DOCTOR FUN

Copyright © 2003 David Farley, d-farley@ibiblio.org http://ibiblio.org/Dave/drfun.html

This cartoon is made available on the Internet for personal viewing only. Opinions expressed herein are solely those of the author.

4 June 2003

The brave new world of IPv6

Security Implications of IPv6

Michael H. Warfield Internet Security Systems July 18, 2003

Outline

- IPv6 Introduction and Overview
- State of IPv6 Deployment
- IPv6 Support
- Addressing and Standards
- Tunnels and Tunnel Brokers
- The Internet Underground
- IPv6 Tools and Techniques
- Examples

Introduction

- IPv6 the "next generation" Internet protocol
- Under development for many years
- Largely ignored in areas rich in IPv4 addresses
- Addresses limitations in IP version 4 (IPv4)
 - Addresses limited to 32 bits
 - Routing tables are taxing routers
 - Networks and subnetworks are ad-hoc
 - Allocations are disorganized
 - Initially no security features on the IP layer

IPv6 Overview

- Expands addresses to 128 bits
- Formalized address boundaries
- IPSec
- Quality of Service (QoS) typing
- Stateless and stateful autoconfiguration
- Dynamic address renumbering
- Transition tunnels
- Robust resistance to brute force scanning

IPv6 Deployment

- Deployment in North America relatively slow
 - Few tunnel brokers
 - Few ISPs provide native support
- Common in Europe
 - Many tunnel brokers and native ISPs
- Widespread adoption in Asia
 - Many IPv6-only networks
 - APNIC already on 2nd allocation of top level prefixes
 - An IPv6-only ISP (Hitachi) in China by end of 2003
- Australia is much like North America

IPv6 and the US Government

- NASA already has some deployment
- US Department of Defense
 - Current interoperability testing
 - Some transition by end of 2003
 - Wide scale conversion beginning in 2005
 - Complete conversion by 2008

Transition Mechanisms

- Intended to promote IPv6 adoption
- Intended to provide interoperability
- Compatibility addresses for IPv4
- SIT (Six in Tunnel)
- 6to4 Automatic SIT tunnels
- Proxy Services
- Protocol Bouncers
- NAT-PT

Microsoft Windows Support

- Windows XP Native support
- Windows 2003 Server Native support
- Windows 2000 (SP1 and above) Patch from MS
- Windows NT 3rd party patches
- Windows 98 3rd party support
- Windows 95 3rd party support
- Patches and support from Trumpet Software
- Free patches from Hitachi

Unix / Linux Support

- Linux (most modern distributions)
 - All kernels since 2.2
 - Firewall support for IPv6 in 2.4
 - New USAGI extensions and IPSec in 2.5/2.6
 - Extensive client and server support
- Unix
 - FreeBSD / OpenBSD / NetBSD
 - Solaris / Solaris x86 version 8 and higher
 - AIX 4.3
 - HP/UX 11i

Other Operating System Support

- Apple MacOS X
- Novell Netware 6
- Routers
 - 3Com
 - Cisco
 - Hitachi
 - Nokia
- No IPv6 support in most low end broadband or xDSL NAT devices or "routers"

Application Support

- Sendmail / Postfix
- OpenSSH
- Bind 8.x and 9.x
- Apache 2.x (not 1.x)
- Mozilla
- Internet Explorer
- Fetchmail
- XInetd
- Zebra (BGP and OSPF)

Addresses

- IPv4
 - 32 bits 4 billion addresses
 - 4 8-bit decimal octets, 0-255
 - Variable size subnets
 - Network mask runs from /0 to /32
- IPv6
 - 128 bits 3.4 * 10^38 addresses
 - 8 16-bit hex fields, 0-FFFF
 - Fixed subnets (/64), and networks (/48)
 - Prefix size runs from /0 to /128

IPv6 Addresses

- IPv4 Compatible:
- IPv4 Mapped:
- Global:
 - Internet6:
 - 6to4:
 - 6Bone:
- Site Local:
- Link Local:
- Multicast

::n.n.n.n ::FFFF:n.n.n.n 2000::/3 2001::/16 2002::/16 3FFE::/16 FEC0::/10 FE80::/10 **FF00::/8**

TLA / NLA / SLA / EUI

- TLA: Top Level Aggregator
 First 16 bits
- NLA: Next Level Aggregators
 - Second and third 16 bit fields
 - Variable field spliting between ISPs
- SLA: Site Level Aggregator IPv6 subnet ID
 - Fourth 16 bit field
- EUI: End Unit Identifier Host identifier
 - Lower 64 bits
- tttt:nnnn:nnn:ssss:eeee:eeee:eeee

The 6Bone

- 3FFE::/16 Prefix
- Uses TLA / NLA / SLA / EUI scheme
- The Experimental IPv6 backbone
- Scheduled for decommissioning (years away)
- /48 network spaces readily available anywhere
- Uses static SIT tunnels from tunnel brokers
- Some difficulties with reverse DNS lookups

Internet6

- 2001::/16 Prefix
- Uses TLA/NLA/SLA/EUI scheme
- Production IPv6 Internet Deployment
- Available from numerous ISPs
- Free subnets (/64) and networks (/48) available
- Uses static SIT tunnels from tunnel brokers
- Reverse DNS lookups delegated and stable

6to4 Addresses

- 2002::/16 Prefix
- Uses TLA/NLA/SLA/EUI scheme
- An IPv6 network assigned to each IPv4 address
- Automatic SIT tunnels
- No tunnel broker required
- 2002:{IPv4_ADDR}::/48 Network
- Gateway IPv4 address is the NLA
- Autorouted on IPv4 by the NLA address
- 192.88.99.1 Anycast Gateway to other TLAs

EUI-64

- Lower 64 bits of autoconfigured address
- Remains constant over renumbering
- Remains constant across subnets
- Based on interface MAC address
- Potential privacy and tracking issues
- Potential network mapping issues
- ::mmMM:MMff:feMM:MMMM (M=Mac address)
 - Invert one bit
 - Split address in half and insert "fffe"

Well Known Addresses

- 6to4 addresses
 - Linux: 2002:{IPv4}::1
 - Windows: 2002:{IPv4}::{IPv4}
- Routers
 - Trivial EUI addresses
 - Static Configurations
- Site Local Aggregators
 - Simple subnet numbers
- Easy to guess means easy to scan

Stateless Autoconfiguration

- Allows for auto configuration of IPv6 addresses
- Allows for dynamic renumbering of prefixes
- Subnets may have multiple perimeter routers
 - Different prefixes
 - Different lifetimes
 - Different preferences
- Interfaces may have multiple global addresses
- Rogue routers may inject IPv6 routes on IPv4 nets
- Rogue routers may interfere with IPv6 routers

SIT Tunnels

- Simple Internet Transition
- Six In Tunnel
- Protocol 41 (ipv6) in IPv4
- IPv4 "protocol" field = 41
- Operates over IPv4 infrastructure
- Static SIT tunnels use preconfigured endpoints
- Tunnel Brokers provide IPv6 through SIT tunnels
- Some tunnel brokers adapt to dynamic addresses

Tunnel Brokers

- Provide IPv6 access across IPv4 networks
- North America
 - FreeNet6 (CA) 6Bone
 - Hurricane Electric (US) Internet6
- Europe
 - SixXS and others
- Asia
 - Many easy to find
- Australia
 - Difficult to find

6to4 Autotunnels

- Autoconfigured SIT tunnel
- Protocol 41
- 2002::/16 TLA Prefix
- IPv4 gateway determined by IPv6 address
- No Tunnel Broker required
- Each IPv4 host has an entire IPv6 network
 - 65536 subnets (SLAs) with 1.84 * 10^19 addresses
 - Total 1.2 * 10^24 IPv6 addresses for each IPv4 address
- No infrastructure support required

Teredo

- IPv6 over UDP
- Intended to provide tunnels over IPv4 NAT
- Development driven by lack of IPv6 support by low end router/nat device manufacturers
- Enabled automatically with IPv6 in Windows XP
- Disabled in Windows XP when part of a domain
- Potentially bypasses most firewalls
- Requires a Teredo enabled server on IPv4
- Still in draft stage at IETF

Alternate Tunnels

- IPv6 tunnels over PPP
 - PPP tunneled over stunnel
 - PPP tunneled over ssh
 - PPP tunneled over UDP (CIPE)
- IPSec
- GRE (Generic Routing Encapsulation) tunnels

The Internet Underground

- Elite are already active on IPv6
- IPv6 only IRC channels
- IPv6 only FTP sites
- IPv6 only Web sites
- Many IRC bots have IPv6 patches
- IPv6 has been used for communications tunnels
- IPv6 can be used to hide backdoors
- IPv6 can be used to bypass firewalls

IPv6 Tools

- Protocol Bounders
 - Relay6
 - Netcat6
 - 6tunnel
 - XInetd
- Scanners
 - halfscan6
 - nmap
- DoS / DDoS
 - 6to4DDoS

Hiding Backdoors

- Backdoors can listen on specific IPv6 addresses
- Cannot be scanned for by IPv4 scanners
- Communications may evade IPv4-only IDS
- SLA and EUI (80 bits) must be exact to connect
- Traffic can be detected by IDS and sniffers

Firewalls

- Not all firewalls configured to block protocol 41
- IPv4 firewalls can not see TCP or UDP in SIT
- IPv6 firewalls can not see protocol 41 on IPv4
- Teredo (UDP) will bypass most firewalls
- Tunnels should terminate at firewall or perimeter
- SIT tunnels should be controlled to the perimeter
- 6to4 tunnels should be limited to external sites
- Teredo should be prohibited

Example - Stealth ssh Backdoor

- Simple, unmodified sshd
- sshd_config: ListenAddress: 2002:{IPv4}:...
- Pick EUI and SLA at random
- Add and configure IPv6 6to4 to systems
- Add address 2002:{IPv4}:SLA:EUI
- Add ssh authorized keys to accounts & restart
- Client must know and match SLA:EUI
- Can't be scanned for by IPv4 network scanner

Example - Controlling VMware

- Three ports used by VMware GSX
 - 902: Remote Console
 - 8222: Management User Interface (web)
 - 8333: Secure Management User Interface (ssl web)
- Remote console auth forks from inetd
 - No IPv6 mods necessary on server
 - Client needs netcat6 to bounce protocol
- MUI uses standard browsers
 - Server requires netcat6 to bounce protocols
 - Client uses netcat6 to keep names straight

IPv6 Enhanced Traceroute

- 6to4 UDP with variable payload
- IPv4 TTL expired until protocol gateway or block
- ICMP unreachable
 - IPv4 Protocol Unreachable No IPv6
 - IPv6 Network Unreachable Try other SLA values
 - IPv6 Host Unreachable IPv6 Network Identified
- Vary SLA to determine subnetworks
- Vary well known trivial EUI values
- Traceroute down IPv6 paths

Conclusion

- IPv6 carries a number of advantages
 - Improved addressing
 - Improved security
 - Improved routing
- IPv6 advantages can be used against networks
 - Backdoors hidden
 - Communications channels hidden
 - Security mechanisms bypassed
- Time for ignoring IPv6 is past
- Time for understanding and using IPv6 is now INTERNET

SECURITY SYSTEMS

DOCTOR FUN

The brave new world of IPv6

INTERNET SECURITY SYSTEMS

And he didn't even know it was IPv6 enabled...

4 June 2003

This cartoon is made available on the Internet for personal viewing only. Opinions expressed herein are solely those of the author.

ave/drfun.html

http://ibiblio.org/l

Security Implications of IPv6

Michael H. Warfield Internet Security Systems July 18, 2003