
0002b510h: 3A 00 00 00 68 00 74 00 74 00 70 00 3A 00 2F 00 ; :...h.t.t.p.:./.
0002b520h: 2F 00 77 00 77 00 77 00 2E 00 77 00 61 00 79 00 ; /.w.w.w...w.a.y.
0002b530h: 6E 00 65 00 67 00 72 00 65 00 74 00 7A 00 6B 00 ; n.e.g.r.e.t.z.k.
0002b540h: 79 00 2E 00 63 00 6F 00 6D 00 2F 00 00 00 1F 00 ; y...c.o.m./.....
0002b550h: 5A 3A 0E 00 00 00 43 00 61 00 6E 00 61 00 64 00 ; Z:....C.a.n.a.d.
0002b560h: 61 00 00 00 1F 00 5C 3A 10 00 00 00 4F 00 6E 00 ; a.....\:....O.n.
0002b570h: 74 00 61 00 72 00 69 00 6F 00 00 00 1F 00 5B 3A ; t.a.r.i.o.....[:
0002b580h: 10 00 00 00 57 00 39 00 47 00 20 00 39 00 57 00 ;W.9.G. .9.W.
0002b590h: 39 00 00 00 1F 00 59 3A 14 00 00 00 42 00 72 00 ; 9.....Y:....B.r.
0002b5a0h: 61 00 6E 00 74 00 66 00 6F 00 72 00 64 00 00 00 ; a.n.t.f.o.r.d...
0002b5b0h: 1F 00 5D 3A 20 00 00 00 31 00 32 00 33 00 20 00 ; ..]: ...1.2.3. .
0002b5c0h: 4D 00 61 00 69 00 6E 00 20 00 53 00 74 00 72 00 ; M.a.i.n. .S.t.r.
0002b5d0h: 65 00 65 00 74 00 00 00 03 00 71 3A 04 00 00 00 ; e.e.t.....q:....
0002b5e0h: 00 00 10 00 03 00 55 3A 04 00 00 00 00 00 00 00 ;U:........
0002b5f0h: 1F 00 02 30 0A 00 00 00 53 00 4D 00 54 00 50 00 ; ...0....S.M.T.P.
0002b600h: 00 00 1F 00 03 30 24 00 00 00 77 00 61 00 79 00 ;0$...w.a.y.
0002b610h: 6E 00 65 00 40 00 67 00 72 00 65 00 74 00 7A 00 ; n.e.@.g.r.e.t.z.
0002b620h: 6B 00 79 00 2E 00 63 00 6F 00 6D 00 00 00 1F 10 ; k.y...c.o.m.....
0002b630h: 54 3A 01 00 00 00 0E 00 00 00 0A 00 00 00 53 00 ; T:............S.
0002b640h: 4D 00 54 00 50 00 00 00 1F 10 56 3A 01 00 00 00 ; M.T.P.....V:....

The Art of File Format Fuzzing
iDEFENSE Labs

Michael Sutton – msutton@idefense.com
Adam Greene – agreene@idefense.com

Introduction and Agenda

• Who we are
• What you can expect from the presentation
• Agenda

– Background
– File format fuzzing

1. Identifying targets
2. Creating files
3. Executing files
4. Monitoring for exceptions
5. Identifying vulnerabilities

– Tool Demos
– 0day Vulnerabilities
– Conclusion

Background – What is file format fuzzing?

• File format  Protocol
– Standardized means of communication

• Non-standard formats
– Applications should be capable of dealing with anomalies

• Input validation controls
• Exception handlers
• Error reporting

• What happens when controls aren’t in place?
– Buffer overflows
– Integer overflows
– Signedness issues
– Invalid memory references
– Infinite loops

Background – Historical vulnerabilities

• MS05-009 – Vulnerability in PNG Processing Could Allow
Remote Code Execution

• MS05-002 - Vulnerability in Cursor and Icon Format Handling
Could Allow Remote Code Execution

• MS04-041 - Vulnerability in WordPad Could Allow Code
Execution

• MS04-028 - Buffer Overrun in JPEG Processing (GDI+)
Could Allow Code Execution

• US-CERT TA04-217A – Multiple Vulnerabilities in libpng
(Affecting Mozilla, Netscape, Firefox browsers)

• CAN-2004-1153 – Format String Vulnerabilities in Adobe
Acrobat Reader

Background - MS04-041 MS Word Buffer Overflow

Background - MS04-041 MS Word Buffer Overflow

Background – What’s the risk?

• Uneducated users
– Users are less likely to be wary of launching non-executable files from

untrusted sources

• Default configurations
– Applications designed for convenience allow processing of many

untrusted files without user intervention
– Many image files will be rendered in web browsers

• Lack of layered security
– Complete network compromise can result from a single user’s trusted

actions (i.e. web browsing) using a 0day file format vulnerability

File Fuzzing – Identifying targets

• File types
– Binary

• Formatted documents (doc, rtf, pdf, etc.)
• Images (jpg, gif, png, etc.)
• Media files (mpg, wav, avi, mov, mp3, etc.)

– ASCII
• XML
• INI

• Default applications
– Registered file types

• Windows – Explorer & RegEdit
– URI handlers

• Windows - Explorer & RegEdit

File Fuzzing – Registered file types

File Fuzzing – Registered file types

File Fuzzing – URI handlers

File Fuzzing – URI handlers

File Fuzzing – Identifying targets on Linux

• Interesting Targets on Linux
– Antivirus products

• Fuzzing Linux AV engines locally can lead to a remote vulnerability
– Media Players

• RealPlayer
– Document Viewers

• Adobe Acrobat Reader
– Web Browsers

• Think image formats

File Fuzzing – Creating files

• Brute force – manipulating all bytes
– Data types

• Integers
– (Un)signed byte
– (Un)signed word
– (Un)signed dword

• ASCII
– C-style strings

» ASCII string with a terminating NULL
– XDR-style length tagged strings

» SUNRPC: ASCII string padded out to %4, 4 byte MSB length prepended
– Other common length tagged strings

» 1 byte length prepended/appended
» 2 byte length prepended/appended

File Fuzzing – Creating files

• Picking interesting values
– Integers

• Negative numbers (0xffffffff, 0x80000000, etc)
• Large numbers (0x7fffffff,0x20000000, etc)
• Small values such as 0-10 (MS04-028)
• Header values identifying the length of header/data segments

– ASCII
• Large strings / empty strings
• Strings with “inaccurate” length tags

– Long string, short tag
– Short string, long tag

• Strings with “accurate”, but long length tags (MS05-002, MS05-009, MS04-
041)

• Strings with format specifiers (CAN-2004-1153)

File Fuzzing – Creating files

• Why are these values so interesting?
– Decrementing small integers can cause them to wrap
– Multiplying, adding, and incrementing large integers can cause them to

wrap
– Inconsistent methods for determining size can lead to overflows

• Mixing up the true size of a string with the value the file has specified for it
– Using user supplied data as a format string is obviously dangerous

File Fuzzing – Creating files

• Brute force fuzzing pros/cons
– Pros

• No information about the file format is necessary
• Automation of executing applications
• Automation of detecting of exceptions

– Cons
• Difficult to identify/correct other dependent values (i.e. CRC-32 checksums)
• Less efficient than intelligent fuzzing
• Many false positives

File Fuzzing – Creating files

• Intelligent fuzzing
– Researching open file formats

• Standards groups
– ISO - http://www.iso.org/
– W3C - http://www.w3.org/

• Graphics (JPEG, PNG, SVG, etc.)
– W3C - http://www.w3.org/Graphics/

• Audio (MIDI, MP3, WAV, etc.)
– MIDI - http://www.midi.org/about-midi/specinfo.shtml

• Compressed/Archive (ZIP, TAR, RAR, etc.)
– ZIP - http://www.pkware.com/company/standards/appnote/appnote.txt

• Binary (a.out, ELF, COFF)
– Microsoft – PE & COFF

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx

File Fuzzing – Creating files

• Intelligent fuzzing (cont’d)
– Researching proprietary file formats

• Previous reverse engineering
– Your good friend Google

• File diffing
– Headers vs. data
– Header name/value pairs

– Resources for multiple file format specs
• http://www.wotsit.org/
• http://www.sonicspot.com/guide/fileformatlist.html

File Fuzzing – Creating files

• Intelligent fuzzing pros/cons
– Pros

• Can fuzz every field of the file properly
• Can target “interesting” fields
• Can ensure that lengths across blocks remain valid
• Can ensure that CRC-32 values and other arbitrary

calculations across blocks stay valid
– Cons

• The fuzz is only as complete as your file definition (fileSPIKE
script)

• You may need many different fileSPIKE scripts for one format
to test out of order fields, files with different capabilities, etc

• Constructing a thorough set of scripts can be time consuming

File Fuzzing – Executing files

• Executing/processing files
– Continual execution

• Scripting
• GUI/console apps

– Timed termination
• Windows

– taskkill /PID [PID]

– Windows API - i.e. killProcess()
• *nix

– kill pid

– UNIX API – i.e. kill()

File Fuzzing – Executing files

• Browser Based File processing
– To test file processing code in browsers and ActiveX controls (images,

media files, etc.)
– Continual execution

• META REFRESH cgi
• Same method used in mangleme by lcamtuf

– Timed termination
• Not required

File Fuzzing – Monitoring for exceptions

• Identifying exception handlers
– Function hooking
– Debugging library/API

• Linux ptrace
• Standard output/error
• Error logs

– Microsoft event viewer
– Application logs

• Application crash
– Unhandled exceptions

• Return value

File Fuzzing – Identifying exploitable vulns

• Stack overflows
– Microsoft Interactive Training Buffer Overflow

• Heap overflows
– GNU Binutils readelf

• Integer overflows
– Microsoft JPEG/GDI+ (MS04-028)

• Format Strings
– Adobe Acrobat Reader (CAN-2004-1153)

Automation - Tools

Linux – SPIKEfile and notSPIKEfile

Windows - fileFUZZ

Automation - Tools

Linux – SPIKEfile

• Simple adaptation of Immunity, Inc SPIKE
– Modified to target files
– Flexible execution and exception monitoring using ptrace
– Multiple processes
– CRC-32 over block support using
– Takes .spk scripts as input

*Used to discover RealPlayer RealText Format String bug

Automation - Tools

Linux – notSPIKEfile

• Simple baseline fuzzer
– Requires a valid file to work from
– Flexible execution and exception monitoring using ptrace
– Multiple Processes

*Used to discover GNU Binutils readelf heap based integer overflow

Automation - Tools

Windows - FileFuzz

• Simple baseline fuzzer
– Requires a valid file to work from
– Flexible execution and exception monitoring
– Targets files with predefined handlers
– Can handle ASCII and binary files
– Has fancy GUI

*Used to discover Microsoft Windows Interactive Training heap based
buffer overflow (MS05-031)

0day Vulnerabilities

• Microsoft Interactive Training Buffer Overflow
– CBO file parsing stack overflow

• RealPlayer RealText Format String
– .rp file parsing format string

• Readelf Heap Overflow
– GNU Binutils readelf heap based integer overflow

Conclusion

• Future trends and predictions
– Attack

• Further discovery tool automation
• Increase in rate of vulnerability discovery

– Defend
• More file types blocked at network perimeter
• File scanning utilities implement parsing functionality to identify non-

standard file formats
• File scanning utilities implement parsing functionality to identify malicious

content (i.e. shellcode)

Questions?

