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1 Introduction

Buffer overflows are the most serious, most everlasting, most impactous and one of the

most well researched software vulnerabilities. With the first exploited buffer overflow

being dated back to 1988, two decades later the problems are still prevalent. Although

several techniques to minimize exploitation success have been developed and are de-

ployed in modern operating systems, buffer overflows still exist today and sophisticated

exploitation techniques continue to allow attackers to break into systems and to execute

arbitrary code.

Since the public knowledge even among security-aware people is rather limited to the

classic buffer overflows as described by Levy (1996) and the well-known literature does

not reflect the current state of the art, this paper is going to give an overview on modern

mitigation techniques, their employment and their weaknesses providing the reader with

enough knowledge to assess the threat of buffer overflows as of today.



2 Mitigation techniques

This paper is not going to explain the basic idea of buffer overflows again and assumes

everyone to have read and understood the Levy (1996) article that appeared in Phrack

magazine issue 49 and that everyone cites.

As the problem of buffer overflows has been know for a long time, mitigation techniques

hindering buffer overflows from being exploited were developed. There are two different

approaches. The first is to make software safe, by verifying code and ensuring that there

cannot be any buffer overflows (cf. Section 2.1), the other approach tries to reduce the

likelihood of exploitation. For the latter category there are three techniques which are

widely deployed:

Non-executable stack, heap, data sections. As classic buffer overflows rely on the in-

jection of arbitrary code and executing it, preventing applications from executing

code on writeable pages stops this form of operation as section 2.2 is going to

discuss. Several techniques such as the return-into-libc measure (cf. Section 2.2)

allow still for arbitrary code execution.

Address Space Layout Randomization (ASLR). Classic buffer overflows and methods

working around non-executable stacks heavily rely on known fixed addresses, which

ASLR addresses by randomizing the addresses of certain pages in the process’

address space (cf. Section 2.3). A collection of techniques working around this

problem has been developed.

Stack Smashing Protection (SSP). Since the heart of most buffer overflows lies in

overwriting a return address on the stack to redirect the execution flow, several

sorts of protection and detection measures have been developed which Section 2.4

is going to discuss.

2.1 Buffer Overflow Prevention

While the standard techniques described in this section try to mitigate the impact of

buffer overflows after they happened, the most obvious approach would be to prevent

buffer overflows from occuring in the first place. The core problem is pointer arithmetic

being used in programming languages like C or C++. The language itself is safe if

used appropriately, but C makes it very easy to make subtle errors that result in buffer

overflow vulnerability issues (see the chapter “C language issues” in Dowd et al., 2006).

Modern high-level languages such as Java or Python are strongly typed and therefore

2



buffer overflows cannot occur by design (Cowan et al., 2000) (unless there are imple-

mentation bugs in the language, but this is not to be considered here). However, most

applications are still written in C, thus it remains to be questioned if there are ways

to make C safer. The summary of Cowan et al. mentions a bounds checking gcc

extension, which checks that buffer-accesses remain in bounds. This can be formally

proven (Gough, 2004) and allows to run verified secure (in terms of buffer overflows)

software. Unfortunately, there is no packaged version of this extension available, thus

the majority of developers will not be likely to use it. Additionally and this is even more

important Gough mentions that the bounds-checking introduces a lot of overhead code,

since pointers and buffers are accessed frequently. Experiments showed a slowdown of

10 times or more.

Static verification approaches can find possible vulnerabilities to some extend, but

fail for complex program structures and are very hard to implement (Chander et al.,

2007).

For dynamic analysis there is also valgrind, a sophisticated tool mainly used dur-

ing the debugging process working on raw binaries used to discover memory leaks and

illegal memory accesses. However it still does not guarantee that all possible code-paths

are followed and buffer overflows within a program’s structure can still occur. Several

approaches such as the one of Chander et al. try to combine static and dynamic analysis

of software to mitigate the runtime problem at least partially.

Unfortunately, most of these approaches are purely academic and are not yet helping

to avoid buffer overflows. This is why the current techniques deployed in operating

systems aim on reducing the possible impact buffer overflows can have. Some of these

techniques have the advantage, that they do not require modification / recompilation of

existing software, but can be applied on an operating system level securing all running

applications.

2.2 NX — Non-executable data-pages

Buffer overflows were (and are still) typically exploited by supplying code to the appli-

cation to which the control-flow will be redirected after the buffer overflow led to some

corruption in memory. This code is typically posted in the heap or directly on the stack,

sometimes in arguments or environment variables (which reside on the stack as well).

To prevent the execution of attacker supplied code all data pages of a process (esp. the

stack and the heap) are marked as non-executable. Additionally a process’ code pages

are not writeable, leaving an attacker no way to insert own or modify existing code.

This technique is also known as Data Execution Prevention (DEP). There are two issues
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concerning this protection:

Backward compatibility: A lot of software relied on being able to modify its code or

used dynamically constructed trampoline functions to achieve different tasks. Therefore

several applications explicitly modify the mappings to allow such functionality, thus

opening a door to an attacker.

Hardware support: While all modern x86 processors support page-tables with the NX

bit allowing to specify if a page is executable or not, the traditional x86 architecture

allowed such protections only in conjunction with segmentation. But since most oper-

ating systems use page tables instead of segmentation, IA-32 processors manufactured

before 2004 do not include this functionality. However, it is possible to still enforce such

a protection using software emulation like the PaX-project successfully demonstrated.

Return into libc

With the NX-bit set on the stack, the execution of own code is not possible any more.

But attackers came up with other ways of executing code. The basic idea is, that

many libraries are usually mapped into a process’ address space. These libraries already

contain most of the code an attacker might want to execute. A typical example is the

execution of the system(3) function to spawn a shell, so that the attacker can execute

arbitrary commands. Since the system(3) function is part of the C-library, the attacker

does not need to write and inject his own code, but can just go ahead and use the already

existing functionality. For buffer overflows, the attacker usually controls the stack and

as such parameters for the functions can be set up accordingly, as calling conventions

pass arguments on the stack. These calling conventions changed however for x86-64 and

parameters now have to be passed in registers. Nergal (2001) summarized some advanced

return-into-libc techniques, which include finding instructions in a library that will pop

a register off the stack and return to the next return address on the stack afterwards.

Such assembly code might look like this: pop %rdi; ret. If an attacker finds such an

instruction, he or she can set up a stack frame such that the RDI register is popped off

the stack and the ret continues by calling a library function now with the argument in

the right place.

This technique can be extended to collect arbitrary instructions followed by ret

statements and then chunk those together so that arbitrary combinations of instruc-

tions become possible again. Another well-liked technique is to use a function call to

mprotect(2) to mark stack or heap pages as executable again and then jumping there
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to the attacker-supplied code.

2.3 Address Space Layout Randomization

To be able to reliably exploit vulnerabilities, attackers need to know exact addresses

and offsets. In the past attackers were already able to exploit buffer overflows even if

they did not know the exact address of where their buffers are located, because this

depends on a lot of factors, esp. environment variables, software version and compiler

used. The attackers’ work-around was to supply large amounts of nop instructions,

because the differences were usually in the range of less than a kb. Address Space Layout

Randomization (ASLR) is an explicit measure to harden the system against such attacks

rendering most exploits that rely on known fixed address unusable. While traditionally

libraries, stack and heap were assigned to fixed addresses within an executable, with

ASLR these are randomized in varying degrees. In the virtual address space, each

page has its virtual address which references some real memory via page tables. ASLR

| virtual address | offset | | (sign extension) | virtual address | offset |

| (20 bits) | (12 bits) | | (16 bits) | (36 bits) | (12 bits) |

Figure 1: Virtual addresses on i386 and x86-64

randomizes some bits of the virtual address. This could theoretically be up to 20 bits

(or 36 bits on x86-64), but in practice the amount is limited due to constraints imposed

by the operating system. Since kernel 2.6.12 ASLR is enabled by default, providing up

to 28 bits of randomness (8 for i386). For the stack an extra offset of 8 random bits

is added. Earlier implementations made the error of only randomizing the stack, but

nowadays heap and libraries are randomized as well.

Attacks on ASLR

Apply brute force. While brute-forcing the randomization offset was attractive on

i386, because usually only around 8 bits of an address were random, this should no

longer hold on x86-64, although yet even the 20 bits which x86-64 uses in practice could

be subject to brute-forcing attacks. Shacham et al. (2004) described a method of brute-

forcing a forking daemon: A fork(2) will not alter any randomization, thus the attacker

can try to exploit with a given randomization. If he is not successful, the daemon will

crash and a new child is spawned with which the attacker can try again.
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Spraying. If the attacker has the option to place his data in multiple places within

the process’ address space, he is able to increase his likelihood of hitting the right

address. This might be the case if an attacker can control environment variables or

is communicating via compressed channels, that allow him to post much data without

having to create unreasonable amounts of traffic. Also any scripting language allows

for huge memory allocations. This is especially of interest when exploiting browser

vulnerabilities, as JavaScript, Java or Flash can be used for planting data into the

process’ address space. In practice heap or stack spraying plants hundreds of megabytes

of data and has been used in all recent browser exploits.

Partial overwrites and information leaks. If an attacker can acquire information on

addresses used in the program, he or she usually has enough information to correctly

guess all required addresses. Durden (2002) demonstrated that partial overwrites of the

return address can slightly alter control flow although exact addresses are not known.

In conjunction with format string vulnerabilities such behaviour can be used to extract

stack dumps from the process providing the attacker with all information he or she might

need. Such vulnerabilities are as Durden notes unlikely though.

Control the environment. During research I found out, that the randomization in

a current Linux kernel only depends on the time (in a resolution of 1 / HZ seconds,

which was 4ms on a testing machine) and the pid. If an attacker can locally launch

the target process using execve(2) (which keeps the pid) just after his launching pro-

gram was started, the time-frame is sufficient, so that the started process has the same

randomization. Additionally the attacker can recreate the conditions for the random-

number-generator with in a time-frame of up to 2 minutes (depending on the pid of

target process) after the target process was started and thus get the same randomiza-

tion with likelihood of probably 1
3
. More detailed information will be published in a

seperate paper on this topic (see Fritsch, 2009).

Static pages. If for some reason not all page-mappings are randomized, this opens

another door for attackers. For example Linux kernels prior to 2.6.20 (sorrow, 2008)

mapped linux-gate.so to a fixed location, thus allowed the attacker to use return-into-

libc techniques (cf. Section 2.2) to bypass ASLR. A brief investigation of x86-64 showed,

that there as a similar flaw with the vsyscall-page being statically mapped at the address

0xffffffffff600000. Although an easy exploitation seems not to be likely because this page

contains only a limited amount of useful ret instructions and esp. no direct call/jmp
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%rsp instruction, it can be quite certain, that an attacker can find a way to subvert this

page’s instructions given enough time.

Additionally no code-page of an executable is randomized in the default case. This

gives a much larger code-base that will be of interest for attackers. Still though, these

pages are mapped to the lower address half and thus include many \0 characters, which

cannot be used in most buffer overflow situations. Not randomizing the executable’s

pages is a major flaw that should be fixed.

2.4 Stack Smashing Protection

Since one of the key assumptions on buffer overflows used to be that they overwrite the

return address in order to exploit a vulnerability, the idea of stack cookies was introduced

by Cowan et al. (1998) allowing a function to check whether a stack-based buffer overflow

occured. This happens with minimal performance impact, as those checks only have to

be added to functions that allocate buffers on the stack. The stack cookies or canaries

are guard values stored on the stack between local variables and the return address.

If a buffer overflows overwriting the return address, it will also overwrite the stack

cookie, which is then noticed by the current function leading to a controlled program

termination. Prior to exiting, a function that is protected using a stack cookie will

compare the stack cookie with the master cookie that is stored in the thread control

block.

Earlier implementations had the flaw that they would only protect the return address

but not the frame pointer. If an attacker can alter the frame pointer, this is also likely

to be exploitable (Richarte, 2002). A current version of gcc will introduce a stack-cookie

before the frame pointer and the return address, thus protecting both.

2.4.1 Bypassing stack cookies / SSP

Methods for bypassing stack cookies were first published by Kil3r and Bulba (2000) in

Phrack Magazine and rely on the fact, that stack cookies do not protect local variables

from being overwritten. The authors would use a buffer overflow to modify other local

variables and to subvert them. In the easiest way such a local variable can be a function

pointer which is called at a later time, but the more general case would be a data pointer

be subsequently used, usually resulting in writing a value (ideally attacker-controlled

content) to some attacker-controlled address. This is also the same mean by which heap

overflows were exploited (cf. Anonymous, 2001; Kaempf, 2001). Such write32/write64

vulnerabilities can usually be exploited, for example by altering function tables like the
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Global Offset Table (GOT). In case additional protection methods are in place, more

creativity might be required.

Since overwriting variables was noticed to be a problem, IBM (2005) produced another

gcc patch with a technique called ProPolice that will order variables on the stack in such

a way, that arrays come last so that situations in which buffer overflows overwrite local

pointer variables but not the canary are not possible anymore. There are however few

cases in which applying this technique is not pratical, so for example for structures that

define a certain variable ordering.

Unprotected buffers. For performance reasons the stack smashing protection is not

applied to all functions. gcc for example will only protect functions involving char arrays

(but not short, int or pointer arrays). Additionally the char buffer needs to be bigger

than 4 elements, otherwise the function remains unprotected. The heuristic approach

oversees quite a few vulnerable buffers and as such there were vulnerabilities like the

animated cursor bug on Windows (CVE-2007-0038) or the mod rewrite bug (CVE-2006-

3747) in which buffer overflows could be easily exploited because the function was not

protected.

Information leaks. If the frame pointer is not protected, then attacks as described in

Section 2.3 become possible. Those can be used leak the cookie, so that an attacker

can craft an exploit that will put the right cookie into the stack. The same applies if

classic format string vulnerabilities allow to read values on the stack. Format string

vulnerabilities (see scut, 2006 for details) make this possible if the attacker can supply

crafted format strings, which are frequently used with functions like [vsf]*printf. These

functions expect an arbitrary number of parameters based on the format string and mis-

use can lead to information leaks, stack corruption or arbitrary memory writes. However

such misuse is easy to spot due to the very typical design of functions that use these

format strings and thus such bugs are unlikely. This is also due to the general awareness

of format string vulnerabilities and automatic detection methods.

Guessing the canary. Hawkes presented a side-channel timing attack for guessing the

canary value on the stack at RuxCon 2006 and was able to reduce the search space from

232 to 1024 by guessing each byte separately and using subtle timing differences to detect

the correct byte. If such granular time measurements are possible and the attacker has

the opportunity to try several times (e.g. due to a forking daemon), this attack is an

option.
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Implementation weakness During research it turned out, that the glibc-part respon-

sible for initialising the stack-canary is actually disabled for performance-reasons as it

needs to open a file descriptor and read from /dev/random. In this case the canary

is initialised with a static value of 0xff0a000000000000 leaving doors wide open for

attackers. An unofficial patch is included in several Linux-distributions though, which

initialises the register based on some pseudo-random values (see python pseudo-code in

Listing 1).

Listing 1: Calculation of the canary with “poor man’s randomization patch”

def canary ():

__WORDSIZE = 64

ret = 0xff0a000000000000

ret ^= (rdtsc() & 0xffff) << 8

ret ^= (%rsp & 0x7ffff0) << (__WORDSIZE - 23)

ret ^= (& errno & 0x7fff00) << (__WORDSIZE - 29)

return ret

If ASLR guessing bugs as the one described in Fritsch (2009) are available to the

attacker, then he or she knows already the stack-address and errno’s address, which on

a given system depends solely on the randomization bits. 16 bits of uncertainty remain

from the TSC-register which are unlikely to be reduced further, but since the canary is

not reinitialised upon a fork(2), brute force is a likely successful option.

This flaw is going to be fixed as soon as the kernel provides an application with an

initialisation vector of random data, that can then be used to set up the canaries securely

without performance loss due to reading from /dev/random.
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3 Summary and conclusions

The previous sections described modern buffer overflow mitigation techniques that are

widely deployed on current not only Linux-based operating systems. Each measure has

its point and renders whole classes of exploits useless, but attackers are creative and there

are ways to circumvent each technique. However, if looking at the combined picture of

those mitigation techniques, exploiting buffer overflows becomes really hard, if not im-

possible. If a vulnerability is discovered in an application, that has all the measures in

place, than this vulnerability has to grant the attacker a way to bypass the stack cookies

protection. This might be due to one of the implementation flaws, although these are

going to be fixed some day. The remaining exploitable bugs are usually write32/16/64

possibilities, which thanks to NX (cf. Section 2.2) do not yet allow for direct code ex-

ecution. An attacker would therefore need multiple shots or use the vulnerability as a

key to opening another application-specific attack (like Dowd’s famous Flash vulnera-

bility CVE-2007-0071 that knocked off Flash’s byte-code verifier opening the door for

exploitation). This again might already become infeasible if ASLR (cf. Section 2.3) is

in place and none of the circumvention methods described are applicable. Thus systems

that are protected by these measures are, while not being immune to buffer overflows,

reasonable secure against upcoming vulnerabilities.

While buffer overflows used to be simple and people could easily learn to exploit these

vulnerabilities, writing reliable exploits has become an art nowadays, since the odds are

just not on the side of the attacker any more. The picture has changed, the number

of people knowing about the details and implications of buffer overflows and mitigation

techniques is rather decreasing due to the complexity of the topic. Writing exploits

requires thorough technical understanding and a huge investment of time. The outside

world is even far more complex than depicted in this paper: Besides Linux there are

other operating systems in different versions with similar technologies, but constrained

due to other reasons. Probably less people are going to be researching specific buffer

overflows, which might in turn lead to more unknown vulnerabilities, although that is

sole speculation.

To draw a final conclusion on the topic: Most of the flaws of the mitigation techniques

can and will be fixed and thus the importance or impact of buffer overflows will eventually

decrease and will be replaced by other threats to computer security with more dangerous

potential.
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