT1
tcp 0 1 10.89.168.101:179 10.89.168.99:56006 LAST_ACK
tcp 0 1 10.89.168.101:179 10.89.168.99:63718 LAST_ACK

TCP Resource Exhaustion vs. BGP Results

n Goal was to just impact TCP and as a result,
BGP–we know there are infinite ways to kill a
box (saturate links, punt to CPU, fill non-TCP
queues, etc.)

n Impact to implementations that SYN/ACK
peers (or when spoofed)
n Up to 5-6 minute delay in BGP session

establishment – peers under attack could
negotiate outbound sessions with other peers

n Moderately elevated CPU utilization and latency
n No impact on existing sessions

TCP Resource Exhaustion Results

n The bottom line
n An attacker would have to find a way to

break the current session and SYN flood
both peers (and possibly spoof the src,
depending on the implementation) to
cause significant impact

n Implementations that allow state past
SYN_RECVD may have issues—but ACLs
can mitigate this—blind connect() spoofing
is hard

TCP Resets and Sequence Number Guessing

n Successful TCP resets require a valid 4-tuple and
sequence number (not ttl)

n TCP Test Tool (ttt) is able to generate messages
easily assuming local access to the wire:

18:22:59.328544 99.0.0.3.179 > 99.0.0.5.32324: P
272350230:272350249(19) ack 4142958006 win 15531: BGP
(KEEPALIVE) [tos 0xc0] [ttl 1]
18:22:59.527079 99.0.0.5.32324 > 99.0.0.3.179: . ack
272350249 win 15543 [tos 0xc0] [ttl 1]

./ttt -T 2 -D 99.0.0.5 -S 99.0.0.3 -x 179 -y 32324 -fR
-s 272350249

May 1 18:23:13.425: %BGP-5-ADJCHANGE: neighbor 99.0.0.3
Down Peer closed the session

n Nothing new here. Tcpkill (from dsniff) works, too.

TCP Resets Results

n The peer is fully reestablished in 50 seconds (test
network) - several minutes (production network):

May 1 18:24:50: %BGP-5-ADJCHANGE: neighbor
99.0.0.5 Up

n Various research [12], and [13] have found flaws in
some implementations of TCP ISN selection. This
should be a solved problem for most
implementations though (did not repeat tests).
n This research depends upon access to a range of initial

sequence numbers from the router (we can prevent this
with BCPs).

n If implementations went with pseudo-random source
ports the number space moves from 232 to 248.

TCP Resets Time Requirements

n A theoretical blind attack @ 1 million pps ~ 30
minutes to just guess the seq. number (assuming a
correct guess after iterating through 50% of the
space).

(232/2)/1,000,000 = # of seconds

n Our tool was able to generate 62,500pps* ~ 9 hours
n Since the attacker won’t know which side is 179 vs. a

high port multiply these numbers by 2
n With source port randomization, this goes to 4 years

in the first example (1 mil. pps to guess 1 48 bit
number and 142 years assuming 62,500pps and
needing to guess both sides):

((248/2)/62,500)x2 = # of seconds

*What sort of event is 62.5kpps on your router?

TCP Reset Conclusions

n Blind TCP seq. guessing is operationally impossible
with a router using BCPs – with proper RFC 2827[14]
filtering, the packet won’t even reach the destination

n Even without BCPs, this is quite a lot of work for 50
seconds (up to 5 minutes?) of down-time

n A successful TCP reset attack would need to be
constantly repeated to keep a session down and
would need to be duplicated on many routers to
cause substantial impact to the Internet’s routing
tables

n Any TCP sequence number attack will require lots of
packets potentially causing link saturation or other
problems (routers should notice)

MD5 Dictionary Attack

n All the information needed to compute
RFC2385[15] MD5 authentication is present in
the packet except the secret itself:
n TCP Pseudo-header (sIP, dIP, protocol number, segment

length)
n TCP header (w/o options, and 0 checksum)
n TCP Segment data (if any)

n “Bgpcrack” test tool uses .pcap files and a
dictionary file (with permutation definitions) or
can increment through all possible passwords
using John the Ripper[16]

n Tool can also run in “online” mode by sending a
segment repeatedly with different MD5
passwords—allowing remote brute force (similar
to Telnet/HTTP attacks)

MD5 Offline Attack (Sample Run)

n A permuted version of the above password “D0M1N0”
was found in 3.5 hours with no dictionary file as help:
“./john -stdout:6 -incremental |
~/bgpcrack-2.0/bgpcrack -r ~/md5cap3 -w
- -n 1 port bgp -R ~/bgpcrack-
2.0/rules.ini”

n Countermeasures: Choose strong passwords: draft-
ietf-idr-md5-keys-00.txt[17]

./bgpcrack -r md5.pcap -w words port bgp
39 frames have been processed.
There are 7 TCP segments with MD5 signatures.
Using 784 bytes for storage of MD5 data.
Found a match in frame 8.
Password is 'DOMINO'. Bye.

elapsed time = 8 seconds

MD5 Testing

n Test Combinations
n Valid or invalid peer
n Established or non-established session
n Valid or invalid password
n TCP SYN, PSH-ACK, RST

n Two possible results: drop silently or RST
n Implementations that dropped silently had

lower CPU impact than those that RST
n Worst attack using MD5—SYN-Flooding from

peer if no session established (70%)
n Dropped to 30-40% if session already established

MD5 Flooding Results

n Order of processing impacts results
n Some processed MD5 before sequence

number resulting in greater CPU impact
when flooded

n Others processed TCP (checked for valid
ports, sequence numbers) resulting in
lesser impact

n TCP behavior (especially with regard to
existing session) impacts results

BGP Update Flooding

n Wrote python script to establish session and
continue to add an arbitrary number of
routes at will

bash-2.05a$ pyupdate 192.168.1.200 100 eth0

Source IP: 192.168.1.101
Connecting to 192.168.1.200 (45 bytes received)
Sending keepalive...
How many routes to send? 10000
Split into 1000 route updates?y
Generating 10000 routes (40000 bytes)
Building UPDATE...
Source IP: 192.168.1.101
Routes: 1000
NLRI: 4000
BGP Length: 4048

BGP Update Flooding Results

n Variations among implementations:
n Rate at which new routes could be

processed
n CPU Utilization and ICMP latency
n Behavior when route ceiling was hit

n Will not accept new routes
n Tears down BGP session
n Overwrites old routes

BGP Route Insertion (TCP Hijack)

n Assuming the ability to guess the TCP
sequence number; routes can be inserted
using a single spoofed update message.

n As soon as the real BGP speaker
communicates again (keepalive), an ACK
storm ensues due to the overlapping
sequence numbers.

n In our testing we found that the ACK storm
takes about 5 minutes to resolve during
which time the spoofed route will remain in
the table and be passed to other routers.

BGP Route Insertion (cont.)

./tcphijack -c 99.0.0.5 -s 99.0.0.3 -p 11041 -P test2.txt
tcphijack: listening on eth0.
pcap expression is 'host 99.0.0.5 and 99.0.0.3 and tcp port

11041'.
Press Control-C once for status, twice to exit.
We're sync'd to the TCP conversation. Sending Update.
Done.

n TCP hijack will insert a binary payload by listening to the
sequence numbers on the wire.

n If the attacker stays inline (via ARP or MAC spoofing) the route
could stay longer. There may be ways to back-out gracefully
without killing the existing session (further research warranted).

5w1d: BGP(0): 99.0.0.5 rcvd UPDATE w/ attr:
nexthop 99.0.0.5, origin i, metric 0, path 5
5w1d: BGP(0): 99.0.0.5 rcvd 7.7.7.0/24

BGP Peer Hijack (ARP spoof)

n Using arpspoof an attacker can easily poison the ARP
table of a BGP peer and cause the session to be
terminated and reestablished with the attacker.

n By spoofing only one peer of the victim both the real
BGP speaker and the victim will remain connected.
(the victim still peers with other ISPs)

Victim

Valid
peering

Spoofed
peering

Protocol Fuzzing using PIF

n Provide a general purpose engine to generate
malformed fields deeper into packet than
existing tools such as ISIC

n Allow a large number of messages for many
protocols to be quickly and easily generated
without completely describing the protocol

n Focus on complex Type-Length-Value
protocols such as BGP and IKE where
implementation errors are likely

PIF: Basic Principle of Operation

n The deeper into the message we are able to
inject invalid data, the greater confidence we
have that the implementation will properly
parse malformed input

n This will find improper handling of incorrect
length values, truncated messages, and illegal
type codes which can cause unstable operation

Valid Invalid

Message/Packet Depth

PIF Components

n Protocol Description Language (PDL)
n Describes possible message syntax
n Consists of a flat-file tree that is chained together
n Each file is a “block” – discrete protocol unit that consists of
multiple fields (line within file)

n User Input Module
n Parses protocol descriptions and instantiates subset of
protocol messages to be generated
n Result is protocol “template” which is passed to generator

n Message Generation Module
n Creates final binary output based on template

n Injection Scripts
n Inject at TCP, UDP, IP, Ethernet layer

Sample Fuzzer run for BGP

ciag-530b:~/pif/pdl/bgp# pif bgp build fuzz

====>bgp.pdl<====
marker> fixed field, no input required

[value] [s]hort [l]ong [z]ero [r]andom [v]alid or e[x]it
bgp_len>v
 Using a valid length, calculating at fuzz time.

['0x04', 'keepalive', '0x01', 'open', '0x02', 'update', '0x03',
'notification']

[c]ycle [value] [p]ermute [r]andom [s]weep [z]ero e[x]it

bgp_type>open

====>bgp-open.pdl<====

ver> fixed field, no input required

 [value] [p]ermute [r]andom [s]weep [z]ero e[x]it
my_as>100

From protocol description to
identified flaw

PDL

Protocol Specs, Sniffer Traces
Source Code, etc.

PIF Engine

1) User Input Module
2) Msg Gen Module

ike.pdl

V:64:init_cookie

V:64:resp_cookie

T:16:ike_next_pl:0x01<sa

F:8:version:0x10
Testcases

eng-
ciag:~/pif/pdl/ike/tc/ike-
test$ ls

0 1 2 3 4

07:34:47.987991 10.89.168.102.179
> 10.89.168.100.33867: S
4067176600:4067176600(0) ack
546274098 win 17376 <mss
1460,nop,nop,sackOK,nop,wscale
0,nop,nop,timestamp 573794391
716420709> (DF)

07:34:47.988123
10.89.168.100.33867 >
10.89.168.102.179: . ack 1 win 5840
<nop,nop,timestamp 716420709
573794391> (DF)

07:34:47.988192
10.89.168.100.33867 >
10.89.168.102.179: P 1:20(19) ack 1
win 5840 <nop,nop,timestamp
716420709 573794391>: BGP
(OPEN[|BGP]) (DF)

Malformed OPEN Testing

n Generated 100 test cases for each “layer”
using pif “backtrace” function

n Messages were from completely invalid to
mostly valid:
n Completely Random
n Valid Marker + fuzzload
n Valid Length + fuzzload
n Valid Version (4) + fuzzload
n Valid AS + fuzzload
n Hold Time + fuzzload
n Identification + fuzzload
n Random Option Parameters

Sample Malformed OPEN

Another Malformed OPEN

Malformed BGP Update Testing

n Generated 100 test cases for each set:
n Valid BGP type (UPDATE) + fuzzload
n Valid BGP type (UPDATE with invalid BGP length)

+ fuzzload
n Unfeasible length (set to 0) + fuzzload
n Valid Path Attribute Length + fuzzload

n These test cases provide less comprehensive
coverage than OPENs and more testing may
be necessary

Sample Malformed BGP Update

BGP Malformed Message Results

n Based on 1200 test cases:
n Only 4 different flaws were found –

impacting 4 of the 7 implementations
tested (flaws were unique to each
implementation)

n 3 of the flaws required the attacker to be a
valid configured peer and/or valid AS

Areas For Further Testing

n Need more comprehensive set of
test cases for UPDATE

n iBGP testing vs. eBGP testing
n Malformed update propagation

issues
n Reproduce our tests to confirm

results

BGP/TCP Implementation Recommendations

n Extensive, configurable logging of connection
failures (TCP, BGP, MD5)

n Aggressive rejection of TCP connections from
non-configured peers and aggressive timeouts
can minimize TCP resource exhaustion attacks

n Aggressive rejection of unauthorized (invalid
peer and AS) can minimize the impact of most
remote non-blind attacks

n Consider source port randomization
n Lengthy BGP session timeouts (i.e. 60 seconds)

can minimize message flooding attacks
n Implement the BGP TTL Hack[18]

Agenda

n Introduction
n BGP Vulnerability Testing
n Analysis of BGP Best Practices
n "Active" ISP Survey Results
n Conclusions

Attack Test Network

AS1 AS2

AS3

AS5

AS4
AS16

AS6

AS7 Non-blind
Attacker

Blind
Attacker

Test summary w/No BGP BCPs

n Blind Attacker
n Due to TCP sequence guessing requirement, most attacks

are practically impossible
n Everything depends on getting access to a link with BGP

speakers or compromising a router

n Non-Blind Attacker
n Sessions reset at will
n Routes inserted (but ACK storm resets the session shortly)
n Peer hijacking is possible with ARP spoofing

n Compromised Router
n Tear down sessions, insert invalid routes, modify attributes

(could require a rogue implementation), reconfigure to allow
malicious peering.

BGP BCPs For Tests

n Based on basic router best practices and Rob
Thomas’ BGP Hardening Template[19] and ISP
Essentials[23] (additions in red)
n Unicast RPF (RFC 2827 Filtering)
n Ingress and Egress Prefix Filters (with max prefix length

limit and bogon filtering)
n Route Flap Dampening
n Bogon route filtering
n BGP Network ACLs
n TCP MD5 (with strong passwords)
n Static ARP for Ethernet peering
n Static CAM entries and port security [20] for IXP Ethernet

switches
n AS Path Filtering not tested (needs more research)

Key BGP BCPs

n Blind Attacker
n RFC2827 - even without broad adoption, you can

prevent people from spoofing your ranges, and thus all
TCP attacks

n BGP ACLs - Don’t let invalid BGP packets on the wire

n Non-Blind Attacker
n L2 best practices - stops sniffing, hijacking, etc.
n MD5 - adds additional pain to the attacker
n Ingress / Egress prefix filtering - limits damage in case

of compromise (update flooding, etc.)

n Compromised Router
n Ingress / Egress prefix filtering - limits extent of

damage a compromised router can cause (update
flooding, etc.)

BGP BCP Analysis Summary

n As expected, a compromised router is the most
beneficial asset to an attacker in a network with BGP
BCPs

n TCP MD5 is helpful everywhere, but is particularly
useful in shared media environments (deployment
issues are being worked on)

n L2 Best practices matter in shared media
environments

n Packet filtering to stop spoofed BGP messages at
your edge and on each peer will prevent almost all
TCP based attacks—and as a result almost all BGP
based attacks from non-compromised routers

Agenda

n Introduction
n BGP Vulnerability Testing
n BGP BCP Analysis
n “Active” ISP Survey Results
n Conclusions

Test Methodology

n Goal was to non-intrusively assess basic BCP
adoption through probes from an arbitrary IP address
n Limit scanning to prevent production impact—a single SYN

with no retries
n Build table of potential BGP speakers by running

traceroutes to approx. 120,000 hosts (one for each
CIDR block in the Internet’s route table)

n Probes:
n Send 1 x TCP SYNs to ports 22, 23, 80, 179
n Embed message in payload identifying probes as non-

malicious
n Measure response (SYN ACK, RST, No Response)

n Send BGP OPEN to those that SYN-ACK on port 179
n Sessions used an unused AS #
n Record BGP message that is returned

“Active” ISP Survey Results (Summary)

n Total non-1918 routers probed:
115,466

n BGP Speakers
n SYN-ACK - 4,602
n RST - 3,088
n No Response - 107,777

n BGP Open Test Results
n OPEN / NOTIFICATION - 1,666

n AUTH FAIL - 1635
n CEASE - 11
n BAD AS - 20

n NOTIFICATION ONLY - 84
n AUTH FAIL - 1
n CEASE - 83

n RST - 264
n Connect (No Data) - 2,147

nSSH daemons: 6,349
nTelnet daemons: 10,907
nHTTP Servers: 5,565
n16,815 routers were
reachable* on at least one
admin interface (14.5% of
probed routers)

*Based only on receipt of SYN-
ACK, so daemons that you can
actually connect() to could be
lower!

Admin Port Reachability (by Country)

Several countries had either
100% of their routers
accessible or 0% but were not
counted since there were less
than 10 routers probed in each
of these countries.

Honorable Mentions:

Spain - 878 (5.13%)
France - 1820 (6.48%)
Great Britain - 4005 (7.72%)

14.22%56481USA

15.32%4555Canada

0%10Maldives

0%16Gibraltar

2.94%34Iceland

3.75%80Kazakstan

4.35%23Fiji

14.5%--Average

52.63%19Kyrgyzstan

58.33%12French Polynesia

60%10Tanzania

68%25Uzbekistan

73%15Bahamas

Percentage
Admin
Reachable

Total
Probed
Routers

Country

Conclusions

n The most damaging attacks are caused by
the deliberate misconfiguration of a trusted
router
n Compromising the router is not BGP specific and is not

covered here. Best practices should be well understood for
router hardening[5]

n Assumptions around the ease with which TCP
attacks can be performed are unfounded
n Blind hijacking is nearly impossible assuming good pseudo-

random ISNs
n Even “easy attacks” (TCP Resource Exhaustion) against port

179 are non-trivial against tight implementations and have
minimal impact compared to other DoS attacks

n Why bother with lower layer attacks (ARP,
TCP) against BGP when you can own the
box?

More Conclusions

n Encourage your vendors to to test their BGP
implementations and do your own security
testing
n These tests should be repeatable using this

document and the BGP Attack Tree

n Implement BGP BCPs, especially admin ports!
n Liberally use clue-stick next time someone

says “BGP is totally insecure!”
n Security isn’t an all or nothing proposition
n soBGP[21] and S-BGP improve security, but…

n New implementations, new bugs
n Needs to go through the IETF process

What next?

n Generate more test-cases (more on
BGP update and other message types)

n Test more platforms!
n Need vendors, users, and independent

researchers to repeat and extend tests we’ve
outlined here

n Based on “Active ISP Survey” there are more BGP
implementations that need to be tested

References

[1] S-BGP - http://www.net-tech.bbn.com/sbgp/sbgp-index.html
[2] BGP Security Vulnerabilities Analysis, Murphy, 2003-

http://www.ietf.org/internet-drafts/draft-murphy-bgp-vuln-
02.txt

[3] BGP Security Protections, Murphy, 2002 -
http://www.ietf.org/internet-drafts/draft-murphy-bgp-protect-
01.txt

[4] Expert: Router holes threaten Net -
http://zdnet.com.com/2100-1105-990608.html

[5] Cisco Router Security Recommendation Guides -
http://www.nsa.gov/snac/cisco/guides/cis-2.pdf

[6] An Attack Tree for the Border Gateway Protocol, Convery et. al.,
2003- http://trinux.sourceforge.net/draft-convery-bgpattack-
00.txt

References (cont.)

[7] Hping - http://www.hping.org
[8] Nemesis - http://www.packetfactory.net/projects/nemesis/
[9] Netcat -

http://www.atstake.com/research/tools/network_utilities/
[10] Naptha - http://packetstormsecurity.nl/0101-exploits/
[11] Dsniff - http://www.monkey.org/~dugsong/dsniff/
[12] The Problem with Random Increments, Newsham, 2001 -

http://comsec.theclerk.com/CISSP/The%20Problem%20with%2
0Random%20Increments_4_30_01_final.PDF

[13] Strange Attractors and TCP/IP Sequence Number Analysis,
Zalewski, 2001 -
http://razor.bindview.com/publish/papers/tcpseq.html

References (cont.)

[14] Network Ingress Filtering: Defeating Denial of Service Attacks
which employ IP Source Address Spoofing, RFC 2827, BCP 38,
Ferguson and Senie, 2000 - http://www.ietf.org/rfc/rfc2827.txt

[15] Protection of BGP Sessions via the TCP MD5 Signature Option,
RFC2385, Heffernan, 1998 - http://www.ietf.org/rfc/rfc2385.txt

[16] John the Ripper - http://www.openwall.com/john/
[17] Security Requirements for Keys used with the TCP MD5

Signature Option, Leech, 2002 - http://www.ietf.org/internet-
drafts/draft-ietf-idr-md5-keys-00.txt

[18] The BGP TTL Security Hack (BTSH), Gill et. al., 2002 -
http://www.ietf.org/internet-drafts/draft-gill-btsh-01.txt

[19] Secure BGP Template, Thomas, v.2.9 -
http://www.cymru.com/Documents/secure-bgp-template.html

References (cont.)

[20] Hacking Layer 2: Fun with Ethernet Switches, Convery, 2002 -
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-
convery-switches.pdf

[21] Extensions to BGP to Support Secure Origin BGP (soBGP), Ng,
2002 - http://www.ietf.org/internet-drafts/draft-ng-sobgp-bgp-
extensions-00.txt

[22] The Naptha DoS Vulnerabilities, Keyes.
http://razor.bindview.com/publish/advisories/adv_NAPTHA.html

[23] Cisco ISP Essentials, Greene - ftp://ftp-eng/cons/isp/essentials

Questions?

