
Nematodes – Beneficial 
Worms

V 1.0
Original: September 2005

Dave Aitel
dave@immunitysec.com



Who am I?
● NSA->@stake->Immunity
● Currently Researcher: Immunity, Inc.

– Consulting (product assessments)
– Immunity CANVAS
– Immunity Partner's Program
– Training
– Ongoing research in exploits and software 

vulnerabilities



What is a worm?

● Any self propelled replicating program
● Commonly used for nefarious purposes 

such as overloading the Internet and 
inhibiting the valid distribution of porn



What is a Nematode

● A controlled worm that can be used for 
beneficial purposes
– Making your network self protecting!

● “Nematode” is a phylum of primitive 
worm-like organisms often used to get 
rid of other pests



Hypothesis

● In the near future, many organizations 
will use nematodes to lower the costs of 
securing their networks
– ISPs
– Governments
– Large companies

● ROI will overcome unreasonable fear



Agenda
● Reasons to create a nematode
● Protocols for controlling your nematode
● Automatically creating your nematode 

from vulnerability information
● Other uses for nematodes



Why create a worm?
● I want to secure my network. Today, this is very 

expensive!

● Hard problems, like security, require novel and 
difficult approaches, like controlled worms

● Other hard problems are also solvable with 
worms

– Distributed searching

– Systems management on a large scale



Networks are a jungle, not a 
tundra

● Complex, dynamic network architectures are 
the standard

● These often evolve from simple flat networks as 
a company grows

● Networks are not documented – asset 
management is an expensive problem to solve

● Current defenses are still weak and expensive!

● Dream: But what if my network was self 
discovering, without the need to install 
monitoring stations all over the place?



Nessus (or similar) scanners 
as asset management tools

● Right now, nessus-like scanner stations are 
dotted all over your network landscape, peering 
into the unknown like telescopes into a dark 
night

● As soon as you have finished your Nessus-like 
scan, it is out of date and you must begin again

● Nessus-like modules may generate false 
positives

● Exploits can be written nearly as quickly as 
Nessus signatures!



Network Segmentation
● Any network segmentation adds to the 

costs of a solution that requires direct 
visibility across the network

● It is hard to get our scanners close to 
our targets

● Machines that pop in and out of the 
network remain a false negative issue 
and are commonly cited as problem 
vectors



Other potential nematode 
features

● Searching entire network, without 
regard to network architecture
– Worms make great filters: I want the latest sales 

spreadsheet that anyone on my team has done! 
Go get it.

● Moving intelligence across the network



Exploits vs. Worms 
● A worm does not need an exploit

– testvuln1.exe worm is a good replacement for 
any installed management agent

● Minus authentication, of course.
– Even very polished exploits fail sometimes

● Some exploits may be very difficult to write a 
worm for!

– These are more rare than people like to 
pretend



Establishing legal mandate
● Mandate to attack a machine differs from 

exploits to nematodes

– This is the largest part of the “fear factor”
● There are plenty of places where running 

exploits is perfectly legal and desirable

– Your own network
– Someone else's where you have permission

● “Penetration testing”



Exploits have easy mandates

● Reasonable knowledge where your target is (it 
is on the same network you are allowed to 
attack, for example)

● Slow scale of penetration allows for manual 
verification at every step

● Mistakes do happen, but are generally of low 
consequence due to human interaction

● Logging is easy to do



Nematodes have to work 
harder to establish clear 

mandate
● Rely on outside indicators to find out where 

they are running

● Rely on outside indicators to find out where 
they are allowed to attack

● Logging is quite difficult (distributed problem)



Halfway point: Exploit 
scanners

● For ip in 
range(192.168.1.0,192.168.1.255):
– ret=exploit(ip)
– If ret:

● ret.patch()
● ret.reboot()



Scanners are not perfect...
● Scanners and automated exploit 

technology save money by solving the 
asset management problem

● You have a clear mandate on your own 
network!

● Can have large and complex support 
structures
– Specialized recon tools
– large shellcode is possible



Scanner Problems
● Multiple networks require 

multiple scanners

– Administrators now have 
an impetus to avoid 
network segmentation :<

● Scanners absorb bandwidth 
for discovery

– (Even with a switch's 
help)

● Hosts are constantly 
popping up (time disparities)

Scanner
Server

Mobile
Workstation

FW



The solution: Nematodes

● Every host is a scanner
● Every host can generate scanners by 

automatically deploying nematodes
● Hosts that are secure or unreachable, 

are not a problem!
● Scans that are not relevant just die out



Problems with nematodes
● Worm are really hard to write
● Worms also use large amounts of 

network bandwidth
– Need smart algorithms to counteract this

● But smart algorithms make for very large 
worms!

● Worms are harder to target and control 
– fear factor ensures
– Need to ensure legal access



Validating mandate on a 
nematode's target

● Is target on a white-listed network

– Hard to do with private address spaces
● 2 factor authentication method

● Does target run our custom worm 
management agent ?

– Friend/Foe system



Nematokens

● Nematoken server should only respond to 
requests from networks we are allowed to 
attack from/to

– Ex: Does a192.168.1.2.mytokenserver.com 
exist?

● Yes: ok to attack it.
● DNS is a good one, but there are plenty of other 

options



Nematode Implementation
● Every nematode implementation may 

differ
● Immunity's goal is to make our 

nematode implementation flexible, such 
that it can be deployed on the fly
– Something dynamically created but reliably 

controllable
– Operates entirely in memory 
– single shot (no callbacks)



Automatically Generating 
Beneficial Worms

●How do we get from vulnerabilities 
to usable beneficial worms?

● Vulnerability
● Python Exploit
● Nematode Intermediate Language
● Nematode Test Framework
● Nematode payload deployed



Our Problem Space

Vulnerability

Exploit

Nematode (Worm)

Patch
BinDiff

BinNavi

Repro

CANVAS

Nematode.py

Audit/Fuzz



Exploit frameworks are good 
for nematode development

● Ideal framework has following 
characteristics
– Completely written in Python 

● Including many network protocol libraries

– Many exploits
– Exploits are written to an API, rather than 

haphazardly
– Built-in assembler and compiler!



Example Exploit in Python

● Class with simple member functions
– Makesploit() - Creates the buffer to send to 

the target
– Nops() - generates nops
– Stroverwrite() - Python version of memcpy
– connect_to_host() - Connects to the target
– Runonce() -Sends the buffer



Our Nematode Work-flow

Exploit
Intermediate

Language

Specialized
Compiler

Testing
Harness

Launcher



Nematode Intermediate 
Language (NIL)

● Specialized and simplified “assembly 
for worms”

● Useful for converting exploits into 
Nematodes quickly and easily

● Exploits can be written to NIL directly
– This is probably not a good idea, but for 

complex worms hand-modification may be 
necessary



Automatically Generating
NIL

● Python is introspective/reflective
– We simply override our internal API to 

generate a NIL file instead of running the 
attack!

● exploit.nops=self.nops
● exploit.run()



./nematode.py demosploit

● As simple as running one python script 
which loads the module, replaces the 
functions, and calls runonce()

● <see amazing demo now>



Demosploit -> NIL

nops 5000

stroverwrite %B8%DD%FF%BF 1036

stroverwrite %CCtheshellcode 800

startloop

connect_random_host 5151

sendall

closesock

endloop

Ooh, ahhhh...



NIL -> Test phase

● neminterp.py will interpret NIL as an 
aid to testing

● If the exploit still works, we're good to 
go



Building our final payload

● Go from NIL to assembly language
– This requires a specialized NIL compiler 

with hand written assembly

● Inject assembly language into test 
framework

● Watch it go!



Demos are fun

● <See amazing assembly code now>
● <See amazing worm demonstration 

now>



NIL Assembler

● Want to 
minimize space

● Need a unified 
function table

● Need to avoid 
badcharacters

● Also need to be 
flexible

nem=nem_linux_X86()
nem.addAttr("nem_prelude",None)
nem.addAttr("nops",[5000])
nem.addAttr("stroverwrite",["%27%83%04%08",1036])
nem.addAttr("stroverwrite",[shellcodestring,1044])
nem.addAttr("startloop",None)
nem.addAttr("connect_random_host",[5151])
nem.addAttr("sendall",None)
nem.addAttr("closesock",None)
nem.addAttr("endloop",None)
data=nem.get()



Results for Nematode v0.1

● Linux demosploit (no bad chars)
– <5 minutes from exploit to worm
– Worm is <280 bytes 

● Currently no real payload other than 
replication

– Just like most worms!

– Simple incrementing scanner
● Will use /dev/urandom in v0.2



Nematode Assembler Future 
Features

● Select from 
multiple 
decoder/body 
parts to account 
for different bad 
character lists
– Or use automatic 

assembler 
heuristics

Prelude

Body

Function 
table

State table

Decoder



Future nematode problems

● MSRPC creates interesting issues with 
regards to constructing our attack 
string
– Ideally we'd use native API

● This requires a working minimized typedef 
library

– Which is totally doable.

● Doing multi-stage worms is also 
possible, but less reliable due to NAT



Witty made people cry

● Worm shocked people with rapid (48h) 
deployment after announcement

● Witty is nearly identical to this sort of 
simple stack overflow bug
– Need to reconsider whether worm creation 

tools are already in wide use...
– A good attacker can reliably create a worm 

that appears before your half-baked IDS 
signature does



Worms can be fast
● Signature based worm protection is 

only useful as a diagnostic, not as a 
prophylactic

● Some interesting work has been done in 
automatically detecting worm 
signatures
– Polygraph: Automatically Generating 

Signatures for Polymorphic Worms, James 
Newsome, Brad Karp, and Dawn Song. 



But not all worms are 
Nematodes – how do we 

control this thing?
● We can now dynamically and quickly 

create worms – now what?
● Controllable worms (nematodes) need

– State
– Payload
– More complex network protocols



Adding state to the equation

● Append state section to header or 
footer of payload
– Need to encode it, potentially

● Have nematode body modify state 
section before sending off to next target



Attacking In Scope Networks 
Only

● Options: Nematoken/Whitelist
– Need not a whitelist, but a whitegraph!

● 192.168.1.* is fair game
– But only if attacked from 192.68.2.*

● Simple graph walking algorithm is 
necessary – in shellcode



Whitegraph implementation

● Need to store where we came from, and 
match against the graph to determine 
where we are allowed to go next
– Need wildcards in the graph
– This is a complex parsing problem to have 

to do in shellcode

● Also potentially quite useful for 
avoiding network telescopes



Payload

● Payload may be
– Install management agent
– Install patch and reboot
– Report to central server
– Whatever you can think up

● Dynamically mix and match!



Conclusion
● Solving the “Am I allowed to attack 

this” problem is not impossible for a 
nematode system

● Frameworked exploits are essential to 
do automated development of 
nematodes

● Generalized technique is completely 
cross platform



Resources

● Worm Blog run by Jose Nazario
● WORM 2005 academic conference at 

George Mason
● Journal of Computer Virology



Questions?

● Did we answer more than we asked?


