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Abstract

In this whitepaper we briefly describe Masibty, a novel anomaly-based
web application firewall we devised. It has a modular and extensible
structure. We give an overview of the anomaly detection models we im-
plemented in it, and show that it is able to detect different kind of real
world attacks on common web applications. We also evaluate its perfor-
mance as an IPS, using both plain and mutated versions of exploits.

1 Introduction

Protection against web application attacks is a critical and current research
issue. Today, they are the primary source of vulnerabilities in enterprise in-
formation systems. During 2006, the Web Application Security Consortium
(WASC) reported 148,029 different vulnerabilities affecting web applications:
this translates to roughly 85% of the audited applications having at least one
vulnerability [1].

This creates an obvious need for intrusion prevention techniques for web
applications, often dubbed “web application firewalling”. The challenge is that
in the web application domain often attacks are not brought against known, off-
the-shelf applications, but against custom applications. As such, they are by any
definition zero-day attacks (unknown to the target and the security community
before their use). This makes the traditional concept of misuse detection useless,
and creates a need fot anomaly-based detection systems that can protect against
totally novel attacks, as they model the normal behavior of a system and detect
deviations (as opposed to modeling the attacks themselves).

In this whitepaper, we describe Masibty, an anomaly based web application
firewall prototype which we developed. It is a modular and extensible anomaly
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detection system able to model the normal behavior of web applications, and to
detect a number of types of attacks on the application layer. We describe the
design of the system, from the preliminary definition of a generic web application
behavior model to the creation and composition of a number of models for
intercepting anomalous behavior deviations. We evaluate the system on a set
of real world attacks against publicly available applications, using both simple
and mutated versions of exploits.

The remainder of the work is structured as follows: in Section 2 we review
related works in the area. In Section 3 we give a general overview of Masibty,
along with its basic structure and assumptions. In Section 4 we describe the
Anomaly Reasoners and Anomaly Engines we implemented. Section 5 details
our experimental methodology and performance results. Finally, in Section 6
we draw our conclusions and outline some future works.

2 Related works

Most traditional works on Network Intrusion Detection focus on patterns of
traffic (either by using misuse or anomaly detection over them). However, traffic
generated from a web attack - except for brute force attacks or similar events
- is likely to be very similar to normal traffic. Writing “generic” signatures
for web based attacks is also known to be troublesome, and a source of false
positives. On the other hand, host based IDS were typically designed to inspect
the behavior of processes on the system, and not the behavior of applications
managed by these processes.

Anomaly detection on user supplied parameters has been proposed. Using
concepts drawn from system call argument analysis prototypes [2], in [3, 4] a
web application IPS is proposed. Basically, the concept of system call is replaced
with the URI of the requested resource, and the concept of system call parameter
is replaced with the parameters passed to the web application. In other words,
any web application is modeled as a set of URIs, each with an associated vector
of attributes. For each URI a model of attributes is then generated. However,
this makes the prototype unable to distinguish between different behaviors of
the same path. It is common, for small-sized web applications, to use a single
path to perform completely different tasks depending on a parameter. This was
a key critique we brought against [2, 5], and solved through the use of clustering
in [6]. The resulting prototype, named S2A2DE, incorporates sequence analysis
and inter-argument relationships.

In [7] a Markov model was used to model the character sequences in the
request. However, the reported false positive rate is by far too high for any
practical use.

More specialized works have targeted separately XSS and SQL Injection
vulnerabilities. To address XSS, in [8] a client-side proxy was used to detect
harmful tags supplied by the user and sent back by the server, using a concept
similar to the one used in web vulnerability scanners [9]. This technology how-
ever works only on reflected XSS attacks, and not on persistent attacks where
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the data is stored somewhere and shows up in the application at a later time.
In [10] a client-side solution based on the idea of data tainting is used to address
the leakage of sensitive data from the user browser to an aggressor through the
use of XSS attacks. Implementations of the same concept are also proposed in
[11, 12]. However, XSS attacks in the new Web 2.0 context can perform very
different tasks: an example are the many worms affecting social networking
websites, which perform queries on the site without actually moving sensitive
information around. The idea of a client side proxy was further exploited in [13]
with the implementation of a browser-level application firewall able to intercept
HTTP requests. All these techniques however are client-side protections, and
they are not really anomaly detection techniques as much as they are generalized
misuse based system with broad rules to block specific attacks..

In [14] a method to identify variations of SQL query structures is proposed,
by the means of a Java library which validates user-supplied parameters and
compares the structure of each query before and after their insertion. The
approach is greatly interesting, but it requires the rewriting of large portions
of code, since every line which contains SQL statements and queries needs to
be rewritten, making the effort similar to a full code review for implementing
proper filtering in the application. In [15] the authors propose a learning based
approach to the problem of detection of SQL Injections. A server-side compo-
nent is embedded in the web server, and analyzes SQL queries with techniques
similar to [3, 5], generating models for user supplied input. However, to decrease
false positives the developer must explicitly define database field types. This
can be a lengthy process for complex applications. The major shortcoming of
this architecture, however, is its inability to generalize the structure of a query:
while most of the queries produced by web applications have a rather static
look, thus allowing for exact profiling, there are many examples where the ac-
tual structure of a query is generated by user-supplied parameters. Since there
is no way to learn the whole input space (as far as structure is concerned), no
protection can be expected for these queries. An alternative approach, using
static analysis, is presented instead in [16] with promising results.

3 Masibty: a framework for web application in-
trusion prevention

Masibty is a highly modular framework for anomaly based intrusion prevention
on web applications. It was designed to be deployable with a limited impact on
any existing infrastructure. We specifically designed Masibty not to require an
attack-free dataset for training, as this is a requirement not compatible with a
real world deployment.

3.1 The concept of Entry Point

In order to systematically develop an IPS for web applications, we conceptually
modeled interactions between user and applications within the bounds of the
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HTTP protocol as composed of [17]:

• The URI, the identifier of the requested resource

• The parameters supplied, as different parameters and values can yield
completely different results, when supplied to the same URI

• The session context: a session is the synopsis of all the previous inter-
actions between the user and the application, encompassing all the data
structures that have been built (thus including database and file updates
and so on)

• Finally, there can be also other influences: remote web services might
change their answers, another user might have interacted with the database
in such a way to impact the current user, and so on

We slowly identified the concept of an Entry Point (EP), as opposed to the
URI, as the basic entity of an application. An EP is basically an augmented
URI which is further specialized depending on parameters, session context and
other influences. The relationship between an EP and a URI is not one-to-one,
as in many applications the same scripts (or classes) perform different tasks,
according to the value of some parameters, of previous queries, sessions or other
factors. As a simple example, consider the case of an application with a generic
controller script which dispatches user interactions to the various components
of the application depending on a command attribute in queries (which, while
not being a good software engineering practice, is a quite common situation).
This is not a single EP, even if it corresponds to a single URI: a change in the
command parameter may lead to dramatic changes in the application behavior.

Masibty does not apply models to URIs (as done in all of the previous works),
but rather to EPs. The creation of EPs is therefore critical. We have developed
two EP creators for the current prototype. A first one, named Analyzer, is
just a simple parser which directly associates an EP to a URI. This is useful
if the application can be mapped by hand, or if it is known a priori that the
association will be one-to-one, to avoid the more complex process used by the
“real” automatic EP generator, named Clusterer. The Clusterer groups similar
requests together, to automatically generate a set of EPs.

We need a clustering algorithm with some specific requirements: it must be
incremental, unsupervised, and able to deal with categorical values. The only vi-
able solution is to use an agglomerative, incremental online clustering algorithm
[18]. The only disadvantage is that this type of algorithm potentially depends
on the ordering of the requests in the training set. We use as distance metric the
sum of the distances along the following metrics: number of parameters in the
request, presence of the parameters, length of each parameter. The algorithm
prunes out clusters with limited support (e.g. containing only a limited number
of instances) to cut out any outlier (possibly, an attack) in the training set.

Currently, the use of the Analyzer needs to be hand-configured by the user:
a future extension of this work could be to automatically set static associations
during learning for EPs that likely correspond one-to-one with URIs.
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3.2 A Modular Infrastructure

Masibty has been devised as a modular and extensible infrastructure, easily
portable to different languages and environments. In particular, we developed
a reverse proxy module, which is a standalone application (currently developed
in Java), and we defined an interface for an application library to monitor SQL
calls (of which a proof of concept implementation was also produced).

The reverse proxy is the core of the application. This is a common approach
in commercial web application firewalls, as well as in previous research proto-
types: however, an unique feature of Masibty is that the proxy is designed to
detect and block attacks targeted at both servers and clients. Although some
client-side exploits can be identified just by examining inbound queries, in many
cases outbound content analysis is needed: this is not commonly done by re-
verse proxies. We already discussed the growing importance of this feature in
the context of Web 2.0 applications. The proxy was developed by extending a
Jetty HTTP server (http://www.mortbay.org).

However, as the proxy only interacts with the application in a black box fash-
ion, a Masibty deployment can include an application library module (SQLMod-
ule) to allow deeper analysis of SQL queries generated by the application.
We developed a proof of concept implementation of this library for PHP and
MySQL, but it can be easily reimplemented for any other language, or extended
to support other databases: this is the only component of Masibty which is not
language-agnostic. We evaluated the possibility of using a reverse SQL proxy to
avoid implementing a language-dependent component, but it would only allow
to analyze queries without tracing them back to a specific EP or user interac-
tion. This is prone to false negatives whenever an aggressor is able to produce a
query which would be legal in a different context, regardless of the anomaly de-
tection model in use. SQLModule is a wrapper for the PHP embedded MySQL
libraries: the MySQLi class and the mysql functions. To use SQLModule,
the administrator is required to alter slightly the application to be protected,
modifying calls to mysql functions into masibty mysql invocations, and mysqli
objects into masibty mysqli objects. Since the interface of every method has
been respected, this changes can be applied through a simple batch job. An-
other possible implementation would have been to rewrite the actual embedded
libraries, but this was complex beyond our purposes. It can certainly be done
if the system is developed for production use; however it would shift the bur-
den from modifying the applications to keeping up with a C code base under
constant development.

3.3 Software Architecture

The modular architecture of Masibty allows for a plugin-based extensibility and
flexibility. The architecture is describe in Figure 1. The core component of Ma-
sibty is called Anomaly Brain. It routes requests coming from a module (proxy
or SQL library, see above in Section 3.2) to any number of Anomaly Reasoners.
Requests coming from the reverse proxy module are first passed through the

5



Anomaly Engine
A l  E i

Reaction Manager 
Normality Vault

Anomaly Reasoner
y g

Anomaly Engine
Anomaly EngineComposition

Anomaly Brain

Anomaly EngineAnomaly Reasoner Composition
Hook

Anomaly Engine
Anomaly Engine

Anomaly Engine
Anomaly Reasoner Composition

Reaction Manager g

Figure 1: Overall architecture of Masibty

Entry Point Creator which clusters them (during learning) or classifies them
(at detection time), according to the specific EP they access. This is done by
inspecting both the parameters and the requested resource, as explained above
in Section 3.1.

An Anomaly Reasoner (AR, in the following) handles a single facet of the
complex issue of anomaly detection. For instance, an AR can focus on “anoma-
lies in the parameters”, whereas another may focus on “Client-side attack pro-
tection”. However, each AR has full access to any information available to all
of the Masibty modules (e.g., an AR working on SQL queries has access to the
full session history). Some ARs are configured to be executed before the event
is forwarded for processing, while others are configured to be executed on the
results. If no anomaly is detected by the pre-forwarding ARs, the action is let
through (e.g. the request is forwarded to the web server, or the query is exe-
cuted on the database), and the results are delivered to the post-query tasks
through the Anomaly Brain. If cleared, they are finally delivered back to the
requestor.

ARs make use of different Anomaly Engines (AE, in the following) to decide
if a specific event is anomalous or not. AEs are atomic implementations of
anomaly detection models, able to capture or model a single aspect of an event.
They are atomic in the sense that they cannot communicate with each other. In
detection mode, each AE generates an anomaly score ∈ [0, 1] for each handled
event: the result of each AE in the same AR is then combined to obtain a
single anomaly score. Each AR can use a different policy to aggregate these
values. The final anomaly score is then compared against an user-configured
threshold to identify which events to flag as anomalies. AEs also provide a trust
level (once again ∈ [0, 1]), which represents the reliability of the model on the
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training data.
Although it may seem reasonable to combine the output of all the ERs to

obtain a final overall anomaly value, it must be noted that each reasoner captures
only a narrow subset of the information. Thus, an attack could be recognized by
a single AR, and this could lead to the alert value being “diluted” and nullified
by the other ARs. For this reason, we introduced instead the concept of Reaction
Managers to handle actions to be performed after the detection of an anomaly.
These action may range from stopping the request to mangling the returned
data, or activating various type of alerts. Custom Reaction Managers can also
be easily implemented to extend the system capabilities.

Each AR can have one or more Reaction Managers. We define a concept
of priority to allow handling of multiple Reaction Managers that are activated
concurrently. A Reaction Manager can temporarily suspend any other Reaction
Manager with a lower priority (effectively blocking execution of lower priority
reactions). Also, multiple different methods of reaction can be activated de-
pending on different thresholds of the anomaly value. The choice of the reaction
strategy is customizable by the developer of the reaction manager.

Every parameter learned by the AEs and used later in detection phase is
archived in the Normality Vault. This is an abstract interface which allows to
store and retrieve knowledge objects identified by an EP/AE combination. The
vault allows for easy reimplementation, hiding the underlying storage mecha-
nism.

4 Anomaly Detection Reasoners and Engines

We have currently implemented three anomaly reasoners: two (PAnomaly and
XSSAnomaly) are built in the Proxy module, while a third one, QueryAnomaly,
is built in the SQL module. PAnomaly and QueryAnomaly are pre-forwarding
AR, whereas XSSAnomaly is executed on the answers.

4.1 PAnomaly

PAnomaly stands for Parameter Anomaly: engines of this reasoner are aimed
at detecting anomalies in parameters included in user-submitted queries.

4.1.1 Order Engine

Since requests in web applications are usually hard coded, whenever an EP is
queried, the ordering of the attributes will usually be the same, even if not all
of them are present. This AE builds a probabilistic model based on the usual
order, using a directed graph which represents the order in which the parameters
have been seen, with edges labeled with two values: the number of times the
origin precedes the other node, and the number of times both nodes appeared
in examined queries. An example can be seen in Figure 2(a).

To detect anomalies, we identify the active edges for every incoming request,
the ones identified by the 2-grams of the parameters in the query. For instance,
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(a) Model at the end of the learning phase
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(b) Active edges on a request containing
attributes ACD

Figure 2: The probabilistic tree generated by the Order Engine

using the model in Figure 2(a), a request containing attributes ACD would
result in the activation of the red edges in figure 2(b). The anomaly score is
then calculated by identifying the edge with the lowest ratio between the first
and the second label. If an edge is completely missing, an anomaly score of 1
is returned, otherwise the anomaly score is equal to 1 −min( #SeqApp

#TotalApp ). The

detection algorithm has complexity O(N∗(N−1)
2 ) since every edge of the induced

subgraph has to be generated and evaluated, the worst case being a request with
N elements.

The Trust Level is computed to take into account how many infrequent
couples are present, because if each couple has been seen a very small number
of times the whole structure is too variable to provide reliable information, and
is thus expressed as avg( #TotalApp

#TotalRequests )

4.1.2 Presence Engine

With the same assumption of regularity of queries stated above, web applications
usually have a small set of parameters associated with any given EP, and it’s
unlikely that they will change if not tampered with. This AE detects anomalies
by checking for expected or unknown parameters in queries. During the training
phase the presence of each parameter is recorded, along with its appearance ratio
in the query.

Anomaly detection leverages the relative distribution of such ratios. Anomaly
score is obtained by the equation 1−min(max( Missing

TotalCalls ,min( Present
TotalCalls ))). As

can be seen, the presence of an unknown attribute or of a very rare attribute
turns into a very high anomaly score.

The trust level should be high if the parameters are constant, and it should
be lowered if an application constantly produces variations, for instance if the
application generates some security-related parameters at runtime. We cal-
culate it in function of the misses the engine encountered, with the equation
TrustLevel = 1− Misses

TotalCalls .
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4.1.3 Numbers Engine

Numerical parameters are extremely common: identifying parameters which can
only contain numbers can stop most injection-based attacks against them. For
each parameter we store two values: the number of times the attribute value was
not a number, and the number of observations of the attribute. If the ratio of
these values is close to zero, the value is likely numerical. Attacks or application
errors might obviously have polluted the training set, so an exact zero is rare.

Here, and a number of times in the following, we use a Yule-Simon distri-
bution to associate an high anomaly score to values which are “seldom” seen.
We compute the YS probability density function against the ratio between the
number of times the attribute had “rare” values and its total observations. The
result will be close to 1 if the attribute was “almost always” as expected, and
will drop quickly for variable or unstable inputs.

For the numbers engine, we use the Yule-Simon distribution on the ratio
between the number of times the attribute had not numerical values and its
total observations.

4.1.4 Token Engine

This AE checks the parameters looking for tokens, i.e. items with enumerable
possible values. Once found, it stores the values and marks as anomalous any
request with an out-of-the-enumeration value for a token attribute.

Token identification is performed using the algorithm described in [4]: a
function is generated representing the values of the candidate attribute, and
is compared to a reference function representing a random-generated attribute.
If no correlation is found, the parameter is likely not random, and thus it is
identified as a token. The algorithm was trivially adapted to on-line usage (by
updating the sample mean and variance on-line as opposed to in a batch fashion).
Also, we count the relative occurrences of each different value (something not
done in the original algorithm).

Anomaly detection is straightforward: we wish to return an high anomaly
value for values that have never, or seldom, been seen during learning. The
latter is needed to weed out any occurrence of attacks in the training set. We
resort again to the use of the Yule-Simon distribution, computing it for each
observed value v ∈ V against the ratio Nv ∗ |V |/N , where Nv is the number of
observations of v, and N =

∑
Nv is the total number of observations.

The Trust level is set to the heuristical value min(1, |max(−1, p)|). In other
words, if the correlation parameter p is p < −1 (thus the attribute is very likely
to be a token), we assign a value of 1 to the trust level. Otherwise, we assign
a linearly decreasing value corresponding to the absolute value of the (linearly
decreasing) correlation parameter.

4.1.5 Distribution Engine

The distribution of characters in a parameter is significant: a text-only input
field has a different distribution than a parameter containing a binary repre-
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sentation of an image. The Distribution Engine captures such variations by
building a model of characters distribution through a representation of the rel-
ative frequencies of occurrence. For this we adapted to online use the algorithm
proposed in [4] to perform a variant of the Pearson χ2 test to determine if an
observed attribute value can actually be generated by the learned distribution.
From the output of the test p ∈ [0, 1] the anomaly score is simply calculated
as 1 − p. The algorithm itself only requires a single scan of the input and a
time-constant calculation, its complexity being thus O(n+ k).

4.1.6 Length Engine

Most of the parameters of a web application are not random in size: some have
fixed size (e.g. tokens, identifiers,. . . ); some have a certain degree of variance;
only a few are completely random in length. Long attributes are commonly
associated with overflows, and also XSS attacks can be quite long: for instance,
the shortest known XSS worm is 161 byte long [19]. This model tries to approx-
imate the (unknown) lengths distribution for a given parameter. Once again,
we trivially adapted the algorithm described in [4] to work on-line.

Learning is straightforward. Since no information is available about the
actual distribution of any attribute lengths, we assume an arbitrary distribution
with sample mean µ and sample variance σ2, and proceed to compute them from
training data. Detection is performed through the Chebyshev inequality, which
determines, for an arbitrary distribution, an upper bound on the probability
that the difference between the value of a random variable x and the mean of
the distribution exceeds a certain threshold. Let t be the threshold, then the
Chebyshev inequality states that p(|x − µ| t) < σ2

t2 . Therefore, the probability
of a string of size l is p(|x − µ| |l − µ|) < p(l) = σ2

(l−µ)2 . This model is fast
and performs well, even though it is not able to capture attributes shorter than
usual, since for l < µ, p(l) = 1.

4.2 XSSAnomaly

The XSSAnomaly reasoner is aimed at detecting client side attacks. It detect
anomalies either in the embedded scripting code, or in the DOM (Document
Object Model [20]) of the response. This is because we try to address also new
threats coming from DOM attacks (e.g. client-side website defacements).

The reasoner extracts the DOM tree from the returned documents using
the Gecko engine, a fast, open source parser and layout engine used by several
browsers (most notably Mozilla Firefox). It is implemented in C++, and it is
accessible through the use of the XPCOM APIs; Masibty uses the MozillaParser
Java library to wrap those APIs.

We decorate the DOM tree with information related to the Javascript con-
tent of each node, and we also prune out textual or otherwise non-Javascript
attributes, keeping only structural information. We call the resulting structure
Anomaly Tree. Two nodes on an Anomaly Tree are different if they have differ-
ent names, different associated javascript code or non-matching subtrees. Figure
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HTML
<HTML>

 <HEAD>

   <TITLE>Page Title</TITLE>

 </HEAD>

 <BODY>

    <DIV>Some Content</DIV>

    <DIV>More Content</DIV>

 </BODY>

</HTML>

BODYHEAD

TITLE DIV DIV

Figure 3: A web page and its AnomalyTree

3 shows an Anomaly Tree for a simple web page. Each node contains javascript
related information, which are not shown in the graph. Note that changes in
the content of the DIV node, unless they have some DOM consistency, would
not show up in the Anomaly Tree.

4.2.1 Crisp Engine

The Crisp Engine is aimed at the detection of anomalies both on the DOM and
in Javascripts. Anomaly Trees are used by the AE to learn the normal structure
of pages associated with a given EP. The assumption is that the answers to a
single EP will be very similar to each other (e.g. a template filled in with
variable information).

During learning, the first Anomaly Tree is simply recorded. As soon as
another tree is available, it is compared with all the known trees: if a perfect
match is found, the counter for the matching tree is incremented, otherwise
the new template is stored. However, this is obviously insufficient as it does not
take into account repetitions. Information is often shown in the form of repeated
structures containing data (e.g., search results or items in a store). To find such
structures, the trees are walked through in parallel: as soon as a mismatch
is found, a sweep is performed on the largest subtree, checking if all of the
following elements have the same structure. If one of the elements in the larger
tree is different, and it is not equal to the next element of the smaller tree (thus
marking the end of the repetitions), the trees are different and stored separately.
Otherwise, if the sweep successfully completes, this difference is ignored as just
a different set of repetitions, and the rest of the trees are compared. This is a
fast, single pass algorithm, with linear complexity w.r.t. the largest input tree
size.

As an XSS injection can be obtained by adding just one element to the
DOM, the Crisp Engine deems as anomalous any Anomaly Tree that does not
match any of the previously learned trees, or which matches a learned tree
without much support. Once again, we use Yule-Simon against the number
of occurrences of the observation in the training set vs. the total number of
instances to generate an appropriate anomaly value.

It must be further noted that two nodes are deemed as equal if the actual
javascript code contained in each node is also equal. This creates issues with
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runtime generated Javascripts, but it allows the AE to be resilient to mimicry
attacks.

To avoid the model generating too many false positives, the trust level of
this model for a given EntryPoint is calculated as 1 minus the ratio between the
number of different Anomaly Trees and the total number of queries processed
by the Engine. If the ratio is low, and thus the number of total queries is far
greater in comparison to the number of different AnomalyTrees, the AE can be
trusted and thus it returns a value which is very close to 1.

4.2.2 Template Engine

The Crisp Engine does not work well if the application generates very dynamic
pages, as is the case in HTML-enabled forums or blogs. This is because it priv-
ileges detection over generalization capabilities. We developed also a Template
Engine which is able to generate sets of templates that can match pages with a
very high degree of variability.

The templates are generated by swapping one or more nodes of a pruned
Anomaly Tree with wildcard nodes. The maximum number w of wildcards to
be inserted is a parameter: more wildcards mean higher performance on very
complex pages, as well as higher computational complexity. The algorithm
works as follows: it swaps one node a time (and its subtree) with a wildcard.
Thus, if w = 1 wildcard is allowed, a number of templates equal to the number
of nodes n is generated. With w = 2 this grows to n× (n− 1). During learning,
this is done for each new Anomaly Tree. In case of a match with a previously
known template, a counter associated to the template is incremented. The
learning algorithm by itself is rather expensive: with 2 wildcards, for each new
tree the complete algorithm is O(n2 + K ∗ n) where n is the number of nodes
of the pruned anomaly tree and K is the number of known templates (the n2

member is due to the template generation routine, whereas the K ∗ n term is
due to the comparisons against all the templates). The algorithm will always
generate some fundamental templates (e.g. a template with just an ¡HTML¿
node plus a wildcard) that match all, or almost all, the response pages.

Anomaly Detection is then performed by testing the Anomaly Tree of any
generated result for compatibility against each of the available templates, with
the wildcard nodes being able to validate any subtree starting at their positions.
If the pruned tree validates every template, as is the case for an EP with stable
content, a null anomaly score is returned. If not, an anomaly score is produced
using the observation rate of the highest non-matching template. The trust
level is 0 (and the AE is thus deactivated) if an EP has no templates (i.e. it
has no javascript code). Otherwise, it is the frequency of the highest matching
template.

4.2.3 JS Engine

This AE uses a very straightforward approach to identify unknown Javascript
code inserted into web pages: it generates and stores a fingerprint for each
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code snippet detected during the learning phase, and then looks for unknown
fingerprints in new pages. As it is easy to see, this is effective only if the pages
reuse the same subset of Javascript code over and over, and it is not effective if
even one code snippet is generated at runtime.

Learning is straightforward, and the complexity of the algorithm is linear
with the number of Javascript snippets in the new pages. For detection, once
again we use Yule-Simon to assign high anomaly scores to matches with a very
low rate of appearance.

Trust level for this AE is measured as the ratio between the number of finger-
prints stored during learning over the total number of scripts. If a page contains
runtime generated Javascript, this ratio drops until the engine is effectively de-
activated.

4.3 QueryAnomaly

QueryAnomaly is aimed at the detection and prevention of SQL injections
through the analysis of queries before they are submitted to the database. Being
implemented on the application side, it has full access to the application data,
e.g. which script was invoked by the user, which script generated the query, etc.

Currently, the only implemented AE is the Structure Engine, which is able
to parse queries into a tree-based representation and detect anomalies on their
structure. Contrarily to what was done in [14], we do not require to change
the query, and just minimal changes to the code itself. Contrarily to what is
proposed in [16], we perform this check by dynamically building the model, as
opposed to the use of static analysis on the application source code.

We leverage a pruned version of the basic translation of SQL queries in
trees, removing any constant or user-supplied data, and keeping only logical
and arithmetic operators. This of course creates a possibility for mimicry (e.g.
a query where only the names of the tables have been altered will not be detected
as anomalous), but in most cases injection attacks must dramatically alter the
structure of the query to be performed.

Learning is performed by storing the trees corresponding to each EP along
with their frequency. Detection is performed by comparing the tree obtained
from the submitted query with the stored ones. If the tree does not match
any of the known ones, the AE returns an Anomaly Score of 1. Otherwise,
it returns a value proportional to the ratio between the number of times the
Structure Tree has been observed and the average rate of appearance of any
known StructureTree on the same EP.

5 Experimental results

Appropriately testing Intrusion Detection and Prevention Systems is known to
be difficult, and no broadly accepted methodology exists today [21]. A proper
experimental assesment of Masibty presents some additional difficulties related
to its “online” nature. In fact, because it behaves as an additional layer between
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the client an the web server, it cannot be tested offline on a dataset previously
collected following an approach similar to [3, 4]. Using an experimental tool in
a production environment was also not really an option. Thus, we used a case
based experimental approach, and we built a synthetic testbed as follows.

We monitored the BugTraq mailing list looking for exploits in web appli-
cations, and downloaded and deployed the vulnerable versions. Four real web
applications were selected to be used as a test bench for Masibty: Artmedic
Weblog, SineCMS, PHP-Nuke and JAF. All are PHP-based. An additional ap-
plication is BadStore, a Perl application developed purely for testing purposes.

Before starting our tests, we have populated the underlying databases with
fake yet reasonable data resembling as close as possible real world data. We
have then used the applications, trying to emulate the interaction users and ad-
ministrators would normally have, and thus exploring as many EPs as possible.
We have logged the queries, creating an attack-free dataset that we were able to
replay as needed using custom scripting tools. We have then created and tested
the exploits for the vulnerabilities, also producing mutated versions via manual
modification or IDS evasion techniques. Attacks included XSS attempts, remote
file inclusions and SQL injections. From these datasets we generated a training
dataset, by inserting a small number of attacks and “attack attempts” (non-
working modifications of the attacks), to constitute about 1% of the training
set. We also originated a similar “validation” dataset. We trained the applica-
tion over the first, and tested it over the second, with the following results.

On simple applications (such as Artmedic Weblog and SineCMS) all the
inserted attacks were identified, with no false positives. Suspecting overfitting,
we inspected such results manually, and we also tried to develop further mutated
versions of the attacks, but we were not able to evade Masibty. In the case of
PHP-Nuke, once again we had no false positives, but we missed one of the
XSS attack likely due to a bug in Gecko and the wrapper libraries. In the
case of JAF, since it uses a flat-file storage, the SQL module was not useful;
however, the Proxy module successfully identified all 16 attacks we targeted it
with. JAF has the unique ability, between the applications we tested, to include
external HTML pages created by the administrator. We included some rather
complex pages with javascripts, and used a different set of pages in the training
and verification dataset. This triggered a small rate of False Positives (around
0.58% ) on the EPs involved.

Globally, Masibty obtained a 93% Detection Rate, and a False Positive Rate
of 0.16%. This value is not meaningful per se, but it can be perceived as small
if we consider that only one of the EPs we have tested actually produced false
positives. For comparison with systems that were tested less thoroughly, we also
ran an additional test by excluding attacks in the training set, and by using only
vanilla attacks without evasion techniques. Under such load, Masibty showed a
100% DR and a 0% FPR. But as we said, such conditions are not realistic.

The performance in terms of both throughput and introduced delay of an
IPS in a production environment is obviously very significant. For this reason
we performed some experimental evaluations, in order to have a first-order ap-
proximation of the impact Masibty would have on an infrastructure. This is
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of course limited by the fact that Masibty is an experimental prototype, not
optimized for a production environment. So the results should be evaluated
qualitatively, and not quantitatively.

We used a common workstation with 4 GBytes of RAM and an Intel Core2
Quad Q9300 at 2.50 GHz. We installed a Linux Ubuntu 8.10 distribution, over
which we ran the Apache webserver as well as Masibty (in a real deployment,
Masibty could of course be ran on a dedicated server).

We reproduced a closed queueing system with an increasing number of cus-
tomers, using HP LoadRunner software. We ran tests for 10 minutes each,
with the following load profile: in the first 3 minutes the number of customers
increases gradually from 0 to 25. Then, their number remains constant for
the following five minutes, and in the last 2 minutes it decreases to zero. We
recorded a 10-step navigation sample within the web application so that each
virtual customer behaves as a human user. The session generates 25 requests.
The virtual users perform the sequence by waiting an amount of time (the so-
called think time) between each step. The total think time in each cycle for
each virtual user is 15s. Under the specified load profile, the response time of
the system, both with and without masibty, is almost constant, and it averages
to 0.05s per request without Masibty, and to 0.21s per request with Masibty
activated. This shows qualitatively that while Masibty in its current imple-
mentation imposes significant overhead, but it also shows it is not unfeasible to
optimize it to be usable in a production environment.

6 Conclusions and future works

In this work we described Masibty, a prototype web application firewall designed
to improve over the anomaly detection approaches for web applications that are
available in the literature. It can work under realistic assumptions, eliminat-
ing the need for attack-free training data, and can deal with applications with
a complex structure thanks to the concept of EP. We have described and im-
plemented an extensible, modular architecture for the prototype, as well as a
number of anomaly detection models. We described a proxy module which is
able to identify both anomalies in parameters passed to the web application,
and anomalies in the structure of the resulting pages. We also implemented
a PHP library which contains a set of models for detecting anomalies in SQL
queries through structural analysis. Our techniques of server-side analysis of
web pages and our tree driven detection of anomalies in SQL queries are both
innovative contributions, deriving from a new approach to the problem of de-
tection of XSS and SQL injections. We have also improved previous works on
anomaly detection on web application parameters and proposed new models for
its computation. We have performed preliminary testing of our solution on four
“real world” applications and a test application, obtaining good performance re-
sults and confirming the effectiveness of our approach. The overhead introduced
is not unfeasibly high, and can be reduced easily through software optimization.

Future extensions of this work may deal with the introduction of some de-
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grees of supervised learning, allowing the administrator to give feedback to the
system. Furthermore, an automatic mechanism for choosing between one-to-one
and many-to-many association between URIs and EPs (i.e. choosing between
the Analyzer or the Clusterer engine). Another extension of the entry point
concept could take into account URI rewriting techniques, mapping multiple
different URIs to a single EP. Other extensions we are currently working on
are a reasoner able to perform anomaly detection on headers and cookies, and
a session-tracking mechanism which would allow us to take into account the
sequence of pages and queries performed by a single user.
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