

Introduction

In today’s environment, companies have little choice but to invest in information technology
security and with the trend of attackers targeting an organizations web application environment
specifically, securing web applications has become a top priority. In light of this trend, there are
a wide variety of solutions and methodologies delivered by an increasing number of vendors
and consulting companies to help organizations mitigate the risk associated with vulnerabilities
in their applications. While all of these organizations offer solutions, how do you know that you
are covering your organization with the best of breed solutions and that you have covered "all
the problems"?

This paper provides an overview of application security testing methodologies. Various
approaches with their benefits and limitations are presented to provide a decision maker with a
framework for making the best decisions for their organization.

Web Application Vulnerability Classes
While there are no clear delineations between application vulnerability types, there are generally
three accepted classes of web application vulnerability as defined in The Art of Software
Security Assessment:

• Design Vulnerabilities – covering more obscure issues such as logic flaws, authorization
problems, authentication vulnerabilities, etc.

• Implementation Vulnerabilities – covering issues such as code injection, command
execution, information gathering, error handling, etc.

• Operational and Platform Vulnerabilities – covering issues such as information disclosure,
OS buffer overflows/missing patches, service configurations, improper error handling,
etc.

Design Vulnerabilities
Design vulnerabilities are fundamental mistakes in the software design. These can result
from a lack of oversight in the SDLC process or an omission in the SDLC process to account
for vulnerabilities. In these cases, the software does exactly what it was designed to do, but
that design creates a vulnerability. These often can be the most devastating from a risk
perspective and correcting the mistakes can consume precious resources and time.

Consider the following design vulnerability examples:

Corporate Drug Testing Results: This was a web application portal that displayed results of
a drug test and allow other users to view the results. Users were able to swap results by
altering the associated first/last name.

Online Tax Filing: A woman in Nebraska with a very common last name typed her name into
the site to find her tax filing. She was presented with tax filings for many other people with
the same last name. This included social security numbers and bank account numbers. The
parent company for the tax filing application was shocked by the discovery and called it "a
quirk, an individual circumstance". The link was removed from the application.

Local News Station Public Alerting Service: A component of the site was designed to alert
local residents to school and business closings, etc. by running a byline across the screen

Proprietary and Confidential

during news broadcasts. The application failed to re-check user supplied content after the
initial clearance. Thus, by modifying previously 'approved' content, non-authorized users
were able to post and display their own content on the byline.

Search Engine Marketing Portal: The site was designed with a component that rewards
marketing credit dollars for deposits. For example, you would be granted $50 of search
engine marketing advertising credits for a $30 deposit. If the user’s $30 deposit
subsequently failed, they would still be provided $50 of marketing credit.

Implementation Vulnerabilities
An implementation vulnerability is a programming error or fault in an application that
prevents it from behaving as intended. These are often manifested as inappropriate uses of
an API. For example, allowing values in a call to default. SQL injection is another common
fault. This can be manifested as truncated user supplied data to an API. The use of
parameterized or prepared statements or stored procedures can mitigate these types of
vulnerabilities.

Operational and Platform Vulnerabilities
These involve configuration files for the applications, servers and any business polices
around these applications. Phishing or luring attacks can also be considered a part of this
type of vulnerability.

Homeland Security sponsors a site cve.mitre.org that provides a list of common
vulnerabilities and exposures that catalogs common ‘known’ vulnerabilities that can fall into
this category.

Testing Methodologies and Their Effectiveness

Approaches to testing applications can also be classified using general terminology:
• White Box: Generally referring to privileged access to information and the application

source-code, testing in this category can include logical threat modeling, manual code
review, automated static code analysis, etc.

• Black Box: Generally referring to the analysis of the application without privileged
information and targeting the runtime environment, testing in this category can include
automated vulnerability scanning, application penetration testing, etc.

• Grey Box: Generally referring to a combination of approaches that includes elements of
both black and white box testing.

White Box Methods
White box methods rely more on manual and conceptual capabilities. An expert team must be
engaged and analyzes the environment surrounding the applications, the sensitive data that can
be exposed, relevant application entry points and focuses on analysis of the applications source
code.

Threat Modeling
Threat modeling is used to identify risks within an application and to assess the business impact

Proprietary and Confidential

of those risks. To begin the process, one must first create a conceptual model of the application.
This includes documenting the user roles, user scenarios, protected resources, and application
entry points. Brainstorming sessions with the development team are used to identify potential
threats and mitigating controls.

Threat analysis modeling tools allow the team to build the conceptual model, document the
roles etc, and capture the results of the brainstorming sessions in a structured manner.

The benefit of this approach is that it can quickly identify Design vulnerabilities and can be
implemented early in the SDLC process, often before the application is even coded. Catching
these issues in the initial phases of the design, as opposed to when the application is in
production, can save the organization a lot of time and resources. However, the approach will
not find Implementation or Operational Issues and can be very time consuming.

Manual Code Review
A manual code review involves a person or team reviewing the source code. Often a top-down
comprehensive review is required, which can involve thousands of lines of code. Text editors,
grep utilities, or short scripts are also used to find pointers to possible vulnerabilities.

Having expert security resources review all of the source code is a great benefit as it provides
much better coverage of the security risks. Detailed remediation tasks can be planned and the
candidate point method can quickly identify standard vulnerabilities. A key benefit is that the
team is able to chain together bugs to show more invasive issues that could lead to devastating
effects. For example, using a stored cross-site scripting bug to steal the administrator’s
password and then use SQL injection in the admin website to steal all customer information
from the database.

The obvious issue with this approach, however, is that the comprehensive approach can be
very time consuming. An average developer can review anywhere from 300 to 3,000 lines of
code per hour. With average applications being 40,000 to 400,000 lines of code, this effort can
add up quickly. In addition, if the complexity of the code is high, it is often difficult for the
developers to detect Design issues. Resources from the application development team may be
required to answer questions and the process can expose sensitive IP.

Automated Static Analysis Tools
There are a variety of automated tools that review code by operating on the source code or
binary files. The tools attempt to find Implementation vulnerabilities by guessing what the
program will do when executed. While very thorough, they are simply looking for patterns in the
source code that correspond to known vulnerability patterns. Fortify, Ounce Labs, Veracode and
HP DevInspect provide these kinds of analyses.

Automated tools have the desired characteristic of speed and they can be regularly integrated
into a process - for example the tool can be run on every check-in as a part of standard testing
suite. While automation is a desirable characteristic of a solution, automated tools have their
limitations and undesirable characteristics. They can be expensive, require a considerable
amount of tuning, and may require a powerful server just to run the tool. They cannot find
certain classes of implementation vulnerabilities, such as, exception handling routines. Design
vulnerabilities are outside their scope and they must be updated by the vendor to include new

Proprietary and Confidential

vulnerability classes.

A key limitation is that they produce few immediately actionable results. For example, consider
cross-site scripting where a malicious script is first stored in a database and later displayed. A
static analysis tool cannot track the path of the script into the database and, therefore, must
treat all database input as potentially malicious. This can cause millions of false results. If it
doesn't make this assumption then it will miss second-level cross-site scripting issues.
Additionally, the model for these tools is to find a pattern and then offer a standard suggestion
for the issues. As such, the tool has no context of the problem and cannot determine if the
situation may require a fix that goes beyond the standard solution.

Black Box Methods
Black box methods include automated vulnerability scanning and penetration testing. No
information about the applications or infrastructure is supplied to the testing expert – traditionally
targeted at seeing the target application from a ”hackers perspective”.

Automated Vulnerability Scanning
Automated vulnerability scanning tools are designed to find implementation vulnerabilities.
Application scanning tool examples include: HP Web Inspect, NTO Spider, IBM Appscan,
Acunetix, etc. Automated scanning tools for operating system and service vulnerabilities
include: McAfee Foundstone Enterprise, ISS, eEye, NeXpose, Qualys, etc.

The tools are very effective at identifying many implementation and operational
vulnerabilities. However, there are a high number of false positives, they often overlook
design vulnerabilities, they can impact network resources and can potentially disrupt IDS
systems.

Penetration Testing
With penetration testing, an application is considered a black box in which data goes in and
results are delivered as output. A list of ‘test cases’ is exercised in the application’s native
environment. An example test case might include a check for an SQL injection, or testing
using a browser plus man-in-the-middle (MITM) proxy.

The benefit of penetration testing is that it tests the actual implementation and can quickly
exploit issues with the application. It can find Implementation, Design and Operational
vulnerabilities and can ultimately have very little impact on organization resources. However,
it can be very time consuming. For example, a web site with 50 pages may require 50 test
cases per page equating to 2500 test cases. It can impact production systems (if no test
environment is available) and is dependent on the availability of the applications. While it
exposes what a hacker would see, it may not find all implementation vulnerabilities.

Grey Box Methods
Grey box methodologies blend the best of both black and white box testing. They target
privileged analysis of the runtime environment and presentation tier interface, as well as the
source code. Runtime black box testing can quickly identify design vulnerabilities, such as logic
flaws and analysis of the code base allows for rapid identification of Implementation
vulnerabilities.

Proprietary and Confidential

A grey box approach allows for a more comprehensive analysis of a target application.
Efficiencies are gained by coming at the problems from both sides. The availability of
information allows for a higher accuracy of detection and more granular recommendations. It
allows for a more complete understanding of proof of impact.

It, too, can be very time consuming compared to point solution analyses. Time from the product
development team may be required and it requires a high level of expertise and capabilities to
execute properly. Repeatability can be challenging and costly and it can also require access to
sensitive corporate IP by the expert team engaged to perform the analysis.

Statistical Analysis of Testing Methods
The WASC Statistics Project provided a consolidated analysis of common vulnerabilities across
a wide variety of web applications. This analysis provided a view of over 32,000 sites and
70,000 vulnerabilities. Data sources came from automated vulnerability scanning tests and grey
box approaches that coupled automated scanning with manual approaches.

The results, Figure 1, show that the probability of detecting high risk vulnerabilities using grey
box methods is 12.5 times higher than using only an automated scanning approach.
Approximately 7% of the analyzed sites can be compromised automatically (using black box
methods alone) and detection of high severity vulnerabilities reaches to 96.85% when using
grey box methods.

It should be noted, however, that the automated scanning tests were conducted without
customizing the settings for the tool. With customized settings created by an expert, these tools
would likely show improved effectiveness. In addition, not every site tested uses interactive
elements which are generally a source of critical vulnerabilities.

The specific methodology's ability to identify vulnerabilities within certain classes is shown in
Figure 2. It also shows the prevalence of certain vulnerability classes within the application’s

Proprietary and Confidential

testing overall. Figure 3 identifies the vulnerabilities by risk level and application.

\
Figure 2: Vulnerabilities by Classes

Figure 3: Vulnerabilities by Risk

Integrating Application Assessment into the Organizational
Process

Applications are composed of third party developed code, legacy code and current development.
For third party and legacy code the only choices are to execute the most comprehensive

Proprietary and Confidential

methodology possible in context of the application risk profile. Ongoing development within the
organization, however, allows for controlled management of the software development life cycle.
As the life cycle progresses, the costs to remediate only increases, thus integrating the security
controls into the development cycle creates the most effective approach to containing
vulnerabilities.

If we consider the standard software development life cycle, security concerns have a place at
every stage.

Analyze User Requirements: Security requirements should include policies and security
standards, security requirements based on risk profile and analyses, and the creation of use
cases that relate to the relevant security standards.

Design: Security concerns should consider threat modeling and associated abuse case
development.

Coding: Developers should be educated to implement the security controls and execute
automated static code analyses.

Document and Test: Testing suites should include automated static code analyses. Manual
code reviews and automated vulnerability scanning should be performed, as well as other grey
box methods that apply.

Operation and Maintenance: Ongoing security testing should include automated vulnerability
testing with current versions of automated tools as well as other grey box methods that apply
and are deemed important as a function of the risk profile.

Conclusions

There are no single solutions that can comprehensively identify all application vulnerabilities.
Instead, the organization must adopt a blend of the relevant methodologies. Relevancy is based
on the application risk profile, criticality, timeframes for addressing the issues, availability of
resources and budget.

A summary of vulnerability class coverage by the method type is displayed in Table 1. Table 2
provides an overview of the strengths and weaknesses of all the methods. Table 3 indicates the
appropriate position for the method in the SDLC.

Testing
Approach

Method Design Implementation Operational
and Platform

White Box Threat Modeling yes no no
White Box Manual Code Review yes yes no
White Box Automated Static

Analysis
no partial no

Black Box Automated
Vulnerability Scanning

no yes yes

Black Box Penetration Testing partial partial yes
Grey Box A blend of tools yes yes yes

Table 1: Vulnerability Class Coverage by Method

Proprietary and Confidential

Testing
Approach

Method Strengths Weaknesses

White Box Threat
Modeling

Can be implemented early in
the design

High personnel impact

White Box Manual Code
Review

Better analysis "coverage"
Detailed remediation
information
Some methods can quickly
identify LHF issues
Able to provide deeper
analysis to show impact

Comprehensive approach can be
time consuming
It is often difficult to detect design
issues due to complexity
Can require high personnel
involvement

White Box Automated
Static
Analysis

Tools can be fast to run
Can be run whenever desired
Thorough for the patterns of
the issues they can find
Often faster and cheaper than
a manual review

Few actionable results
Frequently not 100% current
Cannot find certain classes of
Implementation vulnerabilities
Boilerplate suggestions on
remediation

Black Box Automated
Vulnerability
Scanning

Quickly identifies vulnerabilities High number of false positives
Noisy traffic for IDS systems
Can impact resources

Black Box Penetration
Testing

Tests actual implementation
Quickly finds issues from an
attackers perspective
Low personnel impact

Can be slow
Testing can impact production
Ability to test dependent on
availability of systems

Grey Box A blend of
tools

Efficiency
Accuracy
Comprehensive analysis and
identification of vulnerability
classes

Cost and duration

Table 2: Method Strengths and Weaknesses

Testing Approach Method Position in SDLC
White Box Threat Modeling Requirements Analysis and Design
White Box Manual Code Review Coding
White Box Automated Static Analysis Coding
Black Box Automated Vulnerability

Scanning
Testing and/or post-production
deployment

Black Box Penetration Testing Testing and/or post-production
deployment

Grey Box A blend of tools Where appropriate
Table 3: Method Position in the SDLC

Every organization has different concerns and, consequently, will likely take advantage of
different solutions. Solution design must consider the possible attack vectors and the solution's
ability to find the types of flaws that are specific to the organization's profile. Often, as the
process continues, a good analysis will find much more than was originally suspected.

