INPUT ATTACK TREES

Death of a thousand leaves

BlackHat Japan 2006
Heikki Kortti, Codenomicon

INPUT ATTACK TREES How are vulnerabilities discovered?

Sheer luck

Source code inspection
Reverse engineering
Observing program behaviour

Trying malicious inputs

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Why luck does not work

Great if you have it, takes too long for
everyone else

Does not detect bugs by the dozen

Does not provide details on where the fault is
and how likely it is to occur elsewhere

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Inspection is slow and error-prone

Software is complex
Manual inspection takes ages

Machine-assisted inspection finds false
positives

Source code may not be available

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6 n
2006.

Reverse engineering reveals only
INPUT ATTACK TREES part of the picture

Great if you're Halvar Flake, but too hard for
everyone else

Simply a “smoked-glass” view

Y

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Observation is tedious

Trying to assess security by observing how
the software functions is like trying to fix a
cuckoo clock with an axe

Observation is very slow

Creating suitable stimuli to which the software
should react is also very slow

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Don’t be smart, be evil

Trying out malicious inputs works well
Complete coverage = infinite time

Time can be reduced by generating inputs
automatically (fuzzing)

Fuzzers can be

simple (non-structured) or
intelligent (structured)

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Ways to do input testing

By hand

Create a program that tries the inputs for you

Create a program that creates programs that
try the inputs for you

*e

T

infinity

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES The problem with simple fuzzing

Fuzzing with random data is not enough for
complex protocols like TLS or BGP

A structural model of the protocol is needed

“Intelligent fuzzing” or “robustness testing”

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES What makes a viable fuzzing model?

At a minimum, a fuzzing model has to capture
the following:

Field-level structures (8-bit integer, date field)
Packet-level structures (header+payload)
Context structures (packet sequences)

Dynamic behaviour (runtime calculations, crypto
functions, nonces, timestamps, lengths)

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Aiding the design of fuzzing models

Use existing models

ABNF
ASN.1
XML

Roll your own

What makes a good model for designing
effective attacks?

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Attack trees in general

Well-known and proven methodology for
observing and assessing the security of any
system

Provides a good overall view of the security
of a system

Risks and possible attacks can be viewed at
a glance

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Sample attack tree

Gain access to
data in system

Break
physical security

Break
virtual security

.

J L View data Exploit J
Steal disk P Crack trusted

with Tempest vulnerability computer
Access system Obtain
. console I . password '

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Applying attack trees for input testing

Input tree: all possible inputs for the defined
interface

Attack tree: a catalogue of all possible attacks
against a system

Input attack tree: an input tree augmented
with attacks against all input branches

Charts all of the possible attacks against an
interface

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6 n

2006.

INPUT ATTACK TREES Benefits for attackers

Easy to see which attacks have been tried
Easy to see which attacks have not been tried
Easy to see the vulnerable areas

Easy to feed into a fuzzer generator for
creating tests automatically

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Benefits for defenders

What attacks do we need to protect against?

What areas of the interface definition are too
complex to get right?

Have we tested all of our input handling code?

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Benefits for designers

Easy to see which features are likely to be
misimplemented

Easy to see what branches will be attacked
and when

Similar branches can be compared with
existing vulnerabillities

Great feedback for the next release of the
interface definition

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Attack subtrees

Create an attack once, reuse infinitely

Attacks against a particular datatype can be
used again and again

Examples: date fields, integers, ASCII and
UTF-8 strings, C-style format strings, URIs,
IPv4 and IPv6 addresses, regexes

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Attaching attack subtrees

Length field

Try negative Try zero Trylarge

. length I. Iength I. length I

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Length field attack subtree (detailed)

16-bit MSB
/ length field \

I 0x00 0x00 I
I 0x00 0x01 I _—

I 0x00 0xOf I _— 0x80 0x00
I 0x00 0x10 I _— 0x40 0x00

0x00 0x20
I x00 0x40 I

Oxff Oxff

Oxff Oxfe

(o

0x20 0x00

0x10 0x00

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Using the input attack tree

Looking at the attack tree already provides
good insights

If tests are created automatically, you may
want to create more test cases around the
more problematic areas

More test cases = more problems found

More test cases = more time for testing

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Ways to focus the attacks

Assign weights to branches
Complex areas should be heavier

An automated test generator can steer itself
based on branch or leaf weights

A light branch may merit only a few basic tests

A very heavy branch needs really thorough
coverage

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Testing an implementation

Model the messages and message
sequences

Create the potential malicious inputs for all
datatypes, structures and messages

Attach attack subtrees to the main trunk
Steer test case selection through weights
Execute tests and observe the results

The design and creation of a fuzzing
framework and fuzzer have been omitted as
trivial

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Example: DNS input tree

| Test client I | Testserver I | Zone transfer I

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Testing a DNS server

| Testserver \

= -

Use Use

||| UbpP III

||| TCP III

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Testing a server over UDP

Issue query

= -

Wait for Don’t wait
response for response

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

Expanding an input tree to an input
INPUT ATTACK TREES attack tree

| Issue query \

= -

Valid Invalid

. query '

“

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

Sample input attack tree for simple
INPUT ATTACK TREES DNS queries

Issue invalid query

Break lower level (UDP/TCP, IP, Ethernet)
Break DNS TCP length field (TCP only)
Break header

Break question section

Break answer section

Break authority section

Break additional section

Send response as query

Combine

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Break lower level

Surprisingly useful for some protocols

Think complex, layered abominations like
SOAP, RPC, Corba, HTTP

Practical example: breaking an UDP
datagram breaks a SIP implementation

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Break DNS TCP length

All length fields are delicious
Use zero length

Use too large lengths

Use too small lengths

Use negative lengths

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Break header

Bit-walk through all of the fields in the DNS
header

Interesting branches:

Try wrong and non-existing query types
Flip the AA, TC, RD, RA fields

Break the question/answer/authority/additional
counts

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Break question section

Break QNAME

Break QTYPE

Break QCLASS

Add more than one question
Omit question section

Underflow

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Break answer/authority/additional

sections

Add one

Break all possible RRs and their substructures

Add more than one

Underflow

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Using weights

Answer section can contain any number of
RRs (resource records)

RRs have complex substructures

A server must parse the answer section also
In queries

Weigh down the branch with answer tests

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Weighing down the answer tests

Add answer

“

Break RRs

—t

g

Break Break Break Break Break

type . class I TTL RDATA

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

—

RDATA substructures are even more
INPUT ATTACK TREES interesting

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Send response as query

Out-of-context messages in a sequence can
sometimes be very effective

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Combine any previous attacks

Break question count and question section
Break length and use underflow
Use wrong length and illegal characters

Break answer section and send answer as
query

Break length and use invalid offsets

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

Read the specification like the devil
INPUT ATTACK TREES reads the Bible

Make labels longer than 63 octets

Make label sequences longer than 255 octets
Use a zero-length label in a non-root position
Try asking for AXFR over UDP

Use illegal characters

Try non-specified types

Try reserved values

Try invalid combinations (source address =
destination address, etc.)

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES
CONCLUSIONS

INPUT ATTACK TREES Conclusions

By viewing an interface as an input tree, we
can easily see what are its weak points

Attacks can be attached to the tree easily
Tests can be created by traversing the tree
Tests can target complex areas more heavily
Can be used for attack and defense

Can be applied to testing any interface

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES Inspiration

Schneier, Bruce: Attack Trees

http://www.schneier.com/paper-attacktrees-ddj-ft.html

Moore, Andrew; Ellison, Robert; Linger, Richard: Attack Modeling for
Information and Survivability
http://www.cert.org/archive/pdf/01tn001.pdf

Convery, Sean; Cook, David; Franz, Matthew: An Attack Tree for the
Border Gateway Protocol (obsoleted Internet draft)

http://tools.ietf.org/wg/rpsec/draft-ietf-rpsec-bgpattack/draft-ietf-rpsec-bgpattack-00.txt

Hares, Susan: BGP Attack Trees: Real World Examples
http://www.nanog.org/mtg-0306/pdf/hares.pdf

Heikki Kortti, Codenomicon, Black Hat Japan, Oct 5-6
2006.

INPUT ATTACK TREES
ANY QUESTIONS?

THANK YOU!

Heikki Kortti
hkortti@codenomicon.com

