
copyright IOActive, Inc. 2006, all rights
reserved.

Black Ops 2008:
It’s The End Of The Cache

As We Know It
Or: “64K Should Be Good Enough For

Anyone”

Black Hat Japan Keynote Edition

Dan Kaminsky
Director of Penetration Testing

IOActive, Inc.

What Just Happened
•  There was a really big bug that hit

DNS
•  Industry responded pretty

awesomely
–  Microsoft
–  ISC
–  Cisco
–  Nominum

•  Security community assisted –
stayed quiet while people patched
(for the most part)

–  First finder found it in ~2 days
–  The idea that a bug can’t be

reverse engineered is
officially discredited

•  I tried
•  Hundreds of millions of users

were protected
–  From what?

Intro to DNS
•  System on Internet which maps names (that

humans understand) to numbers/ “IP
Addresses” (that the Internet can deal with)
– Just like 411 information, or the White Pages
– Numbers change so frequently on the Net, that

it’s easier to just keep looking them up
– Almost everything on the Internet depends on

DNS returning the right number for the right
request
• More than you’d think

– Foreshadowing!

DNS is distributed
•  Three possible answers to any question

–  “Here’s your answer”
–  “Go away”
–  “I don’t know, ask that guy over there”

•  This is delegation. You start with a request, and then get
bounced around all over the place.

•  13 root servers: “www.foo.com? I don’t know, go ask the
com server, it’s at 1.2.3.4”

•  Com server: “www.foo.com? I don’t know, go ask the
foo.com server, it’s at 2.3.4.5”

•  Foo.com server: “www.foo.com? Yeah, that’s at 3.4.5.6.”
•  Dealing with “ask that guy” (“Delegation”) a lot of work, so DNS

infrastructure divided into Servers (that run around) and Clients, or
“Stub Resolvers”, that either do or don’t get an answer
–  BIND = Name Server
–  Your Desktop = Stub Resolver

What about bad guys?
•  If everything depends on receiving the right number for the

right name, wouldn’t a bad guy want his number returned
instead?
–  Yup

•  So when the name server asks ns1.foo.com for
www.foo.com, couldn’t the bad guy reply first, with his own
number?
–  Yup

•  What’s supposed to prevent this?
–  Transaction ID – “random” number between 0 and

65535. The real name server knows the number,
because it was contained in the request. The bad guy
doesn’t know – at best, he can guess

The Guessing Game
•  Good guy – the real name server – has a 65,536 to 1 advantage

over the bad guy
–  Those are “long” odds for the bad guy
–  Those are ridiculously short odds by 2008 standards

•  Most web session IDs in 2008 are 2^112 times more secure
– Too bad they leak, Mike Perry 

•  When the good guy gets his reply in – “wins the race” – he can say
how long until the next “race”, via something called the TTL, or
“Time To Live”
–  1 minute
–  1 hour
–  1 day
–  This is how long a given number is “valid” for a particular name.

•  1 day * 65,536 races / 2 = 84.5 years for 50% chance
–  Good luck on that.

And thus, Forgery Resilience
•  Document being assembled by Bert Hubert, author of PowerDNS

–  Was soon to be an Internet RFC
•  Basic concept: Long TTL = High Security, Low TTL = Low Security

–  65,535 minutes / 2 = 22 days for 50% chance
•  The basic concept is wrong, very very wrong

–  Quote from my Black Hat 2007 talk: “TTL’s are not a security
feature”

–  The concept implies its opposite, i.e. that the bug I found must
exist, because there’s no way something not intended to be a
security feature would ever stand up to attack

•  So Bert delayed his RFC while we fixed the bug
•  However, I had no idea this was under development when I found

the flaw
–  So what’s the bug?

•  There are three issues – first two were kind of known, the
last is what’s new

First: If it’s a race, between who can
reply with the correct TXID first, the
bad guy has the starter pistol

•  Bad guy can force the name server to go run to
the good guy and look something up
–  It takes time to get the real request (with

random number) to the good guy
–  It takes more time to get the real response back

from the good guy
–  It takes no time for the bad guy to immediately

follow up a request with a fake response
• Might have the wrong random number, but

it’ll definitely arrive first

Second, who said the bad guy can
only reply once

•  Winner of the race is the first person to show up with the
correct random number

•  Nowhere does it say the bad guy can’t try lots of random
numbers
–  He has time – he doesn’t need to wait for anything to

reach him, because nothing ever will
•  If the bad guy can reply 100 times before the good guy

returns, that 65536 to 1 advantage drops to 655 to 1.
–  Alas…still long odds. And when he loses, he has to wait

the TTL. That could be 655 days – almost 2 years!
–  Or maybe not.

Finally, the bad guy doesn’t actually
need to wait to try again.

•  If the bad guy asks the name server to look up www.foo.com ten
times, there will only be one race with the good guy
–  The first race will be lost (most likely), and then the other nine

will be suppressed by the TTL
•  No new races on this name for one more day! Here, use

the answer from a while ago
•  So, can we race on other names?

•  If the bad guy asks the name server to look up 1.foo.com,
2.foo.com, 3.foo.com, and so on, for ten names, there will be 10
races with the good guy
–  TTL only stops repeated races for the same name!

•  Eventually, the bad guy will guess the right TXID before the good
guy shows up with it
–  And now…the bad guy is the proud spoofer of … 83.foo.com
–  So? He didn’t want to poison 83.foo.com. He wanted

www.foo.com

Bait and Switch
•  Is it possible for a bad guy, who has won the race for

83.foo.com, to end up stealing www.foo.com as well?
–  He has three possible replies that can be associated with

correctly guessed TXID
–  1) “Here’s your answer for 83.foo.com – it’s 6.6.6.6”
–  2) “I don’t know the answer for 83.foo.com.”
–  3) “83.foo.com? I don’t know, go ask the www.foo.com

server, it’s at 6.6.6.6”
•  This has to work – it’s just another delegation

– 13 root servers: “83.foo.com? I don’t know, go
ask the com server, it’s at 1.2.3.4”

– Com server: “83.foo.com? I don’t know, go ask
the foo.com server, it’s at 2.3.4.5”

– Foo.com server: “83.foo.com? I don’t know, go
ask the www.foo.com server, it’s at 6.6.6.6”

Enter The DNSRake
•  Named after a common method for lockpicking
•  1) Send a query to a nameserver, for $RANDOM.foo.com

–  The bad guy has the starter pistol
•  2) Send 200 fake replies to that nameserver, with TXID

0-200
–  The bad guy can reply multiple times

•  3) Send replies containing nameserver redirections to
www.foo.com
–  $RANDOMwww.foo.com IN NS www.foo.com

www.foo.com IN A 6.6.6.6
–  If this works, it works
–  If it fails, return to step 1

What’s it look like?
•  1 0.000000 1.2.3.4-> 66.240.226.139 DNS Standard query

ANY 2465786792ask-dan-at-foo-com.foo.com
•  2 0.000669 1.2.3.4-> 66.240.226.139 DNS Standard

query response NS ask-dan-at-foo-com.foo.com A 6.6.6.6
•  3 0.001008 1.2.3.4-> 66.240.226.139 DNS Standard

query response NS ask-dan-at-foo-com.foo.com A 6.6.6.6
•  4 0.001304 1.2.3.4-> 66.240.226.139 DNS Standard

query response NS ask-dan-at-foo-com.foo.com A 6.6.6.6
–  5-201 are like 4
–  202 repeats back to 1

Running the attack…
•  dnsrake 66.240.226.139 1.2.3.4 ask-dan-at-foo-com.foo.com

63752 6.6.6.6 200
–  1) IP of my name server, mail.doxpara.com (BIND9, but

it'll work against anyone)
–  2) IP of ns*.foo.com

•  Repeat command for each ns*
–  3) Name I'd like to pollute
–  4) Fixed source port of my server, leaked by having it

look up something off one of my own domains
–  5) IP I want to force people to use
–  6) Ratio of random requests to spoofed responses

Validating the attack
•  # dig @mail.doxpara.com

ask-dan-at-foo-com.foo.com
; <<>> DiG 9.2.5 <<>> @mail.doxpara.com
ask-dan-at-foo-com.foo.com
; (1 server found)
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status:
NOERROR, id: 59212;; flags: qr rd ra; QUERY: 1,
ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 5
;; QUESTION SECTION:
;ask-dan-at-foo-com.foo.com. IN A
;; ANSWER SECTION:
ask-dan-at-foo-com.foo.com. 86279 IN A 6.6.6.6

Extending The Attacks
•  So that works against pretty much everything in wide

deployment
–  BIND8/9
–  MSDNS
–  Nominum (with some tweaks)
–  Doesn’t work against DJBDNS, PowerDNS, MaraDNS

•  Most commonly offered defense: “Our DNS servers don’t
accept queries from the outside world. They must be safe!”
–  Can someone ask them to look up www.doxpara.com,

will they return 157.22.245.20?
–  If so, don’t be so sure

On Bailiwicks
•  1.foo.com is able to return a reply for www.foo.com for a reason

–  “In bailiwick”
–  The root servers can return any record
–  The com servers can return any record…for com
–  The foo.com servers can return any record for foo.com
–  It wasn’t always this way, but then Eugene Kashpureff wanted

his own TLD (com, net, etc)
•  He just added additional records in every reply for foo.com,

declaring his own TLD existed
•  Everyone accepted it

–  So the bailiwick system was invented to prevent foo.com from
declaring anything about com, or some other new TLD

–  (This was 1997, the last time we had a bug this bad.)
•  2002, Vagner Sacramento’s Birthday Attacks, couldn’t

override cache
•  2007, Amit Klein’s TXID prediction, couldn’t override cache

Out Of Bailiwick Referrals, or How To
Attack Name Servers Behind
Firewalls

•  DNS doesn’t stop working when you get a referral into another
bailiwick
–  If foo.com says “Ask that guy over there, here’s his address”,

and that guy is bar.com, the name server goes back to the root
and asks: “Heh, I hear I need to look up something from
bar.com, but I can’t trust the guy who told me to go there.
Where’s bar.com?”

•  This means any lookup can spawn any other arbitrary lookup, on
demand
–  1. Force a lookup to 1.badguy.com
–  2. Reply with a referral (NS or CNAME) to 1.foo.com

•  This immediately causes a request to be sent to the
foo.com name server

–  3. Follow the reply with an immediate stream of fake replies
from the foo.com name server

•  There are many many ways to do #1

The Many Starter Pistols Of Mr. Bad
Guy

•  Web Browsers will look up what the bad guy wants
–  Any link, any image, any ad, anything can cause a DNS

lookup
–  No Javascript required, though h0h0h0 it helps

•  Mail Servers will look up what the bad guy wants
–  On first greeting: HELO
–  On first learning who they’re talking to: MAIL FROM
–  On SPAM check

•  Get worried now.
–  When trying to deliver a bounce
–  When trying to deliver a newsletter (Lyris, ahem, plz

patch)
–  When trying to deliver an actual response from an actual

employee

GetHostByName() Considered
Harmful

•  Web log resolution
–  Reverse DNS – given a connection from 6.6.6.6, PTR lookup to

www.badguy.com
–  Return a CNAME (alias) with a 0 TTL, to anyone else’s name
–  Each record will now repeatedly look up the attacker controlled

name, even though the target aliased into has a longer lifespan
•  “Web Bugs” in documents

–  File formats that “call home” to their authors upon reading
–  They’re not just about privacy violation anymore

•  Lots and lots of things in Web 2.0
–  URL attachments
–  Keep getting more worried

Takeaway #1: Protocols Cannot Be
Understood In Isolation

•  Theory: If a name server only resolves names for
trusted hosts, it will be safe.

•  Reality: “Trusted hosts” resolve names for
untrusted hosts all the time, from other protocols

•  It is not protocols that are under attack, but
systems. If you are not aware of how all the
protocols in your systems interact, you will
miss vulnerabilities that are obvious to an
attacker.

GetHostByAddr() ain’t doing too well
either

•  IDS/IPS
–  Scan a large network, especially with a lame attack, and something

will automatically try to figure out who you are
–  When they try to figure out who you are, they will do a Reverse

DNS lookup on your address, to look up your name
–  Attacker can control the address-to-name mapping

•  Attacker can return a CNAME in response to an address-to-
name request

–  So:
•  IDS sees a Slammer attack from 6.6.6.6.
•  IDS resolves 6.6.6.6 back to a name
•  Attacker returns a CNAME to 1.foo.com, TTL=0
•  While IDS DNS server tries to look up 1.foo.com, Attacker

replies with false replies for 1.foo.com
•  If he wins, great. If not, go send another Slammer attack 

–  Technically, you don’t even need to scan with your own IP – you
know, Slammer from any IP may cause a DNS lookup for that IP.

Takeaway #2: Everything You Do
Can Be Used Against You

•  There is a cost to every action you take, in
response to an attacker

•  You are effectively granting the attacker special
control over some subset of your network
– Every response you make is another degree of

freedom for an attacker
– This can be a worthwhile tradeoff, but always

recognize this as a tradeoff!

Another Stunt: Roy Arends’ Trick

•  The Microsoft nameserver, when it sent a query to
the outside world, would accept queries back on
that particular socket
– So, you answer a question with a question
– Roy found this, mentioned it to the dev, it was

fixed in an unrelated codepath and the fix was
absorbed with the overall update

– Nice find, Roy!

Note: People still firewall with
router ACLs

•  The “right” way to firewall: Keep track of outbound requests,
only accept legitimate responses
–  This requires expensive gear if you want to protect high-

traffic servers, because you have to keep track of lots of
state

•  The “wrong” way to firewall: Statelessly pattern match IP
packets, reject those that come from the “wrong addresses”
–  Much easier to do this, especially if there is asymmetric

routing anywhere
–  Free (already in whatever routers are providing network

access)
•  We’ve been saying this for six or seven years!

Alas…
•  The wrong way to firewall actually works pretty well
•  Router ACL firewalls are usually vulnerable to someone

spoofing their source IP
–  Yes, it’s sometimes possible to pay attention to which

interface a packet comes in on, but not always
•  But most interesting services are hosted via TCP, which is

relatively spoof-resistant
–  SEQ#/ACK# prevent blind spoofing (well, now they

do)

Why DNS is particularly vulnerable
to bad Router ACLs

•  DNS is special
–  Hosted via UDP – pure request/response
–  Recurses – a request can spawn another request,

meaning you don’t care where the response goes
because you saw a request

•  So, if you have a nameserver that doesn’t want to respond to
a DNS attack, because it’s only doing lookups for a particular
IP range…you can spoof the range
–  Usually just spoof a neighbor, far enough away to be on

a different subnet, but close enough to be in the same
organization

•  Note: This works against all rules on DNS servers
themselves (allow-recursion in BIND, etc)
–  No per-interface data!

Takeaway #3: If It’s Stupid And It
Scales, It Isn’t Stupid

•  A lot of things are being done, “wrong”, because
they actually work
– People can nod their head all day at solutions

that are supposed to be right, but if the
“technically secure” way barely scales, while
the “hideously insecure” alternate Just Works,
it’s the latter you’re going to find in the field

•  To secure the network, you must secure the actual
network, not a theoretical infinite-resource RFC-
compliant spherical cow 
– So how did we fix this particular bug?

The “Fix”, As Per DJB: Source Port
Randomization

•  Before: 65536 to 1 odds
•  After: Between 163,840,000 to 1 and

2,147,483,648 to 1 odds
•  This is an improvement

– That’s a lot of traffic to go unnoticed, and
undefended by secondary measures
• Not necessarily too much

•  So why not go with something “perfect”?

This is not a simple attack.
•  One reason there were so many questions about exactly what went

wrong, is because there were so many variants
–  Probably a good 15 ways to run this attack
–  Family 1: Pure TTL Bypasses

•  Override glue w/ NS record (the “attack”)
•  Override glue w/ CNAME
•  Override glue w/ DNAME
•  Override glue w/ extra in-bailiwick glue

–  Family 2: Prevent the authoritative server from populating the
cache

•  Ask for a nonexistent query type
•  Ask for a nonexistent query class
•  Ask for a nonexistent sibling name in bailiwick (cnn.com)
•  Just flood it with some huge amount of traffic

Florian Weimer / Brian Dowling’s new
PowerDNS attack

•  In short, PowerDNS does not respond to certain queries it
considers malformed. This in itself is not a problem, and was even
thought of as a security measure. Brian and Florian, independently I
think, have discovered that not answering a query for an invalid
DNS record within a valid domain allows for a larger spoofing
window of the valid domain. Because of the Kaminsky-discovery,
this has become bad. For a sophisticated attacker, this provides no
benefit. However, such a long window allows unsophisticated
hackers to achieve better results.
–  Bert Hubert, PowerDNS

•  Basically, recursive resolvers would pass a query to PowerDNS,
which it authoritatively would ignore. This meant that there was an
infinite window – the other guy wasn’t even in the race

And Keep Going…

•  Other methods
– Any query type whose response is not cached
– Anything that causes the cache to clear
– Abusing naturally low-TTL records

• Facebook: TTL=30
• Google Analytics: TTL=300

– Abusing IDS systems that block if they see an
attack (2005 Black Ops)

And then there’s the problem of
sibling names

•  Some people are trying to bring TTL’s back
– to assert that, if the TTL is 2000, then an
attack will not work for 2000 seconds

•  This has a fatal weakness
– 1.google.com
– 2.google.com
– 3.google.com

•  Can we ignore that fatal weakness?

On The Web, Sibling Domains Have
Power Over Real Domains

•  Toorcon Seattle: Used
malicious injected
subdomains to
compromise main site
–  Instead of injecting

subdomains via ad
servers, now we
just inject via
1.facebook.com
etc.

Takeaway #4: It’s not enough to
solve 99% of the problem, if the
last 1% is really really important

•  You don’t have to be perfect, you just have
to be good enough
– But if you don’t secure the web, you

aren’t actually good enough

So what are the ground rules?
•  1) We must secure all names, not just “most”
•  2) We must secure all authoritative name servers, not just

those that opt in
–  This eventually gets relaxed with DNSSEC, but that’s not

a solution for today
–  This does mean that we must secure the link to the root

servers, and the com servers, without actually requiring
root or com to update anything

•  If root or com is busted, then we never get routed to
our “secure” name servers

•  3) We must not alter the semantics of DNS

The “One Character” Patch
•  One character patch was proffered, which would lock the NS

record for a given name for however long the TTL was set
–  “What’s the downside to my patch ? I guess we are now

holding an authoritative server to the promise not to
change the NS record for the duration of the TTL, which
is kinda what the TTL is for in the first place ”

•  Problem: This changed the semantics of DNS
–  Before, we’d get an updated nameserver for Google.
–  Now, it will take 95 hours.
–  If you think any IT infrastructure would ever deploy

anything that threatened a 95 hour outage, you’re simply
wrong.

Takeaway #5: It is more important to
work, than to be secure.

•  You don’t have to like it.
•  Maybe it’s right, maybe it’s wrong.
•  At minimum, you’ll get vastly increased patch

delays.
•  Realistically, you’ll get vastly decreased patch

rates.
– Attacks from bad guys might happen.
– Failures in every day operation will happen.

• Any failure that might take a month to show
up is worse than a failure that can be tested
and proved non-existent immediately.

Can we do better?
•  There is indeed some demand for a fix better than

port randomization, but short of DNSSEC
–  It’s theoretically possible to receive the

hundreds of millions to billions of packets
necessary to still attack through the patch
• Most attackers don’t have GigE on the LAN,

but bandwidth is only getting higher
– DNSSEC breaks the ground rule of working

against arbitrary authoritative names
• Still interesting.

•  What can we do, that still meets the ground rules?

Comprehensive Options
•  Attack Mode

–  The name server can detect the gross imbalance
between requests sent and responses received, and
apply protections specifically to the name servers that are
under attack

–  If someone is under attack, apply “extra validation” to
names from their IP during the attack

•  0x20
–  DNS is case-ignoring but case-preserving, meaning a

name like www.google.com can be represented also as
wWw.GooGle.cOM w/ 12 bits of extra entropy

–  Only accept responses with the correct

Exception Handling
•  Alas, there are exceptions.

–  If you fail to handle the exceptions, you fail the ground
rule on changing the semantics.

•  Attack mode exceptions
–  What does it mean to apply “extra validation”?

•  Double querying usually works, but nothing actually
forces a name server to reply with the same name
twice in a row

– Akamai, Google, Facebook often won’t
•  It’s not enough to secure most names 

–  There are some possible other solutions but they’re in
progress

More Exception Handling

•  0x20 Exceptions
– Some authoritative servers aren’t case-

preserving after all
– Some names cannot be protected with 0x20

• 1.a111111111 gets only 1 bit of protection
•  Any solution beyond port randomization will

require the mixing of multiple approaches

Takeaway #6: Elegance is less
important than coverage.

•  One should be as elegant as possible, but
no more.
– If the choice is between elegance, and

supporting real-world scenarios that
customers require, elegance will lose
every single time

So, is that all?

•  No. That’s HOW to attack DNS. More
interesting question: WHY to attack DNS.

We Start With The TLDs
•  It is indeed possible to pollute com, net, org, etc.

–  Directly: com NS
–  Indirectly: A.GTLD-SERVERS.NET, B.GTLD-

SERVERS.NET., C.GTLD-SERVERS.NET…
•  When the bad guy poisons com, he gets all requests

–  Even requests he didn’t know in advance he wanted!
–  He gets to decide:

• What he’ll poison forever (response, long TTL)
• What he never wants to see again (delegation, real

NS)
• What he’ll check out for a little while (response, short

TTL)

MX Intercept: It’s Not Just For the
NSA Anymore

•  Mail is special – has its own type of record
– MX – Mail Exchange

•  Attacker who owns com, can see who’s sending
mails to who, and can pick off any he likes
– Can silently intercept, then let the mail run off to

its correct destination
• Give himself top priority, fail to fully accept a

message, then let the message fall through
to the next server

Message Pollution
•  1/3rd of attacks come from direct user action

–  Loading a document
–  Downloading and installing malware

•  Attacker can also accept a message, infect attachments with
malware, and forward it along
–  DOC -> Infected Doc
–  EXE -> Infected Exe
–  ZIP with Password containing EXE -> ZIP with Password

containing Infected EXE
•  Attacker can read 

–  Link to EXE -> Link to infected EXE
•  Attacker can either change link, or poison link in

destination

Takeaway #7: Never Forget The
Human Factor

•  Again, 1/3rd of attacks come from direct user action
–  Users are asked to escalate privilege all the time
–  Worse, attempts to prevent users from escalating

privilege lead only to users abandoning all security
measures entirely

•  Block all .PL files -> Flood of password-encrypted
ZIP files

•  Defenders cannot optimize away the users, much as they’d
like to

•  Attackers will not ignore the users, not with their 1/3 failure
rate
–  Anything that can make the success rate even higher will

be jumped on

Shouldn’t The SPAM Filter Stop This?

•  SPF should notice the wrong IP
– SPF comes from DNS
– All SPAM filtering comes from DNS
– Can actually hijack SPAM filters –

attacker ends up controlling mail
reception entirely

Not going there, but…

•  SIP ain’t looking too great either
– SRV records are easily detectable
– SIP INVITE/REGISTER messages look like

they can contain DNS names – triggering a
lookup in target networks
•  If you have an environment that explictly

uses DNS name contacts, you might even
be able to choose your intercepts

•  Thanks to Zane Lackey

Spidey Sense
•  Obviously the entire web is affected, for a client behind a

corrupted DNS server
–  Can directly poison via com corruption

•  Requires rebinding to read actual site contents
–  Can indirectly poison a single site via its subdomain

library dependencies
•  Prototype.js
•  CSS scripts

–  Can indirectly poison the entire web via google-
analytics.com, ad.doubleclick.net, sitemeter, or any other
codebase commonly loaded via an external <script src>
tag.

–  Hope you’re not downloading any executables from the
web…

•  (But SSL will save us!)

The Internet is more than the Web;
HTTP is more than the Browser

•  Welcome to the third age of hacking
–  1st age: Servers

•  FTP, Telnet, Mail, Web, Time
•  These were the things that consumed bytes from a bad guy
•  These are the things that got locked down

–  2nd Age: Browsers
•  Javascript, ActiveX, Java, Image Formats, DOMs
•  These are the things that are getting locked down

– Slowly
–  Incompletely (ActiveX Sitelock to http:// doesn’t work

too well right now)
–  3rd Age: EVERYTHING ELSE

•  Check out this desktop from an Internet Cafe

We’re no longer in
browserland anymore…

Remember Sidebar from Last Year?

This is not an exception

•  Browsers are really really good client code
– Relatively 
– They’re so much more complex than

anything we ever put on the server
– We’ve been trying to secure them for far

longer
•  What do you think happens when you fuzz

weak clients?

Ilja van Sprundel, dumb fuzzing IRC
with ircfuzz.c

•  * ircfuzz v 0.3 by Ilja van Sprundel. * so far this broke: - BitchX
(1.1-final) * - mIRC (6.16) * - xchat (2.4.1) * - kvirc (3.2.0) * - ircii
(ircii-20040820) * - eggdrop (1.6.17) * - epic-4 (2.2) * - ninja
(1.5.9pre12) * - emech (2.8.5.1) * - Virc (2.0 rc5) * - TurboIRC
(6) * - leafchat (1.761) * - iRC (0.16) * - conversation (2.14) * -
colloquy (2.0 (2D16)) * - snak (5.0.2) * - ircle (3.1.2) * - ircat
(2.0.3) * - darkbot (7f3) * - bersirc (2.2.13) * - Scrollz (1.9.5) * -
IM2 * - pirch98 * - trillian (3.1) * - microsoft comic chat (2.5) * -
icechat (5.50) * - centericq (4.20.0) * - uirc (1.3) * - weechat
(0.1.3) * - rhapsody (0.25b) * - kmyirc (0.2.9) * - bnirc (0.2.9) * -
bobot++ (2.1.8) * - kwirc (0.1.0) * - nwirc (0.7.8) * - kopete
(0.9.2)

•  Things are a little better now
–  Not much
–  You really really don’t want to be talking to a malicious IRC

server
•  Lets not even talk about netsplits

Lets not forget about the biggest,
most extensive clients out there

•  Games
–  Gaming - The Next Overlooked Security Hole

•  Ferdinand Schober,
Security Researcher

–  We're now seeing those unifying technologies the web,
and monolithic engines making their way in to these
games. Automatic updates, electronic publishing
systems, in-game advertisements, pay-for-item
MMORPG systems all of these represent structural
weaknesses that more and more people should be
exploiting. Given the expectation of today's gamers a far
as graphics, physics, and other frivolous crap, smaller
developers have to purchase someone else's engine to
get started and all of the bugs that come with it.

Who needs an exploit? Lured by
design, upgraded by design

•  Francisco Amato’s EvilGrade
–  Implemented modules: ------------------- - Java

plugin - Winzip - Winamp - MacOS -
OpenOffices - iTunes - Linkedin Toolbar - DAP
[Download Accelerator] - notepad++ - speedbit

– Bigger companies than I thought. But
otherwise, yeah, we knew this was going to be
a problem

– Actually warned LinkedIn in advance

Autoupgrade Is Hard
•  To succeed, your update package must be:

–  Signed.
–  Signed by you.
–  Signed by you, using the right EKU (Extended Key Usage)
–  Signed from an unrevoked signature
–  Be the same product
–  Be a new version

•  Or you could use SSL, but ZOMG PERFORMANCE
•  Translation: Must be Windows Update, or you’re hosed 

–  Maybe Adobe. MAYBE.
–  See also: “Secure Software Updates: Disappointments and

New Challenges”, Bellissimo, Burgess, Fu

Takeaway #8: Code that’s never been
attacked, is usually remarkably fragile.

•  Web browsers got hit, web browsers got fixed
•  Web servers got hit, web servers got fixed
•  Exploitation appears to cause an increase in code

quality, directly in the code that’s attacked, and
indirectly in all peer software

•  Most code has never been attacked, therefore
most code is pretty fragile
– Depends on having never been exposed to

attack
– But exposure changes over time.

But what of SSL?

•  Theoretically, DNS poisoning shouldn’t matter,
because everything important is protected by SSL.
– Nothing big should ever touch HTTP!

•  This is the first big test of SSL
•  Has it stood up because of the strength of its

crypto?
•  Or has it stood up because nobody had the

opportunity to play MiTM?

SSL Problem #1: It’s Not
Particularly Widely Deployed

•  Pretty much only financial sites support 100% SSL operation
–  Takeaway #3: If it’s stupid and it scales, it isn’t stupid
–  We’re really really good at making the web scale without

SSL
•  SSL needs work to make it scale better!
•  How did we end up without virtual hosting

support, by default, mandatory, in TLS?
•  We won’t bank without SSL, but we will download

executables in the clear
–  This of course makes no sense.
–  Takeaway #7: Never forget the human factor.

SSL Problem #2: Users Ignore
Errors

•  Again, Takeaway #7: Never
forget the human factor

•  41% of users admit to ignoring
“security alert” messages
–  Source: Consumer

Reports
•  Actual data: When a major

online bank in New Zealand
had its cert expire, 99.5% of
users still entered their
credentials.
–  DNS-based attacker has a

remarkably high success
rate

SSL Problem #3: Even when we will
use SSL, we arrive at it insecurely

•  http://www.paypal.com redirects to https://
www.paypal.com

•  http://www.bankofamerica.com redirects to https://
www.bankofamerica.com

•  http://www.e-commerce-site.com redirects to
https://checkout.e-commerce-site.com

•  If you’re an attacker, and you control the HTTP
version of a site, where will you send users?
– Probably not to the version of the site that

cryptographically authenticates.

SSL Problem #4: Most sites leak
credentials otherwise acquired via SSL.

•  Mike Perry’s research with Cookie Monster
•  Summary: HTTP is stateless, even when run over SSL. But

nobody wants to type in their password on every query, so we get a
“cookie” that represents our identity.
–  If the cookie is marked “secure”, it will only be transmitted to

SSL (read: not DNS poisoned) endpoints of sites
–  Are enough sites protected?

•  No
•  http://fscked.org/blog/incomplete-list-alleged-vulnerable-

sites
– Scary, scary list

•  Note, even sites with secure cookies can have those cookies
overriden by an attacker, since HTTP can write HTTPS secure
cookies (!)
–  Adam Barth / Collin Jackson’s research

SSL Problem #5: Many Non-Browsers
Don’t Actually Validate Certs!

•  Again, Takeaway #8: Code that’s never been attacked, is
usually remarkably fragile.
–  The Internet is more than just the Web – but SSL is

generic!
–  This was supposed to be a strength
–  But it turns out that many of SSL’s strengths are only

enforced via previously exploited web browsers.
•  327,467 SSL certificates were scanned

–  140,355 SSL certificates were self-signed – 42%!
–  That’s not even saying the other 58% are signed by a

trusted CA!
•  So who’s using these self-signed certs?

Mike Zusman on SSL VPN’s
•  The only purpose of an SSL VPN is to prevent bad guys from

getting access to network traffic. Do they? Mike:
–  “Yes, you will see many SSL VPN servers on the Internet

serving invalid certificates.

Cert validation varies product to product. One particular
SSL VPN client I've worked with is hardcoded to only accept
valid, trusted certs. If it is not signed by a trusted CA, the
cert needs to be added to the local trust store. Another one
allows you to turn validation on and off.

None of the clients I've seen do any caching/white listing
(like an SSH client). This way once you have the SSL VPN
client installed, you can connect to ANY server you need to
seamlessly. Great for re-purposing attacks.”

•  In other news, go read Mike Zusman’s notes on SSL VPN’s. He
is doing some very important work.

SSL Problem #6: The Certificates
Are Still Signed With MD5

•  It’s 2008, and we still base the security of SSL on
an algorithm that was:
– Academically discredited in 1996 by Hans

Dobbertin
– Federally discredited in 1998 by NIST
– Publicly collided in 2005 by Xiaoyun Wang

•  And still, everyone’s going to be so surprised and
unprepared when it finally breaks completely.

SSL Problem #7: Revocation Is A Myth,
Especially For The Debian Case

•  The browsers barely check for certificate
revocation
– Takeaway #5: It is more important to work,

than to be secure.
– Revocation “works”, but is still too slow.

•  Non-browsers outside of .GOV environments don’t
even pretend to check revocation.

The Debian Problem is particularly
worrisome

•  Nobody has an efficient solution for Luciano Bello’s
Debian bug, where a few badly generated keys are
spread across some huge number of Certificate
Authority signed names
– Bloom filters across all the vulnerable moduli are

still too large 
•  Anyone who thought to collect all the certificates that

were badly generated, can impersonate all those sites,
and will be able to for approximately the next five
years.

Takeaway #9: There is no bug so good,
that another bug cannot make it better.

•  People want there to be some sort of competition
between bugs, as if attackers could only choose
one so they better choose wisely.
– The reality is that attackers can blend whatever

they like, and have
• Nimda, from 2001, combined email, share

pollution, IIS exploitation, and browser bugs!
•  So many of the attacks described thus far – from

Zusman’s to Perry’s, from Wang’s to Bello’s -- are
made far more problematic by having a real world
MiTM vector.

You’d think that would be obvious,
but…

•  What is this “OR” you speak of?
•  What, I can only use one bug at a time?
•  DNS provides the Man-In-The-Middle that breaks Package Managers!
•  It’s not a “bug competition” not because of some ethical limitation, but

because it blinds you to actual vulnerabilities when bugs are combined

SSL Problem #8: Certificate
Acquisition Itself Depends On DNS

•  Why do you think SSL certificates are valuable?
– Anyone can buy one
– Anyone can generate bits
– What prevents anyone in the audience from

getting a cert for www.microsoft.com?
•  CA’s sell bits

– But there’s some meaning applied to those bits
– an assertion that an identity has been
validated, at least to some level

– How are identities validated by most CA’s?

Say Hello To My Little Friend
•  Domain Validation: How SSL Certificate Authorities use DNS

to determine whether you get a certificate
–  Look up the domain in WHOIS

•  DNS address lookup
–  Send an email to the mail address on file

•  DNS MX record lookup
–  Visit the web page and look for a file

•  DNS A record lookup
•  Guess how secure that is in the face of a DNS attack?

Hello My Little Friend
•  Actually, we’re doing OK

– For some reason, every CA scrambled during
the month of July to make sure that they were
patched
• Thank you, Tom Albertson, Kelvin Yiu, Zot

O’Connor of Microsoft 
• Thank you Verisign, Comodo, Digicert,

Trustwave, everyone who kept this matter
secret

•  www.SSLShopper.com figured it out…but they
think the answer is to buy EV certs.
Unfortunately…

And what about EV?
•  EV is a display mechanism, not a code security mechanism

–  Extended Validation. The browser’s scripting policy does
not distinguish between HTTPS connections that use an
Extended Validation (EV) certificates from those that use
non-EV certificates. For example, PayPal serves https://
www.paypal.com/ using an EV certificate, but a principal
who has a non-EV certificate for www.paypal.com can
inject script into the PayPal login page without disrupting
the browser’s Extended Validation security indicators;
see Figure 2.

•  “Beware of Finer Grained Origins”, Collin Jackson,
Adam Barth

•  So, no. EV does nothing in the face of also-extant Domain-
Validated Certificate

What Else Is Interesting?

•  CA’s have web interfaces to manage
previously issues certs…
– …web interfaces you have to sign into.

When I said The Web was
broken, I wasn’t talking
about just its clients.

(confused?)

Welcome to the Skeleton
Key.

It’s By Design.

Forgot My Password Modes
•  This is a generic lost credential technique

–  Generally, a fully automated way to get into an account
without the password

•  Near-universally deployed
–  Three modes seen in the field

•  1) Password Leak: Just mails you your password.
Somewhat uncommon.

•  2) Reset Password: Mails you a link that resets your
password. Guarantees detection of attack. Most
common.

•  3) Reset w/ Additional Protections: Mails you a link,
and makes you jump through hoops. Somewhat
common on high-value sites.

–  #1 and #2 are trivial to pop (though #2 has side effects).

Attacking Forgot My Password
systems

•  It’s just an email, meaning, it forces a lookup to an attacker
controlled name
–  What did we need, to pollute com?
–  This means any lookup can spawn any other arbitrary lookup,

on demand
•  1. Force a lookup to 1.badguy.com
•  2. Reply with a referral (NS or CNAME) to 1.foo.com
•  3. Follow the reply with an immediate stream of fake replies

from the foo.com name server
•  Not complicated. After poisoning, request password for arbitrary

account
–  It will do an MX lookup
–  You will see the MX lookup
–  Game over 

News
•  Fixed (beyond just the CA’s)

–  Google
–  Live
–  Yahoo
–  Paypal
–  eBay
–  MySpace
–  Facebook
–  LinkedIn
–  Bebo
–  Craigslist
–  LiveJournal
–  Hi5
–  Citrix (GoToMyPC)

•  This is very, very
cool. Thank you
to all the
companies who
worked with me
on this!
– Ow my cell

phone bill 

Reality Check

•  No way we got everyone

•  But we did ok.

Would OpenID have helped?

How did Stikis find the “friend”?
Hint: DNS

What of OpenID with HTTPS?

•  Should be fine…
– Alas: Ben Laurie found that a couple major

OpenID providers were using HTTPS…
• But with a Debian misgenerated certificate
• DNS + OpenID + Debian NRNG = WIN

•  *glorious*

Takeaway #10: Flawed Authentication
Is The Unifying Theme Of 2008’s
Major Bugs

•  Specifically:
– Weaknesses in authentication and

encryption, some which have been known to
at least some degree for quite some time
and many of which are sourced in the core
design of the system, continue to pose a
threat to the Internet infrastructure at large,
both by corrupting routing, and making
those corrupted routes problematic.

Going Down The Line
•  My DNS: Failure to correctly authenticate DNS reply.
•  Perry’s Cookie Monster: Failure to deliver authentication blob to

secure endpoint.
•  Zusman’s SSL-VPN’s: Failure to authenticate foreign endpoint
•  Bello’s NRNG: Failure to synthesize unique authentication

material.
•  Laurie’s OpenID: Failure to synthesize unique authentication

material on a centralized authentication platform
•  Amato’s Evilgrade: Failure to authenticate update packages
•  University of Arizona’s Package Manager flaws: MORE failure

to authenticate update packages
•  Pilosof’s BGP: Failure to authenticate the data supplied by an

authenticated BGP peer
•  …and what about Hardakar’s SNMPv3 bug, probably the single

coolest auth bug in years?

On Hardakar’s SNMPv3 Flaw
•  SNMPv3 – Simple Network Management Protocol, Version 3

–  Useful mechanism for monitoring and maintaining infrastructure
•  SNMPv3 uses a fairly standard challenge-response authentication

system
–  Server provides the challenge
–  Client provides a response, via HMAC
–  All good so far…

•  Client can declare how many bytes his response needs to get
correct.
–  Client can declare he only needs to get 1 byte right.
–  There’s only 256 possibilities…

•  So yes -- yet another auth bug – but this one chains with DNS in
interesting ways
–  Lots of infrastructure is behind firewalls – can’t break SNMPv3

without getting past them.
–  Can DNS help?

Let Us Discuss The Inconvenient
Matter Of Reverse DNS

•  You know, we also own in-addr.arpa
–  This is the space that, when you look up 1.2.3.4, returns

“a.b.c.d.com”
•  What can you do with this?

–  Obvious: Spoof log entries in Apache
•  Apache Double-Reverse Lookup Log Entry Spoofing

Vulnerability
– Martin Kraemer, 2002

•  Apache will log the name that reverse DNS provides, if that
name resolves back to the same IP

– Well, we control both forward and reverse DNS, so heh
•  May even be able to fake numeric TLDs…

–  6.6.6.6 IN PTR 1.2.3.4
–  1.2.3.4 IN A 6.6.6.6
–  Possibly (probably) stopped by client side APIs

»  Never assume an API is every smarter than it had to
be to ship

Lets Party Like It’s 2007
•  Black Ops 2007: Possible to use browser plugins to connect to internal

resources behind firewalls
–  You browse to my site, I get TCP, maybe UDP, to your site

•  Flash
•  Java

–  Flash secured this with crossdomain.xml, per IP address
–  Java secured this with…reverse DNS

•  Which we own.
•  I can has 1.0.0.10.in-addr.arpa!
•  Full TCP and UDP from any browser in your org, to any host

behind the firewall, if you don’t patch DNS
–  And have Java
–  Bonus: IPsec!

•  Note: You don’t get 127.0.0.1, because 1.0.0.127.in-addr.arpa
has an authoritative record on most servers.

– MAY get per-interface bind though…
•  To get 127.0.0.1 out of Java, see John Heasman’s talk

And thus, SNMPv3

•  If you can spoof arbitrary UDP packets,
behind the firewall, you can spoof arbitrary
SNMPv3 packets too
– Have you patched against the SNMPv3

bug?
•  Takeaway #9: There is no bug so good,

that another bug cannot make it better 

Spreading The Phun
•  If you have arbitrary socket access…
•  …then you can spew packets on Port 53…
•  …then you can scan for more name servers

behind the corporate firewall…
•  …and you can poison Internet DNS.

– Maybe.
– Can be hard to poison certain kinds of internal

DNS deployments
•  If internal is all-authoritative, there’s no

records to poison

When Internal DNS Goes Bad
•  So much bad behavior behind the firewall, all directed via

DNS!
–  Telnet
–  SNMP – queries and traps
–  Auth servers (RADIUS/TACACS)
–  Backup/Restore
–  SOA architectures

•  Resolve back to names, DNS determines addresses
–  Backend Databases

Even if internal DNS is hard to hit,
external dependencies are fair game

•  So many connections between companies
– DNS controls how the servers find each other
– The link might be secured

•  If SSL is used – is anyone actually checking
the certificates?

– Are you sure?
•  If IPsec is used – is it tied to destination

subnet?
– DNS changes destination subnet,

therefore DNS can change IPsec rules.

The ultimate external dependencies

•  Payment processing / Offsite backup
–  Now is not a good time to have an insecure link to your offsite

stores
–  I’m not saying anyone does. But if there’s a scintilla of a chance,

patch patch patch
•  SNMP against the Internet

–  If you are using SNMP to log into machines on the Internet, you’re
probably using DNS to find them

•  Interesting interactions with SNMPv3 bugs?
•  Search Engine Population

–  There’s Search Engine Optimization, and there’s this
•  CDN population – CDN’s are populated by:

–  Providing the CDN a URL
•  Uses DNS, pulls data

–  Treating the CDN as a proxy
•  Uses DNS, pulls data

–  It would be really, really bad if Akamai etc. DNS went bad

Summary
•  DNS servers had a core bug, that allows arbitrary cache poisoning

–  The bug works even when the host is behind a firewall
–  There are enough variants of the bug that we needed a stopgap before

working on something more complete
•  Industry rallied pretty ridiculously to do something about this, with hundreds of

milllions protected
•  DNS clients are at risk, in certain circumstances
•  We are entering (or, perhaps, holding back a little longer) a third age of security

research, where all networked apps are “fair game”
–  Autoupdate in particular is a mess, broken by design (except for Microsoft)

•  SSL is not the panacea it would seem to be
–  In fact, SSL certs are themselves dependent on DNS

•  DNS bugs ended up creating something of a “skeleton key” across almost all
major websites, despite independent implementations

•  Internal networks are not at all safe, both from the effects of Java, and from the
fact that internal routing could be influenced by external activity

–  The whole concept of the fully internal network may be broken – there are
just so many business relationships – and, between IPsec not triggering and
SSL not being cert-validated, these relationships may not be secure

–  We’re not even populating CDN’s securely!

Meta-Summary
•  Takeaway #1: Protocols Cannot Be Understood In Isolation
•  Takeaway #2: Everything You Do Can Be Used Against You
•  Takeaway #3: If It’s Stupid And It Scales, It Isn’t Stupid
•  Takeaway #4: It’s not enough to solve 99% of the problem, if the

last 1% is really really important
•  Takeaway #5: It is more important to work, than to be secure.
•  Takeaway #6: Elegance is less important than coverage.
•  Takeaway #7: Never Forget The Human Factor
•  Takeaway #8: Code that’s never been attacked, is usually

remarkably fragile.
•  Takeaway #9: There is no bug so good, that another bug cannot

make it better.
•  Takeaway #10: Flawed Authentication Is The Unifying Theme Of

2008’s Major Bugs.

Lessons Learned
•  We have to get better at fixing infrastructure.

–  We got lucky with this bug.
–  The next one will not be so “smooth”
–  Disaster recovery planning needs to include how to handle

the discovery in a flaw in any mission critical code anywhere
•  Servicability needs to start becoming a more important

purchasing metric.
•  Servicability is, ultimately, the measure of software flaw

survivability.
•  Cooperation across competitors, and researchers, can indeed

be very productive
–  120M users from just one infrastructure provider

•  A lot of people just do not realize the degree to which security
best practices have been ignored for years
–  DNS should not have been capable of this much damage.
–  It was. Why?

Bottom Line

•  We are doing a lot of things insecurely.
– Even with DNS fixed, there are other

scenarios in which unencrypted IP traffic
is lost to an attacker

– That attacker is capable of way more
than he should be.
• More than I’ve even said here.

