
Syscall Proxying - Simulating remote
execution

Maximiliano Caceres
<maximiliano.caceres@corest.com>

Copyright © 2002 CORE SECURITY TECHNOLOGIES

Table of Contents

Abstract . ??
General concepts. ??

The UNIX way . ??
The Windows way . 3

Syscall Proxying . ??
A first glimpse into an implementation. ??
Optimizing for size . ??

Fat client, thin server. 8
A sample implementation for Linux. ??
What about Windows?. ??

The real world: applications. 16
The Privilege Escalation phase. ??
Redefining the word "shellcode". ??

Conclusions . ??
Acknowledgements. ??

Abstract
A critical stage in a typical penetration test is the "Privilege Escalation" phase. An auditor faces this stage when access
to an intermediate host or application in the target system is gained, by means of a previous successful attack. Access
to this intermediate target allows for staging more effective attacks against the system by taking advantage of existing
webs of trust and a more privileged position in the target system’s network. This "attacker profile" switch is referred
to aspivotingalong this document.

Pivoting on a compromised host can often be an onerous task, sometimes involving porting tools or exploits to a
different platform and deploying them. This includes installing required libraries and packages and sometimes even a
C compiler in the target system!.

1

Syscall Proxying is a technique aimed at simplifying the privilege escalation phase. By providing a direct interface into
the target’s operating system it allows attack code and tools to be automagically in control of remote resources. Syscall
Proxying transparently "proxies" a process’ system calls to a remote server, effectively simulating remote execution.

Basic knowledge of exploit coding techniques as well as assembler programming is required.

General concepts
A typical software process interacts, at some point in its execution, with certain resources: a file in disk, the screen, a
networking card, a printer, etc. Processes can access these resources through system calls (syscallsfor short). These
syscallsare operating system services, usually identified with the lowest layer of communication between a user mode
process and the OS kernel.

The strace tool available in Linux systems1 "...intercepts and records the system calls which are called by a
process...". Fromman strace :

Students, hackers and the overly-curious will find that a great deal can be learned about a system and
its system calls by tracing even ordinary programs. And programmers will find that since system
calls and signals are events that happen at the user/kernel interface, a close examination of this
boundary is very useful for bug isolation, sanity checking and attempting to capture race conditions.

For example, this is an excerpt from runningstrace uname -a in a Linux system (some lines were removed for
clarity):

[max@m21 max]$ strace uname -a

execve("/bin/uname", ["uname", "-a"], [/* 24 vars */]) = 0
(...)

uname({sys="Linux", node="m21.corelabs.core-sdi.com", ...}) = 0
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 2), ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x4018e000

write(1, "Linux m21.corelabs.core-sdi.com "..., 85) = 85
munmap(0x4018e000, 4096) = 0

_exit(0) = ?

Linux m21.corelabs.core-sdi.com 2.4.7-10 #1 Thu Sep 6 17:27:27 EDT 2001 i686 unknown
[max@m21 max]$

Thestrace process forks and calls theexecve syscallto execute theuname program.

1 Similar tools arektrace in BSD systems andtruss in Solaris. There’s a strace like tool for Windows NT, available at http://razor.bindview.
com/tools/desc/strace_readme.html.

2

http://razor.bindview.com/tools/desc/strace_readme.html
http://razor.bindview.com/tools/desc/strace_readme.html

The uname program calls theuname syscall of the same name (seeman 2 uname) to obtain system
information. The information is returned inside a struct provided by the caller.

Thewrite syscallis called to print the returned information to file descriptor 1,stdout .

exit signals the kernel that the process finished with status 0.

Different operating systems implementsyscallservices differently, sometimes depending on the processor’s archi-
tecture. Looking at a reasonable set of "mainstream" operating systems and architectures (i386 Linux, i386 *BSD,
i386/SPARC Solaris and i386 Windows NT/2000) two very distinct groups arise: UNIX and Windows.

The UNIX way

UNIX systems use a generic and homogeneous mechanism for calling system services, usually in the form of a "trap",
a "software interrupt" or a "far call".syscallsare classified by number and arguments are passed either through the
stack, registers or a mix of both. The number of system services is usually kept to a minimum (about 270syscalls
can be seen in OpenBSD 2.9), as more complex functionality is provided on higher user-level functions in thelibc
library. Usually there’s a direct mapping betweensyscallsand the relatedlibc functions.

The Windows way

The native API is little mentioned in the Windows NT documentation, so there is no well-established
convention for referring to it. "native API" and "native system services" are both appropriate names,
the word "native" serving to distinguish the API from the Win32 API, which is the interface to the
operating system used by most Windows applications.

It is commonly assumed that the native API is not documented in its entirety by Microsoft because
they wish to maintain the flexibility to modify the interface in new versions of the operating system
without being bound to ensure backwards compatibility. To document the complete interface would
be tantamount to making an open-ended commitment to support what may come to be perceived
as obsolete functionality. Indeed, perhaps to demonstrate that this interface should not be used by
production applications, Windows 2000 has removed some of the native API routines that were
present in Windows NT 4.0 and has changed some data structures in ways that are incompatible
with the expectations of Windows NT 4.0 programs.

(...)

The routines that comprise the native API can usually be recognized by their names, which come in
two forms:NtXxx andZwXxx. For user mode programs, the two forms of the name are equivalent
and are just two different symbols for the same entry point inntdll.dll .

—Gary Nebbett,Windows NT/2000 Native API Reference

3

Due to this "lack of definition" for its system services, the high number of functions in this category (more than 1000),
and the fact that the bulk of functionality for some of them is part of large user mode dynamic libraries, we’ll refer
to "Windowssyscalls" to any function in any dynamic library available to a user mode process. For simplicity’s sake,
this definition includes higher level functions than those defined inntdll.dll , and sometimes very far above the
user / kernel limit.

Syscall Proxying
From the point of view of a process the resources it has access to, and the kind of access it has on them, defines the
"context" on which it is executed.

For example, a process that reads data from a file might do so using theopen , read andclose syscalls(see Figure
1).

Figure 1. A process reading data from a file

Syscall proxying inserts two additional layers between the process and the underlying operating system. These layers
are thesyscall stubor syscall clientlayer and thesyscall serverlayer.

The syscall clientlayer acts as the nexus between the running process and the underlying system services. This
layer is responsible for marshaling eachsyscallarguments and generating a proper request that thesyscall servercan

4

understand. It is also responsible for sending this request to thesyscall serverand returning back the results to the
calling process.

The syscall serverlayer receives requests from thesyscall clientto execute specificsyscallsusing the underlying
operating system services. This layer marshals back thesyscallarguments from the request in a way that the underlying
OS can understand and calls the specific service. After thesyscallfinishes, its results are marshaled and sent back to
the client.

For example, the same reader process from Figure 1 with these two additional layers would look like Figure 2.

Figure 2. A process reading data from a file with the new layers

Now, if these two layers, thesyscall clientlayer and thesyscall serverlayer, are separated by a network link, the
process would be reading from a file on a remote system, and it will never know the difference (see Figure 3).

5

Figure 3. Syscall Proxying in action

Separating thesyscall clientfrom thesyscall servereffectively changes the "context" on which the process is executing.
In fact, the process "seems" to be executing "remotely" at the host where thesyscall serveris running (and we’ll see
later that it executes with the privileges of the remote process running thesyscall server). It is important to note that
neither the original file reader program was modified (besides changing the calls to the operating system’ssyscallsto
calls into thesyscall client) to accomplish remote execution, nor did its inner logic change (for example, if the program
counted occurrences of the word ’coconut’ in the file, it will still count the same way when working with the remote
server).

This technique is referred to asSyscall Proxyingalong this document.

A first glimpse into an implementation
When looking at Figure 3 three letters instantly come to my mind: RPC!

6

Syscall Proxying can be trivially implemented using an RPC model. Each call to an operating systemsyscall is
replaced by the correspondingclient stub. Accordingly, a server that "exports" through the RPC mechanism all these
syscallsin the remote system is needed (see Figure 4).

Figure 4. The RPC model

There are several RPC implementations that can be used, among these are:

• Open Network Computing (ONC) RPC (also known as SunRPC)

• Distributed Computing Environment (DCE) RPC

• RPC specification from the International Organization for Standardization (ISO)

• Custom implementation

7

Check Comparing Remote Procedure Calls [http://hissa.nist.gov/rbac/5277/titlerpc.html] for a comparison of the first
three implementations.

In the RPC model explained above a lot of effort, symmetrically duplicated between the client and the server, is devoted
both to converting back and forth from a common data representation format and to communicating through different
calling conventions. These conversions made communication possible between a client and a server implemented
in different platforms. Also, the RPC model attempts to attain generality, in making it possible to perform ANY
procedure call across a network. If we can move all this logic to the client layer (making the client tightly coupled with
the specific server’s platform) we can drastically reduce the server’s size, taking advantage of a generic mechanism for
calling anysyscall(this mechanism is "generic" when talking about a single platform).

Optimizing for size
Let’s say that we have a hunch that there should be some added value in optimizing thesyscall serversize in memory.
Also, for simplicity’s sake, we’ll move into the nice and warm UNIX / i386 world for a couple of lines.

If we look carefully into thesyscallswe are "proxying" around, they all have a lot in common:

• Homogeneous way of passing arguments.syscallarguments are either passed through the stack, the registers or
a mix of both. Also, these arguments fall into one of these categories:

• integers

• pointers to integers

• pointers to buffers

• pointers to structs

• Simple calling mechanism.A register is set with the number of thesyscallwe’d like to invoke and a generic trap
/ software interrupt / far call is executed.

8

http://hissa.nist.gov/rbac/5277/titlerpc.html

Fat client, thin server

In order to accomplish the goal of reducing thesyscallserver’s size, we’ll make client code do all the work of
marshaling each call’s arguments directly into the format needed by the server’s platform. In fact, the client request will
be an image of the server’s stack, just before handling the request. In this way, clients will be completely dependent
on the server’s platform but thesyscallserver will just implement communication, and a generic way of passing the
already prepared arguments to the specificsyscall(see Figure 5).

9

Figure 5. Fat client, thin server

Packing arguments in the client is trivial for integer parameters, but not so for pointers. There’s no relationship at all
between the client and the server processes memory space. Addresses from the client probably don’t make sense in
the server and vice versa.

10

To accommodate for this issue the server, on accepting a new connection from the client, sends back hisESP (the
stack pointer). The client then creates extra buffer space in the request, and "relocates" each pointer argument to point
to somewhere inside the request. Knowing that the server reads requests straight into its stack, the client calculates the
correct value for each pointer, as it will be in the server process’ stack (this is why we got the server’sESPon the first
place).

See Figure 6 for a sample of howopen() arguments are marshaled.

Figure 6. Marshaling arguments for the open() syscall

A sample implementation for Linux

To invoke a givensyscallin a i386 Linux system a program has to:

1.Load theEAXregister with the desiredsyscallnumber.

11

2.Load thesyscall’s arguments in theEBX, ECX, EDX, ESI, EDI registers2 .

3.Call software interrupt 0x80 (int $0x80)

4. Check the returned value in theEAXregister.

Take a look at Example 1 to see how does theopen() syscallin a Linux system looks when examined throughgdb .

Example 1. Debugging open() in i386 Linux

[max@m21 max]$ gdb ex
GNU gdb Red Hat Linux 7.x (5.0rh-15) (MI_OUT)
Copyright 2001 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux"...
(gdb) break open
Breakpoint 1 at 0x8050f60
(gdb) r
Starting program: /usr/home/max/ex

Breakpoint 1, 0x08050f60 in __libc_open ()
(gdb) l
1 #include <sys/types.h>
2 #include <fcntl.h>
3
4 int main()
5 {
6 int fd;
7
8 fd = open("coconuts", O_RDONLY);
9
10 if(fd<0)
(gdb) x/20i $eip
0x8050f60 <__libc_open>: push %ebx

0x8050f61 <__libc_open+1>: mov 0x10(%esp,1),%edx

0x8050f65 <__libc_open+5>: mov 0xc(%esp,1),%ecx

0x8050f69 <__libc_open+9>: mov 0x8(%esp,1),%ebx

0x8050f6d <__libc_open+13>: mov $0x5,%eax

0x8050f72 <__libc_open+18>: int $0x80

2 With some exceptions like the socket functions, where some arguments are passed through the stack.

12

0x8050f74 <__libc_open+20>: pop %ebx
0x8050f75 <__libc_open+21>: cmp $0xfffff001,%eax
0x8050f7a <__libc_open+26>: jae 0x8056f50 <__syscall_error>
0x8050f80 <__libc_open+32>: ret

The breakpoint stops execution insidelibc ’s wrapper for theopen() syscall.

Arguments passed through the stack tolibc_open are copied into the respective registers.

EAXis loaded with 5, thesyscallnumber foropen() .

The software interrupt for system services is triggered.

So, given that a generic and simple mechanism for calling anysyscall is in place, and using the architecture and
argument marshaling techniques explained in the section called “Fat client, thin server”, we can code a simple server
that looks like Example 2.

Example 2. Pseudocode for a simple Linux server

channel = set_up_communication()
channel.send(ESP)
while channel.has_data() do

request = channel.read()

copy request in stack
pop registers
int 0x80
push eax

channel.send(stack)

Sets up the communication channel between the client and the server. To keep things simple, we’ll assume this
is a socket.
Copies the complete request to the server’s stack. Remember how does the request look like (see Figure 6).

The request block is sent back to the client. This is done to return any OUT3 pointer arguments back to the client
application. This might be redundant in some cases but since our intention is to keep the server simple, it won’t
handle these cases differently.

An excerpt from a simple implementation of asyscallserver implementing this behavior can be seen at Example 3.
This excerpt refers only to the mainread request / process / write response loop.

3 Arguments used to return information from thesyscall, as inread() .

13

Example 3. A simple syscall server snippet for i386 Linux

push %ebx # fd
read_request:

mov %ebp,%esp
push %esp
xor %eax,%eax
movl $4,%edx # count

read_request2:
mov $3,%al # __NR_read
mov %esp,%ecx # buff
int $0x80 # no error checking!
add %eax,%ecx # new buff
sub %eax,%edx # byte to read
jnz read_request2 # do while not zero

pop %edx # get number of bytes in packet
sub %edx,%esp # save space for incoming data

read_request3:
movl $3,%eax # __NR_read
mov %esp,%ecx # buff

int $0x80 # no error checking
add %eax,%ecx # new buff
sub %eax,%edx # byte to read
jnz read_request3 # do while not zero

do_request:

pop %eax
pop %ebx
pop %ecx
pop %edx
pop %esi
pop %edi

int $0x80
push %edi
push %esi
push %edx
push %ecx
push %ebx
push %eax

do_send_answer:
mov $4,%eax # __NR_write
mov (%ebp),%ebx # fd
mov %esp,%ecx # buff

14

mov %ebp,%edx
sub %esp,%edx # count

int $0x80 # no error checking!

jmp read_request

pop %eax
pop %ebp

Read request straight intoESP.

Pop registers from the top of the request (the request is in the stack).

Invoke thesyscall. EAXalready holds thesyscallnumber (it was part of the request).

Send back the request buffer as response, since buffers might contain data (for example if callingread()).

In this way, we are able to code a simple but yet very powerfulsyscallserver in a few bytes. The sample complete
implementation of the server described above, with absolutely no effort made on optimizing the code, is about a
hundred bytes long.

What about Windows?

Yeah! What about it? Ah, yes! Windows is a whole different thing. As explained in the section called “The Windows
way”:

...we’ll refer to "Windows syscalls" to any function in any dynamic library available to a user mode
process.

Even though the boundaries forsyscallsor the native APIare not clearly defined, there is a simple and common
mechanism for loading any DLL and calling any function in it.

In the same spirit as the Linux server, the windows one will also be based on the techniques explained in the section
called “Fat client, thin server”. There’s one subtle difference: in the UNIX world we used an integer to identify which
syscallto invoke, in the Windows world there’s no such thing (at least not with our definition of windowssyscall).
So, our server will provide functionality for calling any function in its process address space. What does this mean?
Initially, that the server can only call functions that are part of whatever DLLs are already loaded by the process. But
wait, two special functions are already part of the server’s address space:LoadLibrary andGetProcAddress .

The LoadLibrary function maps the specified executable module into the address space of the
calling process.

(...)

15

TheGetProcAddress function retrieves the address of an exported function or variable from the
specified dynamic-link library (DLL).

—Windows Platform SDK: DLLs, Processes, and Threads

Using these two functions along with the capability of calling any function in the server’s address space, we can fulfill
the initial goal of "calling any function on any DLL" (see Example 4).

Example 4. Pseudocode for a simple Windows server

channel = set_up_communication()
channel.send(ESP)

channel.send(address of LoadLibrary)

channel.send(address of GetProcAddress)
while channel.has_data() do

request = channel.read()
copy request in stack
pop ebx

call [ebx]
push eax
channel.send(stack)

The addresses ofLoadLibrary andGetProcAddress in the server’s address space are passed back to the
syscallclient upon initialization. The client can then use the generic "call any address" mechanism implemented
by the server’s main loop to call these functions and load new DLLs in memory.

The client passes the exact address of the function it wants to call inside the request. The stack is already prepared
for the call (as in Figure 6).

In this way, an equivalent server can be coded in the Windows platform. Argument marshaling on the client side is
not so trivial, since we are providing a method for calling ANY function. A generic method for "packing" any kind of
arguments (integers, pointers, structures, pointers to pointer to structures with pointers, etc) is necessary.

The real world: applications
Syscall Proxying could be used for any task related with remote execution, or with the distribution of tasks among
different systems (all goals in common with RPC). The fact is that, for generic remote execution uses, Syscall Proxying
(implemented as a non RPC server) lags behind RPC’s efficiency and interoperability. But, there’s one use in which
Syscall Proxying "Fat client, thin server" architecture wins: exploiting code injection vulnerabilities.

16

Code execution vulnerabilities are those that allow an attacker to execute arbitrary code in the target system. Typical
incarnations of code injection vulnerabilities are: buffer overflows and user-supplied format strings. Attacks for these
vulnerabilities usually come in 2 parts4 :

• Injection Vector (deployment). The portion of the attack directed at exploiting the specific vulnerability and
obtaining control of the instruction pointer (EIP / PC registers). .

• Payload (deployed).What to execute once we are in control. Not related to the bug at all.

A common piece of code used as attack payload is the "shellcode":

Shell Code:

So now that we know that we can modify the return address and the flow of execution, what program
do we want to execute? In most cases we’ll simply want the program to spawn a shell. From the
shell we can then issue other commands as we wish. But what if there is no such code in the program
we are trying to exploit? How can we place arbitrary instruction into its address space? The answer
is to place the code with are trying to execute in the buffer we are overflowing, and overwrite the
return address so it points back into the buffer.

—Aleph One,Smashing The Stack For Fun And Profit

Shell code allows the attacker to have interactive control of the target system after a successful attack.

The Privilege Escalation phase

The "Privilege Escalation" phase is a critical stage in a typical penetration test. An auditor faces this stage when access
to a target host has been obtained, usually by succesfully executing an attack. Once a single host’s security has been
compromised, either the auditor’s goals have been accomplished or they have not.

Access to this intermediate target allows for staging more effective attacks against the system by taking advantage of
existing webs of trust between hosts and a more privileged position in the target system’s network. When the auditor
uses this "vantage point" inside the target’s network, he has effectively changed his "attacker profile" from an external
attacker to an attacker with access to an internal system.

To successfully "pivot", the auditor needs to be able to use his tools (for info gathering, attack, etc) at the compromised
host. This usually involves porting the tools or exploits to a different platform and deploying them on the host,
sometimes including installing required libraries and packages and even a C compiler.

These tasks can be accomplished using a remote shell on the compromised system, although they are far from following
a formal process, and some times require a lot of effort on the auditor’s side.

4 Taken from Greg Hoglund’s,Advanced Buffer Overflow Techniques, Black Hat Briefings USA 2000.

17

Redefining the word "shellcode"

Let’s suppose that all our penetration testing tools are developed with Syscall Proxying in mind. They all use asyscall
stubfor communicating with the operating system. Now, if instead of supplying code that spawns a shell as the attack
payload, we use a "thinsyscallserver" we can see the following advantages:

• Transparent pivoting. Whenever an attack is executed succesfully, asyscallserver is deployed in the remote host.
All of the available tools can now be used in the auditor’s host but "proxying"syscallson the newly compromised
one. These tools seem to be executing on the remote system.

• "Local" privilege escalation. Attacks that obtain remote access with constraints, such as vulnerabilities in
services insidechroot jails or in services that lower the user privileges can now be further explored. Once a
syscallserver is in place, local exploits / tools can be used to leverage access to higher privileges in the host.

• No shell? Who cares!In certain scenarios even though a certain system is vulnerable, it is not possible to execute
a shell (picture achrootedservice with no root privileges and no local vulnerabilities). In this situation, deploying
a syscallserver still allows the auditor to "proxy" attacks against other systems accessible from the originally
compromised system.

Conclusions
Syscall Proxying is a powerful technique when staging attacks against code injection vulnerabilities (buffer overflows,
user supplied format strings, etc) to successfully turn the compromised host into a new attack vantage point. It can
also come handy when "shellcode" customization is needed for a certain attack (callingsetuid(0) , deactivating
signals, etc).

Syscall Proxying can be viewed as part of a framework for developing new penetration testing tools. Developing
attacks that actively use the Syscall Proxying mechanism effectively raises their value.

Acknowledgements
The term "Syscall Proxying" along with a first implementation (a RPC client-server model) was originally brought
up by Oliver Friedrichs and Tim Newsham. Later on, Gerardo Richarte and Luciano Notarfrancesco from CORE ST
refined the concept and created the first shellcode implementation for Linux.

The CORE IMPACT team worked on a generic syscall abstraction creating the ProxyCall client interface, along with
several different server implementations as shellcode for Windows, intel *BSD and SPARC Solaris. The ProxyCall
interface constitutes the basis for IMPACT’s multi-platform module framework and they are the basic building block
for IMPACT’s agents.

"Pivoting" was coined by Ivan Arce in mid 2001.

18

	Syscall Proxying - Simulating remote execution
	Abstract
	General concepts
	Syscall Proxying
	A first glimpse into an implementation
	Optimizing for size
	The real world: applications
	Conclusions
	Acknowledgements

