
Black Ops of
TCP/IP 2005

Dan Kaminsky

DoxPara Research

http://www.doxpara.com

Introduction
(Who am I?)

 Fifth year speaking at Black Hat
 Subjects: SSH, TCP/IP, DNS
 Code: Paketto Keiretsu, OzymanDNS

 Several books
 Hack Proofing your Network
 Stealing The Network: How To Own The Box
 Aggressive Network Self-Defense

 Formerly of Cisco and Avaya

What Are We Here To Do Today?

 MD5

 IP Fragmentation

 Firewall / IPS Fingerprinting

 DNS Poisoning (and other tricks)

 Scanning The Internet

 Visualizing That Scan

 Watch TV

A Tale Of Two Pages:
www.doxpara.com/t1.html and t2.html

They Look Different…But Are They?
 $ curl -s http://www.doxpara.com/t1.html | md5sum.exe

c0f3adb824590b40944614268e627421 *-
 $ curl -s http://www.doxpara.com/t2.html | md5sum.exe

c0f3adb824590b40944614268e627421 *-
 MD5 Sees the two web pages as possessing identical content!

 SHA-1 not fooled
 $ curl -s http://www.doxpara.com/t1.html | sha1sum.exe

9a2b6e9de9c2343a26084ab64e6d902aab6e2b1d *-
 $ curl -s http://www.doxpara.com/t2.html | sha1sum.exe
 d2da4f8bfeb1d06ca1a821b99bd614fa45116790 *-

 What is happening here?

How We Got Here
 1) We have an unsafe hash

 Definition of a safe hash: “Computationally infeasible to find two
files with the same hash”

 Dr. Xiaoyun Wang made two files with the same hash.
 2) Hashes degrade very poorly under collision conditions

 If two things collide (like the Wang hashes), then anything can
be added to both hashes and colision will be maintained

 If md5(x) == md5(y), md5(x+q) == md5(y+q) for all values q
 This is because of the iterative design of cryptographic hashes –

the information about past differences is lost.
 3) The Web is very flexible

 You can code to it (Javascript)
 It accepts garbage (Javascript…and broken HTML)

What It Looks Like
 Start with the either vec1 or vec2, the two files from Wang…

Ñ1†�ÅæîÄi=_�˜¯ù \/Êµ‡�F~ «@�X>¸û �‰ U_4� …
 Continue with javascript encoded arrays of both files…

<script language=javascript type="text/javascript">
boeing_enc="\
%3C%21DOCTYPE%20html%20PUBLIC%20%22%2D%2F…”

 Finish with code that decodes the arrays and chooses which to display
based on the contents at the beginning of the file.
alldata = document.getElementsByTagName("HTML")[0].innerHTML;
isVec1 = data.indexOf("%C2%B5%07%12F");
if(isVec1<0) isVec1=0; if(isVec1){
 document.getElementsByTagName("BODY")[0].innerHTML="";

document.write(vec1message); } if(!isVec1){
document.getElementsByTagName("BODY")[0].innerHTML="";
document.write(vec2message); }

How You Can Do It
 Tool Release: “Confoo”

 $ perl confoo.pl
confoo 1.0: Web Conflation Attack Using Colliding MD5
Vectors and Javascript
Author: Dan Kaminsky(dan@doxpara.com)
Example: ./confoo www.lockheedmartin.com
active.boeing.com/sitemap.cfm

 Outputs t1.html and t2.html, as on the site

 For more information, see research paper, “MD5
to be considered harmful someday”
 Stop using MD5 

Introducing IP Fragmentation
 "Fragmentation…an interesting early architectural error that

shows how much experimentation was going on while IP was
being designed." -- Paul Vixie

 Fragmentation: If a packet is too large for the underlying link
layer, it may be split by any router (unless behavior is
explicitly disabled) into multiple fragments

 Why a problem? IP is supposed to be “stateless”
 Fire a packet and forget about it
 Receive a packet and be done with it
 Fragmentation keeps the former but destroys reception
 Systems need to keep fragments around, wait for future

fragments, reassemble...what if fragments overlap?

IP Fragmentation: Some History

 Major mechanism for evading IDS
 “Insertion, Evasion, and Denial of Service:

Eluding Network Intrusion Detection.” –
Newsham and Ptacek, 1998

 Fragrouter, Dug Song, 1999

Remaining Adventures in Reassembly:
Adventures In Temporality
 IP has been mostly “picked clean”…is there

anything left?
 Timing Attacks

 Successful against cryptosystems all the time
 Are there any timers in IP?

 The IP Fragment Reassembly Timer
 Maximum amount of time a fragment will be held,

unassembled, before it “expires” and is flushed
 Differs from OS to OS – yes, it’s a fingerprint

 Ofir Arkin noted IP fragment scanning, but not fingerprinting
 Can we evade with this?

It’s Skew
 What if the IDS has a different concept of

expiration time than the host?
 If IDS expires first: Just send fragments too slow for the

IDS but fast enough for the target
 This definitely happens

 But what if host expires first?
 Linux/FreeBSD timer: 30s

 Snort frag2 timer: 60s

 Is it possible to still evade an IDS when its timer lasts
longer than that of your target’s?

Protocol Inversion
 Problem: IDS keeps fragments for too long

 Solution: Make IDS drop fragments

 Strategy: Fragments leave the reassembly
queue when either they aren’t reassembled…or
when they are.

 Is it possible to give the IDS something to reassemble
against – without causing the target host to undergo a
similar reassembly?

 Of course – use a timing attack!

The Temporal IP Attack
 Prepare:

 Nice request, malicious request, and a shared header between the two
 Header: HTTP 1/1 GET

 IDS Payload: index.html
 Host Payload:

msadc/..%255c../..%255c../..%255c../winnt/system32/cmd.exe
?/c+dir+c:%5c

 1) Send IDS payload
 2) Wait. Host will drop. IDS won’t.
 3) Send shared header. IDS sees the two fragments it needs to

reassemble a packet – and gets a legitimate request. Host dropped the
IDS payload, so it just stores the header.

 4) Send host payload. Host sees the two fragments it needs to
reassemble a packet – and gets attacked. IDS dropped the shared header,
so it just stores the host payload (and never reassembles it).

 + =Art

Time

HOST VIEW

IDS VIEW

Expires

IDS Payload
Assembled

Host Payload
Assembled

1. Feed IDS 2. Clear Host 3. Flush IDS 4. Flush Host

IDS
Payload

 + =

What about Checksums?
 A problem – we can certainly find a common

header between two payloads, but won’t the
checksums be off?

 A solution – fix the checksums later
 Strategy from Jeremy Bentham’s TCP/IP Lean

 AKA “How to use the Internet without enough RAM to store
a single packet” and “How to debug Ethernet with an O-
Scope”

 Put a fixed checksum in your header
 Add an offset in your payload to make the data agree

with the header checksum
 Works because there are ignored fields in payloads

Polymorphic Exploits

 We can backport this polymorphic attack to
all the original mechanisms used by
Ptacek/Newsham/Song
 Send a single series of packets that, based on

the platform they arrive at, reassemble into the
correct attack for that platform

 Half credit for this goes to Jason Larsen, who
thought of this with me last year

Hitting the Brakes
 Right about now, several IDS vendors – and

especially IPS vendors – are noticing flaws
 In order to implement this attack, overlapping fragments

must be transmitted
 Some systems cache used IP ID’s even after they’ve

already reassembled data
 IPS’s can use this overlap to block entire sessions

 An IPS is an IDS that can censor the incoming packet
stream

 They’re right. Against certain architectures, the
temporal attack doesn’t work as described

Recovering the attack?
 All devices have a limited capacity for storing state data

 Like, for example, which IPID’s have already been used
 We could flood the device with fragments, both with identical

source/dest IPs and different, so as to exhaust this cache
 Though this would alarm as well, in the IPS case it would overrun

the censor
 There is actually potential for combining this attack with the

temporal attack, as some platforms will refuse to accept new
fragments until n old fragments expire

 And only we know when they’ll expire 

 Overall, certain IPS architectures – even if they weren’t
aware of timing attacks in their design phase – are likely to
still defend against these attacks
 Especially once they notice hosts unexpectedly acknowledging

Changing Course
 Some IPS’s will block this. What now?

 What are IPS’s?
 Firewalls w/ dynamic rulesets / censoring IDS
 These dynamic rulesets can trigger on increasingly obscure faults

across the entire communication stack
 What they’ll trigger against differs from product to product, version

to version
 Security products in general are under increased scrutiny

 Combine complex state machines with a need for maximum
efficiency

 Over 20 advisories regarding vulnerabilities in security products
 Blocking sends information

 Is it possible to use this leaked information to fingerprint security
architectures?

Hopcount Desync (SLIDE FROM
2003 – FW fingerprinting is not new)
 root@arachnadox:~# scanrand -b1k -e

local.doxpara.com:80,21,443,465,139,8000,31337

 UP: 64.81.64.164:80 [11] 0.477s

 DOWN: 64.81.64.164:21 [12] 0.478s

 UP: 64.81.64.164:443 [11] 0.478s
 DOWN: 64.81.64.164:465 [12] 0.478s
 DOWN: 64.81.64.164:139 [22] 0.488s

What’s going on:

The host is genuinely 11 or 12 hops away. All of the up ports reflect that, but
only a few of the downed ports. The rest are showing double the remote
distance. This is due to the a PIX firewall interspersed between myself and the
target. It’s (too) quickly reflecting the SYN I sent to it right back to me as a
RST|ACK, without resetting values like the TTL. Thus, the same source value
decrements twice across the network – 22 = 11*2 – and we can detect the filter.

Firewall/IPS Fingerprinting:
Other products
 Tipping Point: Does not allow out-of-order TCP segments – everything

must arrive on the edge of a window
 Checkpoint: Does not allow (by default) DNS packets that declare EDNS0

(DNSSec!) support
 L3/L4 Mechanisms

 Invalid Checksums (at IP, TCP, UDP, ICMP)
 Invalid Options (at IP and TCP, and actually UDP too)
 Out of order fragments/segments (at IP and TCP)
 Invalid ICMP type, code

 Application Layer Mechanisms
 Invalid HTTP request types, or TRACE/WebDAV
 SQL Injection in TCP payloads (WITHOUT the necessary line

terminator)
 Invalid DNS

 Using Schiffman’s “Firewalk” methodology, each query leaks the location of
the blockage – and I can always walk to the host _before_ the FW

IPv6 Reassembly A Coming
Fingerprint

 What encapsulations will a given IDS/IPS
support?
 There are so many variations

 They chain – IPv6 in IPv4 in IPv6 in IPv4, etc.

 Nowhere near all could possibly be parsed by
every client

 Thus many different possible signatures – blocks
4in6 exploits, blocks 6in4in6 exploits, blocks
Toredo exploits, etc.

A Problem for IDS/IPS people
 There are an astonishing number of ways to

bridge IPv4 and IPv6.
 Here’s another: Name servers hosted on both IPv4 and

IPv6 can resolve names against either protocol, using
addresses delivered via either protocol.

 These ways all chain – Teredo in IPv4 in IPv6 in
IpV4 over DNS, etc.

 Not all chains can (or should) work for every client
 How can an IDS/IPS have any hope of predicting what its

clients will perceive?

Three approaches to IPv6
Encapsulation Management
 1) Enforce only a few encapsulations

 So you drop traffic from a few hosts
 This strategy makes the Internet fall apart

 2) Scrub (unpack and repack) all encapsulations down to
one mode you make decisions on
 I very much like packet scrubbing, but there’s not been a

scalable scrubber deployed yet
 3) Ask.

 Upon seeing a new encapsulation style, sythesize a new, safe
packet – an ICMP Ping, in particular – and submit it to a target
host with the same encapsulation pattern

 Will return both whether a packet can be encapsulated like that and
the precise policy used to resolve fragmentation conflicts

However, IPS’s should not do this.
 “After sufficient amounts of invalid traffic,

we just ban you from our network.
Fingerprint THIS!”
 I’ve heard this a lot lately. Some of you know

why.
 Many automatic shunning systems deployed
 Not a good idea.

 To understand why automatic shunning is bad –
just dig.

It Might Be Bad To Shun These Guys.

 ; <<>> DiG 9.3.0rc2 <<>>
 . 511355 IN NS F.ROOT-SERVERS.NET.
 . 511355 IN NS G.ROOT-SERVERS.NET.
 . 511355 IN NS H.ROOT-SERVERS.NET.
 . 511355 IN NS I.ROOT-SERVERS.NET.

 ;; ADDITIONAL SECTION:
 A.ROOT-SERVERS.NET. 172766 IN A 198.41.0.4
 B.ROOT-SERVERS.NET. 604777 IN A 192.228.79.201
 C.ROOT-SERVERS.NET. 604782 IN A 192.33.4.12
 D.ROOT-SERVERS.NET. 604786 IN A 128.8.10.90
 E.ROOT-SERVERS.NET. 604791 IN A 192.203.230.10
 F.ROOT-SERVERS.NET. 604797 IN A 192.5.5.241
 J.ROOT-SERVERS.NET. 172766 IN A 192.58.128.30

Something More Elegant
 Spoofing malicious traffic from the root servers –

ugly, yes, kills a net connection, sure, but:
 Too large scale

 Been whispered about for years

 But there are other name servers…
 I’ve been investigating DNS poisoning

 Is it possible, given networks that implement automatic
network shunning, to poison name server caches and
thus selectively hijack network traffic?

The Name Game
 The general theme: Block communication

between two name servers
 Bad: Targeted Denial of Service – Customers from a

particular network are unable to contact a particular
bank/merchant/email provider

 Worse: Targeted DNS Poisoning – Being unable to
communicate, a window is left open for an extended
period of time for a flood of fake replies to eventually hit
on the correct answer

 Can either block server at client net, or client at
server net

Double Sided
 Spoof malicious traffic from the client network to

the server network
 Client will have outstanding requests to the server – if

they’re using a fixed DNS port*, only 32K requests on
average to find their TXID’s

 How do we make them look up a given network on
demand?

 Recursion – Just ask them to look up www.merchant.com
 PTR NS Forwarding – Claim that, to look up your IP, it’s

necessary to ask the nameserver at www.merchant.com.
Then use your IP to go to their web server

Double Density
 Spoof malicious traffic from the server network to the client

network
 Client can make requests, but server responses are blocked
 But wait? Aren’t our own forged responses blocked too?

 Funny thing about DNS…about 15% of servers reply from a
different IP address than you talked to in the first place!

 With a lack of interface affinity in servers, comes an ignorance of
incoming IP address on clients

 This is BTW why UDP NAT2NAT works
 So while the legitimate server responds in vain, our attacks can

come in from anywhere

 Moral of the story: Automated network shunning is a
very bad idea. Do not give the world access to your
firewall tables.

But I LIKE Autoshun
 Is it possible to mitigate the worst aspects of

automatic network blocking?
 Make sure you can still send mail to autoblocked networks

(and actually do)
 Implies – make sure you can still do DNS lookups against

the network, and get the replies
 If possible, make the block stateful – outbound

connections from your network should override
 Even “outbound sessions override and ‘hold down’

autoshuns” is a significant improvement
 Be very careful about blocking access to any service

which otherwise may be phished / impersonated.
 Remember, your own name server is a dependency

But…but…

 What about complaint emails?
 Funny thing happens when you block

nameservers…you lose the ability to retrieve MX
records, so you stop being able to send
complaint mail

 I’m sure at least some autoshunners have taken
this into account :)

 Now what would I know about complaints?

Poppa’s Got A New Pair Of Shoes
 Prolexic – who I worked with on the Opte internet mapping

project – has given me a very high bandwidth connection to
work with
 They’re a third-party spam filter for IP – your data is BGP’d to

them, they forward you a filtered stream.
 I actually can’t generate packets faster than this network can

route 
 Been actively probing the Internet DNS Infrastructure

 Partnering with Mike Schiffman of Cisco Critical Infrastructure
Assurance Group and Sebastian Krahmer at the University of
Potsdam (and maybe you – send me a proposal?)

 Extremely large scale scans – every IP, every name server,
everywhere

Always Bet On Black
 100% legitimate packets – this isn’t a global pen

test, this is an investigation in to the largest
cooperative caching architecture on the Internet –
one that is getting poisoned again

 Asking: How is this architecture laid out? How
prevalent is DNSSec support? Where do we
need to invest resources in protection? And what
is going on with DNS poisoning?
 We can’t manage what we can’t measure. This is an

attempt to measure.

 Not the first to do a large scale network scan

DON’T TRY THIS AT HOME

 “Where’d my colo go?” 
 You will get complaints

 You will get calls from scary sounding places

 As well you should. This is behavior that
normally precedes an attack.

 So why am I doing it? Because the attackers
should not have better intel than we do.

Open And Honest
 Reverse DNS

 deluvian root # nslookup 209.200.133.226
Non-authoritative answer:
226.133.200.209.in-addr.arpa name = infrastructure-
audit-1.see-port-80.doxpara.com.

 Web info
 Technical details

 Explanation of motivation

 Links to papers, news articles

 My phone #

ARIN Updated
 NetRange: 209.200.133.224 -
209.200.133.255 CIDR:
209.200.133.224/27 NetName:
DANKAMINSKY-SECURITY-RESEARCH
NetHandle: NET-209-200-133-224-1
Parent: NET-209-200-128-0-1 NetType:
Reassigned Comment: This is a
security research project, please
send all Comment: abuse and alert
requests to dan@doxpara.com. RegDate:
2005-07-08 Updated: 2005-07-08

And even with…

 Still, large scale analysis does not go
unnoticed, uninvestigated, and
uncomplained about
 After further explanation, almost all

administrators have been courteous
 “Thank you for the information. See you in

Vegas.”

Some Early Results
 Priority 1: Google was taken out by an exploit that hit MSDNS

systems forwarding to BIND4/8. Find all of these.
 To begin with – need to identify all name servers on the Internet

 Requirement: Legitimate lookup that worked on every normal
name server, but would not be of a type to require recursion

 Disabling the recursion desired bit doesn’t always work,
apparently

 Lookup: 1.0.0.127.in-addr.arpa PTR
 Expected reply: localhost.
 Actual replies: Rather more complicated.

 Could also have sent traffic on TCP/53 but not all servers
accept

 Now can set about finding which ones are related to which other
ones

Interrelationship Mapping[0]

 Slow: “Ask Bob to look up the stock price
for an obscure stock. If you ask Sally, and
she already knows, she talked to Bob”
 Recursively request that a server acquire – and

send you – a given name. Then, non-recursively
ask everyone else if they’ve heard of that name.
If they have – they share a cache with the first
server.

Interrelationship Mapping[1]
 Faster: “Ask everyone to look up the latest stock price. If someone

comes back with the stock price as it was 13 minutes ago, they
talked to the guy you asked 13 minutes ago.”
 Recursively request the same information of everyone. You will

either:
 A) Get back the data – with a full TTL
 B) Get back the data with the TTL decremented by some

degree of seconds.
 DNS records come with an expiration date

 If the returned TTL = original minus 83 seconds, then this node
is connected to whoever you were scanning 83 seconds ago.

 If you were scanning more than one host at a time – repeat your
scan in a different order, and the next time you’ll have a different
value

 A bit buggy – some hosts cache records, but do not decrement

Interrelationship Mapping[2]
 Fastest: “Ask Bob to research something in your library. If John

shows up to do the research – you know Bob asks John to do such
things.”
 1. Create a wildcard domain

 *.maddns.net
 2. Insert a cookie into the name you would scan for, describing

the address you are talking to
 1-2-3-4.maddns.net

 When queries arrive, looking for a record that match 1-2-3-
4.maddns.net, compare the name in the DNS query with the IP
address the request is coming from. Interrelationship
established!

 select cookieip,ipsrc from recursivequery group
by cookieip,ipsrc;

 SQL emits a list of interrelated hosts

What was found?
 2.5M verified name servers

 Up to nine million possible, but 2.5M have been / remain responsive
 All 2.5M have been run through Roy Arend’s FPDNS

 NOTE: FPDNS gives more data than CH TXT (explicit version requesting),
and…er…doesn’t set off nearly as many alarms.

 At least 230K forwarding to Bind8, as specifically forbidden as per
ISC BIND documentation – almost 10% of the sampled DNS!

 At least 13K Windows name servers still forwarding to Bind8!
 At least 53K “OTHER”
 BIND8->BIND8 forwardings must be further analyzed, to determine

multihomed vs. a true forwarding relationship
 This can be found by – can data enter one cache, without entering the other?

If so, one is higher in a hierarchy than another
 Is BIND9->BIND8 forwarding problematic? 18.7K instances.

I Wonder…

 Normal exploit methodology: “What is this
thing vulnerable to?”

 Reverse exploit methodology: “Is anyone
vulnerable to this?”
 Now, again, I can’t pen-test – so 100% legitimate

packet requirement must be made

 But…is anyone doing something wrong with the
100% legit data I’m sending them?

Elegant Problem…
 Potential Fault In Recursion

 In recursion, clients ask their local server a question, and
their local server goes out and asks that same question
elsewhere.

 If someone were to…say…just copy the incoming request,
and forward it elsewhere, the DNS transaction ID would
stay the same, and the client, having set this TXID, could
spoof the response and thus pollute the cache for anyone
else who tried to use that server.

 No known systems do this…but does anyone?

…Brute Force Solution
 1. Send recursive queries out to servers w/ fixed (or

calculatable transaction id)
 The question name for the queries? Ourselves, basically

 2. When servers come back to service those queries, check
their transaction ID
 Did they use ours? 1/65K chance of coincidence

 What happened?
 ~110 hosts replied
 ADSL modem from major vendor, and…uh…

 An old version of the name server I was using at the time

 TODO: Static TXID, vaguely predictable TXID/Source Port

*Speaking of Source Ports
 Something very interesting was discovered during

this research

 UDP ports are not asymmetrical like TCP ports –
there’s simply open and shut, not “client and
server”.
 This means you can scan for UDP client ports, such

as used by name servers!
 “But name servers are supposed to deviate their source

ports randomly!”

 Lets check the data.

Just The Facts
 echo "select sport,count(sport) as num from forward_query

group by sport order by num;" | mysql dns | tail –n 10

32770 54617
1036 55059
50098 64200
5353 68854
50477 77099
1024 176922
32769 195008
1027 234082
53 462345
32768 823579

 It’s good to have real data. Note that:
 One can scan for default ports
 The presence of 32769 means we can actually measure the usage

level of many servers, as they assign their ports one by one

Anything else?
 Probable evidence of DNS poisoning I cannot talk about yet.
 Many, many hosts out there do reverse lookups, not

expecting the target they’re investigating to be aware of this
 38K name servers doing lookups

 Some who are invisible to direct querying

 Exponential curve of requests – most only have 1, maximum
has 14,221

 Cable modem DNS

 Warning: Possible to backwards map from scanned IP to
elicited PTR request by shuffling scan orders and looking for
correlation between a particular IP being contacted and the PTR
request returning!

As long as we’re validating the
infrastructure…

 DNS w/o DNSSec requires the
infrastructure not to corrupt its data
 This is a good reason to revive large scale high

speed tracerouting

 Is it possible to collect enough information
to map all Internet routes in a matter of
hours?

Rapid Infrastructure Mapping
HOWTO [0]
 1) Collect a list of subnets that have at least one host with one

service. This will be the destination canary.
 2) Setting a “max_ttl” value to your average distance to a host,

transmit canary connection attempts w/ Scanrand from 1 to max_ttl.
 Run the scan such that the last byte of the IP address is

maintained
 This minimizes bandwidth load per subnet

 Scanrand places the original TTL in the ipid – can be recovered
 scanrand2 -b2m -f hostlist+:53 –l1-$MAX_TTL –t0
–H –M1 –T infra_map > results.sql; cat
results.sql | mysql dns

 2mbit, select port 53 for each IP, scan up to maximum TTL,
disable timeouts, output SQL to table name “infra_map”.
Then cat the file into mysql.

Rapid Infrastructure Mapping
HOWTO[1]
 3) After importing the data into MySQL, reorder it back into normal-

seeming traceroutes as such:
select trace_hop,trace_mid,trace_dst from newscan
group by trace_dst,trace_mid order by
trace_dst,trace_hop

1 209.200.133.225 12.10.41.178
2 67.17.168.1 12.10.41.178
3 67.17.68.33 12.10.41.178
4 208.50.13.254 12.10.41.178
5 12.123.9.86 12.10.41.178
6 12.122.10.53 12.10.41.178
7 12.122.9.129 12.10.41.178
8 12.122.10.2 12.10.41.178
9 12.123.4.153 12.10.41.178
10 12.125.165.250 12.10.41.178

Rapid Infrastructure Mapping
HOWTO[2]
 4) For each line in the mass traceroute, if the

destination of the previous line is the same as this
one, and if the hop number for the last line is one
less than the previous line, then there can be
assumed a link between the last midpoint and the
present midpoint.
 1 a bar

2 b bar
3 c bar
5 d bar
1 a car

 Links can be assumed between a and b, and b and c.

Rapid Infrastructure Mapping
HOWTO[3]
 OPTIONAL:

 1) For each IP where a hop was found at max_ttl, scan
that IP up to a new max_ttl

 2) Scanrand allows scans to come from different points in
the network, but arrive at the same collector. Use this to
collect routes invisible from your own position.

 3) Schedule “gap filling” scans for packets dropped
during an initial run

 4) Attempt to source route packets, though so many
networks block them

 5) Graph the results!
 DEMOS

Rapid Infrastructure Mapping: IPv6?

 I need a high speed lab on the IPv6 backbone 

 Saturating the IP space gets replaced with
discovering pockets of populated addresses

 Traceroute, DNS most obvious legitimate
mechanisms for discovering populated space

 Some IP options – source routing, potentially
spoofs from multicast may help

It’s Alive!!!
 Opte.Org dataset in realtime is neat – but how do

we make it useful?
 C++ now, Python will be workable very soon

 The plan is to import all data, streaming and
otherwise, into a large scale graph manipulation
framework.
 Boost Graph Library allows very large scale operations w/

very generic data types
 Dan Gregor, one of the authors of BGL, has specifically

helped with this work

Why use graphs?
 There’s more than just pretty pictures
 Ultimately, services that do not adapt to broken networks are isolated onto

very broken networks
 Traditional adaptation mechanisms completely fail, since we’re only

sending a few packets to every host
 What we need are canaries – they are sent, a few a second, to each

hop we’re scanning through. When the canaries die, we know we’ve
overloaded that network.

 Graphs work perfectly for this
 For every destination, we know which routers will get a traffic spike

from us communicating with it
 For every router we are canary-monitoring, we know which

destinations we are now closer to
 We would thus be able to model outbound transmissions as a

high pressure water system, against which taps may be made
 Demo of present progress level (visualizations only)

Why Pictures
 A third of our brain is visual, and more of our

decision making is visually modulated than we’d
like to think.

 As proof – last year, I showed off audio over DNS.
This year, video over DNS 
 Large window, rate based codec. Much faster than TCP

at same loss rates, but … written in Perl, all client side
logic

 Can we please start monitoring DNS on our networks?

 Demo

Done

 That’s all folks 

 Any questions?

