The Challenge of Multilevel Security

Rick Smith, Ph.D., CISSP
Rick@cryptosmith.com
http://www.cryptosmith.com/
October 2003
Text-Only Outline

Outline presented here

• What is MLS?
• Why is MLS Hard? – Accreditation
• Building MLS Systems
• Selecting a Trusted OS

Please see the BlackHat CDROM for the complete copy of this presentation, or visit this web site:
http://www.cryptosmith.com
Multilevel Security

- An overloaded term
- Some vendors build “MLS Products”
 - Implement “Bell LaPadula” security mechanism
 - Allows higher-classified processes to read data created by lower-classified processes
 - Example: a Top Secret user’s process can read Secret data
 - Vice versa (downgrading) not directly permitted
- Most requirements for “MLS Operating Mode”
 - Devices handle classified information with different classification markings
 - Must never release wrong level to wrong recipient
 - Much more general than “MLS Products”
An Example MLS Problem

Sensor to Shooter:
Data travels from satellites to planners at different levels, and finally to the warrior who pulls the trigger.

Data is sanitized at each level and passed to a lower classification.

October 2003

Cryptosmith LLC
MILS versus MLS

Achieves “MLS Operating Mode” without “MLS Products”

- MILS = Multiple Independent Levels of Security
 - Deals with multiple levels via separate, “System High” elements
 - Data sharing, if any, is via guards or one-way data transfers

- Does not necessarily require “MLS Products”
 - Most or all elements may be standard COTS products
 - Guard may use an MLS Product, but not necessarily

- Site networks usually operate in “MILS” mode
 - Individual networks consist of COTS products
 - Networks run at System High
 - Interconnections, if any, require a special-purpose Guard
Why is MLS Hard?

• **Short answer: Software is unreliable**
 – Nobody wants to trust the protection of their own, valuable classified information to a buggy OS or application
 – *Felony Boxes* – nobody wants to be personally liable for leaking classified information

• **MLS accreditation tries to reduce/eliminate risk**
 – Accreditation – approval to operate by major command user
 – MLS accreditation seeks to eliminate risk of data leaks
 – Confidence in software = confidence in safety of data

• **Modern software is too complex for confidence**
 – 16 million lines of code in modern Windows OS
System Accreditation

- Required of all systems handling classified data
- Regulations: DOD 5200.1, now DOD 8500
 - Regulations establishing policies for DOD info systems
- DITSCAP: Defense Information Technology Security Certification and Accreditation Process
 - Process to verify a system’s security features – “certification”
 - Process to authorize its operation – “accreditation”
 - Documents security requirements, features, and steps taken to assure its correct and secure operation
- DAA – Designated Approval Authority
 - General/Flag officer at major command
 - Signs of on need and risk for using the accredited system
Getting Into Operation

- "Full" Accreditation
 - System goes through certification process
 - May be based on *evaluations* of products being used
 - May be based on template of another successful site – this is how the *SABI/TSABI* processes work
 - May involve a combination
 - DAA approves system for operation

- IATO – Interim Approval to Operate
 - Certification is incomplete; DAA lacks basis to fully accredit
 - May occur in "emergency" situations where system is needed regardless of the certification status and risks
 - At the discretion of the major command’s DAA
 - DAA may even make an IATO permanent ("back door" approval)
Evaluation: a product-oriented process

• Process established by data owner(s)
 – Pioneered by NSA: Owner/producer of classified information
 – Evaluated systems to serve as surrogates to enforce NSA policy

• Expects vendors to seek product evaluation
 – Historically, this is the exception, not the rule

• Evaluation is supposed to “authorize” use
 – Traditionally, MLS systems had to achieve a certain level of evaluation and incorporate certain features: “B1” or “EAL4”
 – In practice, the DAA is the final authority

• In practice, evaluation becomes one more factor
 – Some MLS systems use evaluated products
 – Some MLS systems rely on other assurances
SABI/TSABI

- (T)SABI = (Top) Secret And Below Interoperability
- Process established by end users
 - Pioneered by the ASD/C3I and the JCS
 - Representing warfighters, not data producers
- Focus on guards connecting MILS networks
 - Particularly DISA and NSA networks
- End user initiates the process
 - Posts a “ticket” defining what they need to do
 - SABI/TSABI provides templates for common guard configs
 - New solutions may serve as templates for future users
Program Risk

- No process guarantees accreditation
- Evaluations, SABI, TSABI, etc., try to reduce risk
 - Provides evidence of correctness to help convince accreditors
 - Policy or prior accreditations used to support arguments
- Assurance vs Cost Trade-off
 - Evaluations, SABI, TSABI processes increase assurance
 - High assurance increases product costs
 - Cheaper, COTS products provide lower assurance
Building MLS Systems

• Establish the networking infrastructure
 – Option: physical separation
 – Option: system-high LANs with separation
 – Option: MLS LANs with Type 1 encryption

• Establish low-to-high flows
 – One-way optical transmission
 – MLS middleware with read-down capabilities

• Establish high-to-low flows - downgraders
 – Manual review on COTS platforms
 – Manual review on a trusted platform
 – Automatic review/sanitization by a trusted guard
Network Infrastructure

• Wiring has its own problems
 – Physical protection, separation, auditing, assurance

• System-high LANs
 – Provide separation, not confidentiality
 – Examples: Dragonfly, Cryptek’s DiamondTEK
 – Issue: must physically protect confidentiality of LAN

• Network encryption minimizes wiring
 – Confidentiality using Type 1 encryption
 – Examples: GD Fastlane/Taclane
 – Share internal LAN wiring to minimize extra wires
 – Issue: infrastructure costs of Type 1 encryption
Low-High Data Flow

- **Option: Use one-way flow hardware**
 - Examples: Tenix, Owl
 - Ensures one-way data transfer, no backward leakage

- **Option: use guards for low-high flow**
 - Downgraders can also move data low-to-high
 - (see later discussion)

- **Option: Use middleware...**
Middleware for Low-High Sharing

- Use approved middleware to store shared data
 - Option: multilevel web server
 - Example: TSL Trusted Web Server, TCS MLS Web Server
 - Option: multilevel database
 - Example: Trusted Oracle, Rubix
 - Option: multilevel file sharing
 - Example: TCS Trusted Gateway System

- Gap: these are moderate assurance solutions
 - Can not share data across a broad classification range
 - Often restricted to two adjacent classification levels
 - Broader ranges require additional network security mechanisms
High-to-Low Reclassification

- **Manual review for downgrading**
 - People examine and sanitize interactively
 - Option: On-the-spot reviewing on user desktop workstations
 - Option: Trusted review terminal for a disclosure officer or clerk

- **Automatic review for downgrading**
 - Mechanized rules for passing data safely
 - Issue: not all reviews can be automated effectively

- **Guards filter/sanitize the actual transfers**
 - Existing guard products: Radiant Mercury, Digitalnet SAGE, ISSE
 - Gap: some applications need custom guard filtering
 - Option: build atop existing guard
 - Option: create new guard software if existing guards inadequate
High-to-Low Downgrading

- **Option: Use OS to host a custom guard**
 - Examples: XTS-400, Aesec, Sun Trusted Solaris, SGI Trusted Irix, Green Hill Integrity 178B, Lynuxworks LynxDO178B.

- **Option: Use existing guards to filter/sanitize traffic**
 - Examples: SAGE, Radiant Mercury, ISSE Guard

- **The Gaps**
 - Must implement multilevel applications and earn accreditation
 - Need customer approval on strategy and classification filtering
Trusted Systems: Build vs Buy

- **Trusted software is very costly to develop**
 - Developers placed under intense scrutiny
 - Detailed documentation of software architecture, design
 - BUT – third parties charge a fortune to do this work for you

- **May be feasible to build small-scale products**
 - Small, simple software components
 - Must reside atop a trustworthy OS

- **Traditional Trusted OS Options**
 - OS with Strong Labeling
 - Examples today: Digitalnet XTS-400, Aesec Platform
 - OS with “Sufficient” Labeling
 - Examples Today: Sun Trusted Solaris, SGI Trusted Irix
How do we use a Trusted OS?

- OS ensures process separation
- Certifiers look at processes independently
- Assured separation = easier certification

Process separation is the key to certification
Emerging OS Options: Open Source

- **Offer MLS and other schemes to ensure security**
 - Provides the expected MLS mechanism for process separation
 - Option to use Biba or other separation mechanisms
 - Process separation is the key, not just MLS

- **Example Products**
 - NSA’s Security Enhanced Linux (SELinux)
 - Rumor – actually been used in operational systems
 - FreeBSD with security extensions like MLS: “Trusted BSD”

- **Gap: Open source lacks vendor control**
 - Existing documents don’t necessarily match the code
 - No assurance regarding authorship of the code
Emerging OS Options: Safety Certified OS

• OSes that earned highest safety certification for flight software: RTCA/DO-178B Level A.

• Provides high assurance of process separation
 – In flight safety, ensures that a software glitch in one process won’t interfere with a different, critical software process
 – Simplifies assurance by allowing software partitioning

• Example Products
 – Green Hills DO-178B product
 – LynuxWorks – LynxOS-178 provides DO-178 assurance documents

• Gap: DO178-B doesn’t cover all security bases
 – DO178 Level A exceeds many security requirements, but
 – DO178 lacks assurances against malicious software, developers
 – Green Hills working on Common Criteria security evaluation with LM
What About Microsoft Windows?

- Microsoft quietly speaking of MLS support
- Current direction based on NSA’s NetTop work
 - Use PC-based virtual machines for level separation
 - Each “Level” has its own Windows OS
 - Separation kernel approach instead of true MLS
 - Data sharing via external mechanisms
 - Product: VMWare
- Issue: this is exploratory work
 - Microsoft has backed away from MLS support before
 - VMWare itself lacks the assurance needed for accreditation
Thank You!

Questions? Comments?
My e-mail:
rick@cryptosmith.com
http://www.cryptosmith.com