
© 2007 Security-Assessment.com

Crackstation

Presented By
Nick Breese

© 2007 Security-Assessment.com

Crackstation
“How I got my company to buy me a Playstation 3”

Presented By
Nick Breese

© 2007 Security-Assessment.com

Preface

 Presentation is done in a timeline format

 This is important as I'm not the only person to make silly
assumptions

 I'm more than happy to talk about this further, however I'm very
time constrained

 Beer helps me talk more!

 All materials should be up on http://www.security-assessment.com

 Mirrored on http://insecure.io

© 2007 Security-Assessment.com

The beginnings

 I wanted a Playstation 3

 New architecture called the “Cell”

 It would like nice on my desk

 Free toys are better than toys I have to buy myself

 I have to convince management to buy me a PlayStation 3

 Success rates for companies buying employees game consoles is
pitiful

 Try anyway

 Used password cracking as an excuse

 Needs lots of power

 Sounds very “hackerish”

 They're all for it

 The PS3 is mine!

© 2007 Security-Assessment.com

Playstation 3

 Features a new architecture known as the “Cell” or Cell Broadband
Engine (CBE)

 This architecture was developed by IBM, Toshiba and Sony

 Based off IBM's Power architecture

 The PlayStation 3 is reasonably open by design

 All the developer documentation you need is publicly available

 via IBM:
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

 Runs custom operating systems

 Most popular Linux distributions have some level of PS3 support

 IBM's Cell Software Development is freely available

 You have everything you need to start developing

© 2007 Security-Assessment.com

Just some beginning points

 Yellow Dog Linux is the “official” Linux distribution supported by the
Playstation 3

 It costs money

 I have no idea if it's any good

 IBM standardise on Fedora Core for their Cell SDK releases

 Strongly recommend using it for development as it “just works”

 Cell SDK 3.0 is paired for Fedora Core 7

 Installation is a little awkward. Need the following:

 Linux distribution disc

 Linux Add-on CD

 Boot descriptor file (OtherOS - can be thrown on a USB key)

© 2007 Security-Assessment.com

Cell Architecture

 At the core of the Cell is the “PPU”

 Effectively a slightly-tweaked PowerPC core

 PowerPC compatibility in Linux distributions make things easy

 Be warned: using the PPU alone is relatively slow when
compared to new x86 CPUs

 PPU is connected to 8 “SPUs”

 People commonly call these the “Cell Processors”

 These are the workhorses

 1 SPU is reserved for redundancy

 1 SPU is used for a hypervisor when using a custom OS

 In total, we have 1 PowerPC PPU and 6 SPUs at our disposal

© 2007 Security-Assessment.com

Cell Broadband Engine

© 2007 Security-Assessment.com

Cell Speed Comparisons

 I didn't understand why the Cell is so fast. Just that it was.

 Real-time raytracing

 Folding@Home statistics

 IBM “Roadrunner” supercomputer

 Don't I have everything I need now?

 Processors are processors right?

 I have Linux.

 I have a custom GCC implementation for the Cell.

 Lets do it!

© 2007 Security-Assessment.com

MD5 time

 Current plan:

 Compile an MD5 implementation for the SPU

 Use a simple wrapper to use the SPU program

 Compare speed to other implementations

 Using L Peter Deutsch's MD5 implementation

 It's used everywhere

 Quite sane. Pre-computed T values used

 10,000,000 iterations of calculating “password”

 8 character value

© 2007 Security-Assessment.com

Hypervisor

 Your custom OS runs under a hypervisor

 The GPU (“RSX”) is out of bounds

 Framebuffer is effectively all that you have available

 Can't use the RSX to assist in cracking =(

 Aside from the loss of the RSX and one of your SPUs, you're not
hindered in any way

© 2007 Security-Assessment.com

Cell Programming

 The SPUs run programs available within their local storage.

 Remember: 256KB RAM only!

 It's the PPU's job to upload code to each individual SPU and trigger
execution

 The Cell SDK provides two variations of GCC

 ppu-gcc

 spu-gcc

 We compile SPU programs with spu-gcc to create our SPU code

 We then compile a wrapper program with ppu-gcc to create our
PPU code

 It's primary purpose is to upload code to one or more SPUs and
trigger execution

© 2007 Security-Assessment.com

Hello World SPU

 The complexity is mind-boggling..

/* ./spu/spu-hello.c */

#include <stdio.h>

#include <spu_intrinsics.h>

int main(unsigned long long id)

{

 printf("Hello hackers from SPU ID: 0x%llx\n", id);

 return 0;

}

© 2007 Security-Assessment.com

Hello World PPU

 A little more interesting..

/* ./ppu-hello.c */
#include <libspe2.h>
#include <stdlib.h>

extern spe_program_handle_t spu_hello;

int main()
{
 pthread_t thread[1];
 spe_context_ptr_t ctx;
 unsigned int entry = SPE_DEFAULT_ENTRY;

...

SPE headers

Defines our SPU program name to call

Defining variables used for our SPU
context to push out

© 2007 Security-Assessment.com

Hello World PPU

 Continued...

ctx = spe_context_create (0, NULL);
 spe_program_load (ctx,&spu_hello);

pthread_create (
 &thread,
 NULL,
 spe_context_run(ctx,&entry, 0, NULL, NULL, NULL), &ctx);

 pthread_join (thread, NULL);
 printf("\nThe program has successfully executed.\n");
}

Tells the SPU to spawn the
configured context locally

Tells the SPU to copy the
program

Tells the SPU to copy the program

Create a new thread to access later

Join the thread

Thread finished. All done.

© 2007 Security-Assessment.com

Hello World Compilation

 Compilation

cd spu
/usr/bin/spu-gcc -O3 -o spu_hello.o -c spu_hello.c
/usr/bin/spu-gcc -o spu_hello spu_hello.o
/usr/bin/ppu-embedspu -m32 spu_hello spu_hello spu_hello-embed.o
/usr/bin/ppu-ar -qcs lib_spu_hello.a spu_hello-embed.o
cd ..
/usr/bin/ppu32-gcc -mabi=altivec -maltivec -O3 -c ppu_hello.c
/usr/bin/ppu32-gcc -lspe2 -lpthread -o hello ppu_hello.o \

spu/lib_spu_hello.a

 Run-time
[tmasky@crackstation clean]$./hello
Hello hackers from SPU ID: 0x10019008

The program has successfully executed.

From the SPU

From the PPU

© 2007 Security-Assessment.com

MD5 time

PS3 - SPU Only

PS3 - PPU Only

Pentium 4 @3GHz

Centrino 2 Duo @ 2.2GHz

0 1 2 3 4 5 6 7 8 9

10 Million MD5 Hashes10 Million MD5 Hashes
Calculation time in secondsCalculation time in seconds

1 core
All Cores

© 2007 Security-Assessment.com

Uhh..?

 Using standard scalar code, the entire PS3 performs about as fast
as one of the latest Intel Centrino processors

 By itself, a single SPU core is the slowest tested architecture

 This is obviously lacking in the magnitudes of performance I was
expecting

 Well okay, this is simply lame

 How can I optimise this a bit?

 Or, how can I explain to management this “super computer” is
as fast as my laptop for crypto?

© 2007 Security-Assessment.com

So what can the SPU do well?

 I decided to do some reading about the features of the SPU

 It's funny what you can learn from reading things

 My initial assumption regarding the SPU processor was completely
wrong

 It's basically a vector processor, rather than your typical CPU

 Makes “SIMD” operations run really quickly

 Scalar support is there for convenience only

 I'm still lost...

© 2007 Security-Assessment.com

Heads-up

 This is old and new tech

 Old: The technology (vector computation) has been around for a
while

 New: It hasn't been generally exploited in public cryptography
implementations

 Jump on in, it's easy

 For those not wanting to buy a PS3, the technique I will be talking
about is available on other platforms including x86

 x86's implementation is known as “SSE”

 SSE is the evolution of MMX

 Finally, you get to understand what MMX/SSE is

 You learn a hell of a lot about processor architecture, distributed
computing, cryptography, vector and parallel processing

© 2007 Security-Assessment.com

Scalar Computing

 This is the name for the stuff we're all familiar with

 Like adding 1 + 1

 i.e.:

int i;

i=1+2;

 Simple and easy

 Single data groups (1 and 2)

 Single operation (addition)

 An operation is performed on a single data item at a time

© 2007 Security-Assessment.com

Vector Computing

 The commonly used term is “SIMD”

 Single Instruction, Multiple Data

 Conducting one operation against a range of values

 Example:

 1+4, 2+4, 3+4, 4+4

 4 data objects (1,2,3,4)

 Single operation (+4)

© 2007 Security-Assessment.com

Vector Computing

 Single instruct, single data (scalar)
1 + 4 = 4
1 data + instruction

 Single instruction, multiple data (vector)
{1, 2, 3, 4} + 4 = {5, 6, 7, 8}
1, 2, 3, 4 data set
+ single instruction

 Single instruction, multiple data (vector)
{1, 2, 3, 4} + {5, 6, 7, 8} = {6, 8, 10, 12}
1, 2, 3, 4 data set
+ single instruction
5, 6, 7, 8 second data set

 SIMD allows you to perform instructions on data sets, rather than a
single piece of data

© 2007 Security-Assessment.com

Enlightenment

 The SPUs conduct these vector instructions natively

 This is where I got quite interested

 I now understand why the initial basic port was so slow

 I also have this SIMD concept to play with

 Could I write an algorithm using only vector instructions?

 Could I conduct multiple operations simultaneously to further
increase speed?

 I can't hack/optimise an existing implementation, I have to write
mine from scratch

© 2007 Security-Assessment.com

The guinea pig

 I looked at a few crypto algorithms

 Must not be too complex

 Must be commonly used

 MD5 was the winner

 Met the above criteria

 Everyone (incorrectly) uses MD5 hashes for security

© 2007 Security-Assessment.com

Simplistic breakdown of MD5

 Explicitly uses little-endian 32bit unsigned integers for everything

 x86 = little-endian (hex F2 == 0x000000F2)

 PowerPC/SPU = big-endian (hex F2 == 0xF2000000)

 Unsigned means only positive values

 The algorithm focuses on pre-defined starting values of 4 32-bit
words

 “a”, “b”, “c”, “d”

 Has 64 constant “T” values are fed into calculation to mix things up

 Pre-compute the value and hard-code them. (Simple
optimisation)

 Operates on blocks of 512-bits of data

 This includes some padding

 Splits the block into 16 32-bit chunks

© 2007 Security-Assessment.com

Simplistic breakdown of MD5 (cont.)

 a,b,c,d tumble through 4 rounds

 Each round is conducted 16 times

 During each step:

 A T value is thrown in

 A 32bit chunk of our data is also thrown in

 Addition and bitwise operations conducted (XOR, NOT, AND,
etc.)

 At the end, the current values of a,b,c,d are added to the initial
values of the same variables

 Each 32-bit value of a,b,c,d is compounded to result in a 128-bit
hash.

© 2007 Security-Assessment.com

What we now know

 Everything uses unsigned 32bit integers

 There are 68 predefined values that we reference

 64 constant T values

 4 constant initial values (a,b,c,d)

 Very simple maths is done

 Bitwise operations are done

 We can't split up the operations as each operation is
interdependent.

 i.e. an avalanche occurs

© 2007 Security-Assessment.com

Back to the SPU

 The SPU has 3 methods for immediate data storage

 The system RAM (relatively slow to access)

 The local SPU RAM (small, fast)

 The register space on the SPU itself (really, really fast)

 CPUs have registers too. They're temporary slots for doing
immediate calculations.

 Data is shifted from RAM into these registers, operations are
performed and then the data is moved out of these registers.

 So keeping and using data within the processor's registers for as
long as possible == speed

 x86 architecture has 8 – 16 general purpose 32-bit registers, 8 – 16
vector registers

 So, what about the SPU?

 128!

© 2007 Security-Assessment.com

Back to the SPU - omg

 Each vector register on the SPU is 128-bits wide

 When you create a vector, you can use different data lengths to a
total length of 128bits. Examples:

 16 8-bit values

 4 32-bit values

 2 64-bit values

© 2007 Security-Assessment.com

Back to the SPU - omg

© 2007 Security-Assessment.com

Operations

 SIMD vector operations are a simple concept

 Establish a vector with values

 e.g. Vector A contains:
0x11111111,0x22222222,0x33333333,0x44444444

 Apply the operation against the vector with another value (could be
another vector..)

 New vector is created with the resulting values.

 SPU supports all your basic math and (most) bitwise operators
natively

© 2007 Security-Assessment.com

Time travel

 Review of our previous MD5 findings

 Everything uses unsigned 32bit integers

 So, we use vectors containing 4 32-bit unsigned integers

 There are 68 predefined values that we reference

 We have lots of available registers. Use vectors for everything

 Very simple maths is done

 SPU natively supports that

 Bitwise operations are done

 All supported by intrinsics, except one.

 We can't split up the operations as each operation is interdependent

 Still a problem

© 2007 Security-Assessment.com

Back to the SPU - omg

 Why don't we run individual md5 calculations simultaneously?

 A, B, C, D are each vectors of 4 32-bit words

 At each step of md5, we merely conduct the operation against a
vector of numbers rather than a single number.

 That allows us to conduct 4 simultaneous MD5 calculations per SPU
core.

 That's 24 concurrent calculations in a Playstation 3

 So, that's at least 4 times the performance?

© 2007 Security-Assessment.com

SPU Programming Overview

 Vector operations using the Cell is damn easy with IBM's SDK.

 The term is using “intrinsics”

 Close-to-assembly level of operations

 Very well documented

 Examples

 Scalar

 unsigned int i = 1;

 Vector:

 vector unsigned integer vec_i = {1,2,3,4};

 (Alternative) Vector:

 vec_uint_32 vec_i = {1,2,3,4};

© 2007 Security-Assessment.com

SPU Programming Overview

 More examples:

 Scalar:

 i = i + 1;

 Vector:

 vec_i = spu_add(vec_i,1);

 Scalar:

 i = i ^ 1;

 Vector:

 vec_i = spu_xor(i,1);

© 2007 Security-Assessment.com

Code snippets

 md5.c
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 – (n))))

 spu_md5.c
vec_uint4 rotate_left (vec_uint4 * vec_x, unsigned int n) {
 int rshift = 32-n;
 return spu_or(spu_sl(*vec_x,n),spu_rlmask(*vec_x,-(rshift)));
}

 Negative value of 32-n is required to emulate the right shift when
using spu_rlmask

© 2007 Security-Assessment.com

Code snippets

 md5.c
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))

 spu_md5.c
vec_uint4 f_round_1(vec_uint4 * vec_x, vec_uint4 * vec_y, \
vec_uint4 * vec_z)
{
 vec_uint4 vec_f;
 vec_uint4 vec_f1;
 vec_uint4 vec_f2;
 vec_f1 = spu_and(*vec_x,*vec_y);
 vec_uint4 vec_comp_x = spu_nor (*vec_x,vec_null);
 vec_f2 = spu_and (vec_comp_x, *vec_z);
 vec_f = spu_or (vec_f1, vec_f2);
 return(vec_f);
}

 Long, drawn-out programming style

© 2007 Security-Assessment.com

SPU Programming Overview

 The “NOT” bitwise operator

 Inverts the bit values

 No “spu_not”!

 Scalar:
d = ~c

 Vector:
vec_d = spu_eqv(vec_c,vec_null);

 Vector:
vec_d = spu_nor(vec_c,vec_null);

 vec_null = {0x00000000, 0x00000000, 0x00000000, 0x00000000};

© 2007 Security-Assessment.com

SPU Programming Overview

 SPUs are like 100 meter runners

 They can go really fast in a straight line

 Don't put hurdles in their way

 Branch conditions trip them up

 Calculate both possibilities if possible

 Select the answer to use based on a condition

 Use spu_select with a comparison intrinsic

 Keep as much of your code linear

© 2007 Security-Assessment.com

What you all want to know...

 So, how fast is my MD5 vector implementation on a Playstation 3?

© 2007 Security-Assessment.com

The Result!

1.4 1.9 billion MD5
calculations a second

© 2007 Security-Assessment.com

The Result!

 Calculation time != cracking time

 This level of performance brings new problems

 How do you feed enough data in for the implementation to chew
through?

 I don't believe you can

 Need to instruct the SPU to generate it's own test values

 Which happens to adhere to the principle of keeping the SPU as
independent as possible

© 2007 Security-Assessment.com

Other implementations

 Not specific to Cell.

 It's only the strongest SIMD implementation out there.

 Other implementations:

 MMX/SSE (x86)

 Altivec (PowerPC)

 GPUs

 I haven't seen any implementations of this technique anywhere
else.

© 2007 Security-Assessment.com

SSE MD5

 SSE uses the same width for vector registers

 128bits wide

 Supports 4 x 32bit unsigned integers

 Took 2 hours to port.

 No prior SSE experience

 Just picked up an SSE reference document

 Search/replace for most things

 Roughly double the performance.

© 2007 Security-Assessment.com

Repercussions

 Finding collisions is likely to be easier

 Salted password cracking

 Complex password cracking

 “What about my Linux?”

 While distributions typically use an MD5-based password hashing
mechanism, it's not just plain MD5

 The biggest defense is that passwords are hashed through 1000
MD5 iterations

 But the gap is closing

 New hash needed, more iterations

© 2007 Security-Assessment.com

Repercussions

 “What about my Windows?”

 Windows revision up until Vista store LM hashes – a very weak
DES-based implementation

 The native alternative is NTLM hashes. This is MD4

 Just to note: NTLM hashes uses UTF-16 for password data

© 2007 Security-Assessment.com

Grumblings

 You would think I'm rather happy with the Cell

 Unfortunately due to limited availability, it complicates things

 Using this technology for defense is difficult

 Though I think having PS3s hooked up to servers in datacentres
would be pretty sweet.

 Ongoing security research is difficult due to accessibility of faster
Cell processors

 In my opinion, it is incorrectly marketed leading to non-widespread
availability

 Latest revision of the Cell shrunk the size of the die, but offered no
improvements

 It's starting to look like the Cell is the “PS3 processor”

Questions?

© 2007 Security-Assessment.com

http://www.security-assessment.com
nick.breese@security-assessment.com

