

INTRODUCTION

- For years Microsoft Office has been THE reference suite
 - For document production.
 - For document exchange.
- Very soon infested by macro-viruses.
 - Concept virus (1995).
- Still a real threat.

esiea

- E. g. China vs German chancery (2007).
- Need for an alternative?

4/20/09

3

INTRODUCTION

• Recent evolution

esiea

- Use free Office suite
- The best candidate: OpenOffice.
- Very popular:
 - Seemingly no cost.
 - Wrong feeling of security
 - « It is free and open therefore it is (or must be) secure! »
 - Fully compatible with Microsoft Office
 - ... more than Microsoft with itself.
- Worldwide use in civilian and governmental (incl. military) spheres. Official document format for:
 - French Gendarmerie, French Ministry of Economy and Finance
 - And many others in Europe...

INTRODUCTION

- The "natural" confidence in Open Software makes security analysis most of the times useless.
- Question: it is possible to have both security and openness at the same time?
 What the exact level of security with respect to malware when considering OO.
 BadBunny macro worm (2008).

esiea

INTRODUCTION

- In 2006 and 2007 security analysis showed that OO 2.x was absolutely not secure.
 - -All data given to OO developers
- End of 2008, release of OO3

esiea

- -Presented as a significant evolution!
- -What about security two years after?

4/20/09

6

INTRODUCTION

- Our talk deals with an in-depth analysis of OO3 with respect to malware attacks
 - How to exploit the confidence in cryptographic primitives?

esiea

- How to design powerful attacks?
- We do not consider implementation vulnerabilities!
- We consider conceptual design flaws only!
- Wlog we consider OOwriter only!

4/20/09

INTRODUCTION

• To prevent stupid comments:

esiea

- We are not hidden Microsoft moles!
- There are problems for M\$ too.
- But unfortunately less than for OO since it has less powerful primitives inside.
- We just want to make decision-makers to be aware of the existing risks
 - ... and make them responsible, if such a thing is possible!
 - Reducing costs is most of the times not compatible with security.

AGENDA

4/20/09

8

• Introduction.

esiea

- History of OO 2.x security.
- ODF Format and Security Primitives.
- Viral Attacks through OO3 documents
 - -Unencrypted documents
 - -Encrypted documents
 - -Digitally signed documents

Conclusion: Enhancing OO Security.

4/20/09

Demos

A lot of demos to come.

esiea

- Complete code and techniques available in the white paper!
- Fully and easily implementable by malware in an automatic way.

002 Security History

First in-depth security analysis

- De Drézigué et al. (2006) Journal in Computer virology
- Filiol & Fizaine (2007) Virus Bulletin Journal.
- Lagadec (2007) Journal in Computer Virology
- A lot of « hot » reactions.

esiea

- Many stupid, ideologic comments but who did

really read the papers?

OO2 Security History (2)

- A lot of contacts with the OO developers (German part)
 - All proof-of-concepts communicated to them during the OO International Conference in Lyon, France (2006).
 - We suggested to design the Trusted OpenOffice suite:
 - Parts or sensitive functions of the suite could be enabled/disabled by the system admistrator according to the security policy in place.
 - To answer the permanent stupid comments, we published technical data (Virus Bulletin).

OO2 Security History (3)

OpenOffice malware appear

- Proof-of-concept (Filiol & Fizaine, 2006 & 2007).
- BadBunny (2007).
- What about the next ones?

Unfortunately, results are not taken into account!

- No real security concern.
- OO embed cryptography!
- The OO suite « spreads » more and more.

Ver SB/BadBunny-A

SB/BadBunny-A est un ver multi-plates-formes écrit en de nombreux langages scripts et distribué comme un **document OpenOffice.org** contenant une macro StarBasic.

SB/BadBunny-A se propage en injectant des fichiers script malveillants qui affectent le comportement de programmes IRC, mIRC et X-Chat populaires et provoquant l'envoi de SB/BadBunny-A à d'autres utilisateurs.

Ces fichiers scripts malveillants sont nommés badbunny.py (pour XChat) et script.ini (pour mIRC, écrasant le fichier mIRC existant) et sont aussi détectés sous le nom de SB/BadBunny-A.

SB/BadBunny-A injecte différents composants supplémentaires sur la plate-forme sur laquelle il s'exécute :

- Sur **Windows**, il injecte un fichier nommé badbunny.js qui est un infecteur de fichier JavaScript aussi détecté sous le nom de SB/BadBunny-A.
- Sur Linux, il injecte un fichier nommé badbunny.pl qui est un infecteur de fichier Perl aussi détecté sous le nom de SB/BadBunny-A.
- Sur MacOS, il injecte un ou deux fichiers nommés badbunny.rb et badbunnya.rb qui sont des infecteurs de fichiers Ruby aussi détectés sous le nom de SB/BadBunny-A.

OO2 Security History (5)

- Which attacks were possible?
 - Macro management modification:
 - Change or pervert the macro security level
 - Possibility to insert malicious macros in OO libraries
 - Modification of the application menus (problem of application integrity management). Interesting to use with k-ary malware.

- Modify integrity of plain document (insert macro)

- Weak management of cryptography. Possibility to transparently remove:
 - Encryption.
 - Digital signature.

OO2 Security History (6)

- We designed proof-of-concepts for technical validation.
- We will not present the viral algorithmics:
 - Not specific to OO but to macro viruses
 - With OO3, nothing has really changed with respect to the malware technologies
 - Please refer to the bibliography.
- We are going to explain how to exploit user's confidence in cryptography (encryption, signature) to design powerful malware attacks.

OO3 Release

- December 2008: release of OO3
- Presented as a major evolution of the suite
 - Compatibility with Vista!
 - A few bugs fixed

esiea

- Easy-to-useness increased
- But what about security?
 - Are cryptographic (encryption, signature) a real protection against OO malware.
 - In fact most of the attacks still remain effective!

OO3 Macro Location

Where are located macros in OO3 documents?

- Located in a specific directory (one per language).
- Contains the files
 - Script-lb.xml (generic information with respect to macros)
 - Script-lc.xml (additional information + security flags)
 Library:readonly="false"

Library:passwordprotected=`'false''

- The macro code itself!
- Demo 3

esiea

OO3 Cryptographic Features Formalization

- OO3 security is based on
 - Password-based encryption.
 - Digital signature.

esiea

- There are (too) many ways to apply them.
- Need for a formal approach for an exhaustive description.
- Graph-based description
 - Digital signature
 - Digital Signature with encryption.

OO3 Encryption

Blowfish in CFB mode.

- Use of IV for key differentiation!
- In this respect far better than M\$ Office (Filiol, 2009).
- Key derivation algorithm: *PBKDF2*
- SHA-1 for integrity.
- The manifest.xml file is itself not encrypted!
 - Major weakness that can be exploited by malware!
- Demo 4

esiea

OO3 Encryption (2)

- Macro and macro-related files are themselves encrypted
 - Demo 5

esiea

• As we will see, it is only an apparent protection in most critical cases.

OO3 Signature

- Let us recall that signature is THE cryptographic primitive dedicated to give confidence about
 - Document integrity

esiea

- Document origin (who is the sender)
- There are two ways of applying signature
 - File → Digital Signature... menu
 - Tools → Macros → Digital Signature... menu
- Based on X509 certificates
 - Demo 6 (signature of document without macro)
 - Creation of a *documentsignatures.xml* file
 - Both the manifest.xml and documentsignatures.xml files are not signed!

OO3 Signature and Encryption

- The overall structure remains the same.
 - Refer to the white paper.
- The documentsignatures.xml is not encrypted!
 - Another critical weakness!

- Let us now consider documents with macros.
 - Two different cases to consider!
 - But in both cases the critical files are not signed!

File → Digital Signature Case

- A documentsignature.xml file is created
- The whole document is signed (including macros) !
 - Significant evolution compared to OO2.
 - Older attacks now fails!
 - But new ones are possible (see further)!
- Demo 7

esiea

Tools \rightarrow **Macros** \rightarrow **Digital Signature Case**

- A macrosignatures.xml file is created
- Only the macro tree is signed (including the macros)
 - Possible to modify the rest of the document while the user relies on partial signature!
 - Other attacks are possible with respect to macros (see further).
- Demo 8

esiea

Summary

- There is still critical weaknesses with respect to signature and encryption implemenation/ management.
 - A few older attacks from 2006/2007 are no longer directly valid.
 - New ones are possible.

esiea

- The existence of two different methods for signature is non sensical and is bound to fool the user and ease malware attacks.
- Cryptographic primitives provides a false sense of security to the user!
- Let us now explain why.

Viral Attacks through OO3 documents

Black Hat Briefings

esiea

Through Unencrypted Documents

- No significant changes compared to OO2.
- Simple archive manipulations allow to perform a lot of attacks.
 - Modify the content.xml file (*demo A1*).
 - Add files. Useful for document theft.
 - Add macro.

es<mark>iea</mark>

- Substitute macros (demo A2)
- No integrity management at all.
- OO3 plain documents are very powerful malware vectors.

Through Signed Documents

- Significant changes compared to OO2.
- It is no longer possible to
 - Add a macro to a signed document
 - Replace a macro with another (malicious) macro.
- BUT OO3 signature provides the illusion of security only!
- Since there is no PKI yet to securely manage signature:
 - Man-in-the-middle attacks are very easy to revert trust against the user
 - Demo A4

esiea

Through Signed Documents (2)

• Alice signs her document.

esiea

- Charlie the attacker forges a Alice's fake x509 certificate
 - Very easy to recover the necessary information.
 - Just read the *meta.xml* file (possibly of in a previous document).
- Charlie generates a Alice's fake pair of keys and signs the document in Alice's name (impersonation attack) after adding malicious macros.
- Bob the receiver checks the signature and is fooled.
 - A close look at certificates (Demo A5).

Enhancing OO3 Security

Black Hat Briefings

esiea

Protection measures

- Postpone use of OO3 for critical use!
- Use external signature modules with PKI.
 - French project Linagora (Open cryptographic component EAL3+)
 - <u>http://wiki.services.openoffice.org/wiki/Improving_the_digital_signature_Feature</u>
- Apply security policy rules
 - Control of origin

esiea

Control of contents

Change the Design

- Files manifest.xml and meta.xml should be encrypted to prevent information extraction.
- Semantic verification of the archive should be implemented
 - At the present time only the XML specification syntax is checked.
 - Implement λ-calculus-based techniques!
- Design the Trusted OpenOffice suite
 - Enable/disable functions/languages through an administrator password.
 - ... or use LaTeX!

esiea

