
Shuntaint: Emulation-based Security Testing
for Formal Verification

Bruno Luiz

ramosblc@gmail.com

Abstract. This paper describes an emulated approach to collect traces of pro-
gram states, in order to verify formally that these traces belong to the algorithm
accepted by the provided graph for the finite state machine (FSM) specification.
Shuntaint can attack most types of erros which allow the execution of arbitrary
code. Exploring program states for security testing in the server deamons. This
approach allows to detect entry points that cause the memory corruptions to
be reached during exploration of states at specific moments of execution using
network requests.

1. Introduction

Software-based vulnerabilities can have serious consequences. Currently, projects tha fo-
cus bug-finding tries automatically analyzes bugs behavior. These tools and techniques
provides have different tradeoffs. Many of these tradeoffs differs from analysis tech-
niques. Valgrind [9] is a dynamic binary instrumentation (DBI) framework that makes it
easy to invoke your dynamic binary analysis.

The analysis is performed dynamically using a dynamic binary translation for
emulation of the CPU. A sequence of super blocks1 is being translated to an intermediate
representation (IR), which can be managed using instrumentation code for execution flow
modification.

Dynamic binary translation can detect memory regions with translated code that
are modified and is a very useful technique for security testing and analysis.

This paper describe Shuntaint that is a proof of concept implementation of val-
grind tool. It collection low-level information during simulated program execution to se-
curity testing. Instead of use undefinedness propagation techniques, which track tainted-
ness, this tool allows prove models that lead to an error using passive testing. In addition,
memory access checks performed by computer program during a certain time are capu-
tured for observing of logical properties satisfy a formal specification based on Common
Weakness Enumeration (CWE) [1].

Shuntaint uses reverse tainting analysis to trace back to the sources to determine
all entry points that are related to the error. At various points during instrumentation are
performed code tracing on the way of achieving execution flow modification in fact trigger
an error. Recents work, such as ptrcheck [10], track accesses of pointers in memory

1Represents from 1 to perhaps 50 instructions.

to detect invalid accesses. However, has differences of scheme associates of approach.
Shuntaint approach is to keeping track a set of program states reachable to trigger error.

State-of-the-art tools integrate formal verification engines with simulation in a
seamless way. Using formal methods [5], especially model checking, to prove the correct-
ness of the algorithms. Shuntaint use VEX that is an architecture-neutral IR for formula
generation. Futhermore, formal verification made easy for a wide range of erros which
uses VEX IR for automatically analyze behavioral properties.

Figure 1. The emulated approach has 4 steps. First, several sets of benchmark
programs being emulated to capture program states. Second, extract operations
of IR that exhibits an error. Third, comparing critical program states for instru-
ment the trigger. Finally, develop a model checking algorithm.

2. VEX IR
Valgrind is a memory debugging tool that allows monitors common problems in memory
usage. Valgrind uses VEX to perform code analysis and transformation. Valgrind does
emulation of a computer program using just-in-time translation to VEX IR which allow
adds instrumentation code. The machine that is emulated (guest machine) instruments
blocks of machine code (basic blocks) that is stored in blocks of memory (guest state).

Guest machine contains an sequence of basic blocks (IRSB). Each IRSB contains
a list of statements (IRStmt) with side effects:

• storing a value to memory
• assigning to a temporary variable

and one IRStmt may have expressions (IRExpr) without side effects:
• arithmetic expressions
• loads from memory

In addition, a type environment represent a temporary value (IRTemp) present in
the IRSB. A type (IRType) indicates the size of a value for each IRTemp. To operate on
guest state, store (PUT) and load (GET) writing and reading respectively from guest state
into a IRTemp to guest machine registers. These registers are characterised into the guest
state by one offset that are array of bytes, which represent the memory. The representation
of CPU state is accessed by one byte offset for an architecture.

The valgrind core hands the result back of instruments/transforms code blocks to
machine code. The VEX coordinates instrumented code to a platform-independent. The
IR statement (IMark) indicates translation at instrumentation-time.

Figure 2. Translation of x86 addl instruction at address 0x8048384 to VEX IR.

2.1. Changing memory states

Memcheck [11] is a valgrind tool to detect memory problems that implement dynamic
taint analysis. Each value in memory is associated their own shadow bits marked as
accessible (valid-value). The valid-value bits are checked, if a validity of location (valid-
address) not may be accessed, an error is emitted. Ptrcheck is different of mencheck. The
mechanism detect invalid uses of pointers of heap, stack and global arrays. The error is
reported when the address is accessed out of bound of an associated block.

Shuntaint affect the behaviour of the program which basically allows to write an
arbitrary value to an arbitrary address, which can lead to system security compromise.
VEX compile these values to machine code executing in memory of real CPU forcing
occurence of error.

Shuntaint approach checks states of a given program to generate instrumentation
code into a guest machine at particular points of the guest state for modeling of bit-vector
array that eventually lead to the error. Note that if the code inserted or data manipulated
by the guest machine is not visible to the program being tested.

A disassembly of binary shows where to write taintedness bits for catching logic
error in an intermediate form.

The emulator has support for tracking memory access to detect when the register
change. In Figure 3, the amount of instrumentation code submitted back to the real CPU
exceeds the range of the variable that cause an forced integer overflow, which is useful
for automatically analyze the functional behaviour of the code for specific user data or
functionality can be bypassed.

Figure 3. a PUT operation write a 32-bit value to memory in guest offset 0 that
corresponds to the guest register eax. Read a 16-bit value from guest offset 0
and load from memory into IRTemp t18.

3. Dynamic Memory Graph
The translation of block of code can catch a range of logic and intersect possible behavior
with invalid behavior through VEX IR. The intrumentation need for each memory refer-
encing instruction that hold at a point of executiont create a model memory as a graph [7]
in which each memory location is associated with a property to indicate whether the data
in this location are derived from user input.

To build a memory graph G = (V, E, root) selected areas of the guest state are a set
V of vertices selected, for each value in memory becomes a set of vextex υ ∈ V has the
form υ = (val, tp, addr), standing for a value val of type tp at memory address addr and
references between values become a set E of edges between these vertices, and ε ∈ E has
the form ε = (υ1, υ2, op), where υ1, υ2 e V are the related vertice. Each operation op is a
function λx.B that takes the expression of υ1 to construct the expression of υ2.

A memory graph encompasses the entire program state, it can be used to deter-
mining references whether a property violation can occur.

3.1. Stack Tracking
A new stack frame consists of the return, the frame pointer, and the local stack variables.
The area from stack pointer up to the base of the stack is marked as accessible. When
the user input data access the memory location are perform memory operations. These
memory operations are extractor of program states within a context that holds all the
variables events.

Let extract(parent, op, G) be a procedure the takes the name of a parent and an
operation op and extract the element op(parent), adding new edges and vertices to the

memory graph G.

A memory load operation moves data from memory to processor register, and a
store operation moves data from processor register to memory. The memory access is
instrumented for collect details for each memory referencing instruction holds one stack
blocks acessible in order to implement the memory model.

Let expr = op(parent) be the expression to extract, let tp be the type of expr, and
let addr be its address. if the structure of expr is a pointer with address value val, add a
vertex υ = (val, tp, addr) to V and edge (parent, υ, op) to E. If expr is an array containing n
members m[0], m[1],....,m[n-1], add a vertex υ = ([...], tp, addr) to V, and an edge (parent,
υ, op) to E. For each i ∈ {0,1,..,n}, invoke extract(expr, λx.”x[i]”,G). extracting the array
elements.

Figure 4. Show a memory graph for an array with two elements

4. Reverse Tainting Analysis

Reverse tainting analysis is necessary to trace back to the origin to determine all objects2

that are related to the error. This technique is also used to identify how the objects can
be used for dynamically instrument the trigger. This technique includes understand the
origin of the series of unexpected events.

The set of objects resulting of reverse tainting analysis helps compare program
states and identify what can be used for instrument the trigger. An inportant stage for
reverse tainting analysis is generating error traces for determines IR instructions. The
code cache contain IRStmt and IRExpr that are modified by running a set of bechmark
programs written for each of the programming erros. The IR is used for determines the
algorithm. This section shows some programming erros observed.

Unchecked array indexing. When an array indices are within the valid range the value
can be influenced by data originating from untrusted sources. The instrumentation code
can detect rule for violations to dereference the pointer value. The attack is launched
inputting the pointer value enbedded in loop index variables as buffer indexes. The pointer

2Abstractions for construction detail of memory model and the algorithm.

to the array is an unchecked value outside of array index allowing the attacker to overwrite
the memory address.

Integer overflow or wraparound. An integer overflow can be triggered through misin-
terpretations of signed, unsigned, long and short intergers. Invalid conversions of integers
between types cause unexpected value bypass the bounds check resulting in an undefined
behaviour.

Off-by-one error. One byte outside the range of the array can cause off-by-one error.
The analysis trying caracterize a sets of intervals for states comparison after each memory
access to visualize security asptects. Examining data structure to look for the presence or
absence of the null character terminator.

5. Future improvements
Reproduce more experiments and refinements for other programming erros. Use formal
language for description of model checking algorithm for each of the programming erros.
Provides experimental results of the regression test in shuntaint/tests. Add suport for
extract dynamic arrays for heap-based erros. Show false negative and positive scenarios
generated during execution of experiments.

6. Conclusion
In order to combat the impact of programming erros, it is necessary to have automatic at-
tack mechanism. This paper proposes a runtime attack mechanism that allow a successful
memory corruption. The Shuntaint tool provides mechanisms to obtain a memory graph
of the program to systematise the understanding of programming error. This force specific
user data bypass the bounds checks present in the system with instrumentation necessary
to trigger erros that leads to other erros.

References
[1] Common Weakness Enumeration. http://cwe.mitre.org/index.html.

[2] CWE/SANS TOP 25 Most Dangerous Programming Errors.
http://www.sans.org/top25errors/.

[3] W. Drewry and T. Ormandy. Flayer: Exposing application internals. In Boston, edi-
tor, First USENIX Workshop on Offensive Technologies WOOT ′07, Massachussetts
USA, August 2007.

[4] T. Durden. Automated vulnerability auditing in machine code. In Phrack Magazine,
volume 64. www.phrack.com, May 2007. Issue 8.

[5] Formal Methods Europe. www.fmeurope.org/.

[6] Gnu gdb. http://www.gnu.org/software/gdb/.

[7] Memory Graphs. http://www.st.cs.uni-saarland.de/memgraphs/.

[8] D. Molnar and D. Wagner. Catchconv: Symbolic execution and run-time t.ype inference
for integer conversion erros. Technical report, UCB/EECS-2007-23 EECS Depart-
ment University of California Berkeley, February 2007.

[9] N. Nethercote and J.Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In S. Diego, editor, PLDI, California USA, June 2007.

[10] Ptrcheck. http://valgrind.org/docs/manual/pc-manual.html.

[11] J. Seward and N. Nethercote. Using valgrind to detect undefined value erros with bit-
precision. In Anaheim, editor, USENIX’05 Annual Technical Conference, California
USA, April 2005.

[12] Silvio Cesare. Security Applications for Emulation. http://www.ruxcon.org.au/files/2008.

