
© 2007 Security-Assessment.com

Crackstation

Presented By
Nick Breese

© 2007 Security-Assessment.com

Crackstation
“How I got my company to buy me a Playstation 3”

Presented By
Nick Breese

© 2007 Security-Assessment.com

Preface

 Presentation is done in a timeline format

 This is important as I'm not the only person to make silly
assumptions

 I'm more than happy to talk about this further, however I'm very
time constrained

 Beer helps me talk more!

 All materials should be up on http://www.security-assessment.com

 Mirrored on http://insecure.io

© 2007 Security-Assessment.com

The beginnings

 I wanted a Playstation 3

 New architecture called the “Cell”

 It would like nice on my desk

 Free toys are better than toys I have to buy myself

 I have to convince management to buy me a PlayStation 3

 Success rates for companies buying employees game consoles is
pitiful

 Try anyway

 Used password cracking as an excuse

 Needs lots of power

 Sounds very “hackerish”

 They're all for it

 The PS3 is mine!

© 2007 Security-Assessment.com

Playstation 3

 Features a new architecture known as the “Cell” or Cell Broadband
Engine (CBE)

 This architecture was developed by IBM, Toshiba and Sony

 Based off IBM's Power architecture

 The PlayStation 3 is reasonably open by design

 All the developer documentation you need is publicly available

 via IBM:
http://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

 Runs custom operating systems

 Most popular Linux distributions have some level of PS3 support

 IBM's Cell Software Development is freely available

 You have everything you need to start developing

© 2007 Security-Assessment.com

Just some beginning points

 Yellow Dog Linux is the “official” Linux distribution supported by the
Playstation 3

 It costs money

 I have no idea if it's any good

 IBM standardise on Fedora Core for their Cell SDK releases

 Strongly recommend using it for development as it “just works”

 Cell SDK 3.0 is paired for Fedora Core 7

 Installation is a little awkward. Need the following:

 Linux distribution disc

 Linux Add-on CD

 Boot descriptor file (OtherOS - can be thrown on a USB key)

© 2007 Security-Assessment.com

Cell Architecture

 At the core of the Cell is the “PPU”

 Effectively a slightly-tweaked PowerPC core

 PowerPC compatibility in Linux distributions make things easy

 Be warned: using the PPU alone is relatively slow when
compared to new x86 CPUs

 PPU is connected to 8 “SPUs”

 People commonly call these the “Cell Processors”

 These are the workhorses

 1 SPU is reserved for redundancy

 1 SPU is used for a hypervisor when using a custom OS

 In total, we have 1 PowerPC PPU and 6 SPUs at our disposal

© 2007 Security-Assessment.com

Cell Broadband Engine

© 2007 Security-Assessment.com

Cell Speed Comparisons

 I didn't understand why the Cell is so fast. Just that it was.

 Real-time raytracing

 Folding@Home statistics

 IBM “Roadrunner” supercomputer

 Don't I have everything I need now?

 Processors are processors right?

 I have Linux.

 I have a custom GCC implementation for the Cell.

 Lets do it!

© 2007 Security-Assessment.com

MD5 time

 Current plan:

 Compile an MD5 implementation for the SPU

 Use a simple wrapper to use the SPU program

 Compare speed to other implementations

 Using L Peter Deutsch's MD5 implementation

 It's used everywhere

 Quite sane. Pre-computed T values used

 10,000,000 iterations of calculating “password”

 8 character value

© 2007 Security-Assessment.com

Hypervisor

 Your custom OS runs under a hypervisor

 The GPU (“RSX”) is out of bounds

 Framebuffer is effectively all that you have available

 Can't use the RSX to assist in cracking =(

 Aside from the loss of the RSX and one of your SPUs, you're not
hindered in any way

© 2007 Security-Assessment.com

Cell Programming

 The SPUs run programs available within their local storage.

 Remember: 256KB RAM only!

 It's the PPU's job to upload code to each individual SPU and trigger
execution

 The Cell SDK provides two variations of GCC

 ppu-gcc

 spu-gcc

 We compile SPU programs with spu-gcc to create our SPU code

 We then compile a wrapper program with ppu-gcc to create our
PPU code

 It's primary purpose is to upload code to one or more SPUs and
trigger execution

© 2007 Security-Assessment.com

Hello World SPU

 The complexity is mind-boggling..

/* ./spu/spu-hello.c */

#include <stdio.h>

#include <spu_intrinsics.h>

int main(unsigned long long id)

{

 printf("Hello hackers from SPU ID: 0x%llx\n", id);

 return 0;

}

© 2007 Security-Assessment.com

Hello World PPU

 A little more interesting..

/* ./ppu-hello.c */
#include <libspe2.h>
#include <stdlib.h>

extern spe_program_handle_t spu_hello;

int main()
{
 pthread_t thread[1];
 spe_context_ptr_t ctx;
 unsigned int entry = SPE_DEFAULT_ENTRY;

...

SPE headers

Defines our SPU program name to call

Defining variables used for our SPU
context to push out

© 2007 Security-Assessment.com

Hello World PPU

 Continued...

ctx = spe_context_create (0, NULL);
 spe_program_load (ctx,&spu_hello);

pthread_create (
 &thread,
 NULL,
 spe_context_run(ctx,&entry, 0, NULL, NULL, NULL), &ctx);

 pthread_join (thread, NULL);
 printf("\nThe program has successfully executed.\n");
}

Tells the SPU to spawn the
configured context locally

Tells the SPU to copy the
program

Tells the SPU to copy the program

Create a new thread to access later

Join the thread

Thread finished. All done.

© 2007 Security-Assessment.com

Hello World Compilation

 Compilation

cd spu
/usr/bin/spu-gcc -O3 -o spu_hello.o -c spu_hello.c
/usr/bin/spu-gcc -o spu_hello spu_hello.o
/usr/bin/ppu-embedspu -m32 spu_hello spu_hello spu_hello-embed.o
/usr/bin/ppu-ar -qcs lib_spu_hello.a spu_hello-embed.o
cd ..
/usr/bin/ppu32-gcc -mabi=altivec -maltivec -O3 -c ppu_hello.c
/usr/bin/ppu32-gcc -lspe2 -lpthread -o hello ppu_hello.o \

spu/lib_spu_hello.a

 Run-time
[tmasky@crackstation clean]$./hello
Hello hackers from SPU ID: 0x10019008

The program has successfully executed.

From the SPU

From the PPU

© 2007 Security-Assessment.com

MD5 time

PS3 - SPU Only

PS3 - PPU Only

Pentium 4 @3GHz

Centrino 2 Duo @ 2.2GHz

0 1 2 3 4 5 6 7 8 9

10 Million MD5 Hashes10 Million MD5 Hashes
Calculation time in secondsCalculation time in seconds

1 core
All Cores

© 2007 Security-Assessment.com

Uhh..?

 Using standard scalar code, the entire PS3 performs about as fast
as one of the latest Intel Centrino processors

 By itself, a single SPU core is the slowest tested architecture

 This is obviously lacking in the magnitudes of performance I was
expecting

 Well okay, this is simply lame

 How can I optimise this a bit?

 Or, how can I explain to management this “super computer” is
as fast as my laptop for crypto?

© 2007 Security-Assessment.com

So what can the SPU do well?

 I decided to do some reading about the features of the SPU

 It's funny what you can learn from reading things

 My initial assumption regarding the SPU processor was completely
wrong

 It's basically a vector processor, rather than your typical CPU

 Makes “SIMD” operations run really quickly

 Scalar support is there for convenience only

 I'm still lost...

© 2007 Security-Assessment.com

Heads-up

 This is old and new tech

 Old: The technology (vector computation) has been around for a
while

 New: It hasn't been generally exploited in public cryptography
implementations

 Jump on in, it's easy

 For those not wanting to buy a PS3, the technique I will be talking
about is available on other platforms including x86

 x86's implementation is known as “SSE”

 SSE is the evolution of MMX

 Finally, you get to understand what MMX/SSE is

 You learn a hell of a lot about processor architecture, distributed
computing, cryptography, vector and parallel processing

© 2007 Security-Assessment.com

Scalar Computing

 This is the name for the stuff we're all familiar with

 Like adding 1 + 1

 i.e.:

int i;

i=1+2;

 Simple and easy

 Single data groups (1 and 2)

 Single operation (addition)

 An operation is performed on a single data item at a time

© 2007 Security-Assessment.com

Vector Computing

 The commonly used term is “SIMD”

 Single Instruction, Multiple Data

 Conducting one operation against a range of values

 Example:

 1+4, 2+4, 3+4, 4+4

 4 data objects (1,2,3,4)

 Single operation (+4)

© 2007 Security-Assessment.com

Vector Computing

 Single instruct, single data (scalar)
1 + 4 = 4
1 data + instruction

 Single instruction, multiple data (vector)
{1, 2, 3, 4} + 4 = {5, 6, 7, 8}
1, 2, 3, 4 data set
+ single instruction

 Single instruction, multiple data (vector)
{1, 2, 3, 4} + {5, 6, 7, 8} = {6, 8, 10, 12}
1, 2, 3, 4 data set
+ single instruction
5, 6, 7, 8 second data set

 SIMD allows you to perform instructions on data sets, rather than a
single piece of data

© 2007 Security-Assessment.com

Enlightenment

 The SPUs conduct these vector instructions natively

 This is where I got quite interested

 I now understand why the initial basic port was so slow

 I also have this SIMD concept to play with

 Could I write an algorithm using only vector instructions?

 Could I conduct multiple operations simultaneously to further
increase speed?

 I can't hack/optimise an existing implementation, I have to write
mine from scratch

© 2007 Security-Assessment.com

The guinea pig

 I looked at a few crypto algorithms

 Must not be too complex

 Must be commonly used

 MD5 was the winner

 Met the above criteria

 Everyone (incorrectly) uses MD5 hashes for security

© 2007 Security-Assessment.com

Simplistic breakdown of MD5

 Explicitly uses little-endian 32bit unsigned integers for everything

 x86 = little-endian (hex F2 == 0x000000F2)

 PowerPC/SPU = big-endian (hex F2 == 0xF2000000)

 Unsigned means only positive values

 The algorithm focuses on pre-defined starting values of 4 32-bit
words

 “a”, “b”, “c”, “d”

 Has 64 constant “T” values are fed into calculation to mix things up

 Pre-compute the value and hard-code them. (Simple
optimisation)

 Operates on blocks of 512-bits of data

 This includes some padding

 Splits the block into 16 32-bit chunks

© 2007 Security-Assessment.com

Simplistic breakdown of MD5 (cont.)

 a,b,c,d tumble through 4 rounds

 Each round is conducted 16 times

 During each step:

 A T value is thrown in

 A 32bit chunk of our data is also thrown in

 Addition and bitwise operations conducted (XOR, NOT, AND,
etc.)

 At the end, the current values of a,b,c,d are added to the initial
values of the same variables

 Each 32-bit value of a,b,c,d is compounded to result in a 128-bit
hash.

© 2007 Security-Assessment.com

What we now know

 Everything uses unsigned 32bit integers

 There are 68 predefined values that we reference

 64 constant T values

 4 constant initial values (a,b,c,d)

 Very simple maths is done

 Bitwise operations are done

 We can't split up the operations as each operation is
interdependent.

 i.e. an avalanche occurs

© 2007 Security-Assessment.com

Back to the SPU

 The SPU has 3 methods for immediate data storage

 The system RAM (relatively slow to access)

 The local SPU RAM (small, fast)

 The register space on the SPU itself (really, really fast)

 CPUs have registers too. They're temporary slots for doing
immediate calculations.

 Data is shifted from RAM into these registers, operations are
performed and then the data is moved out of these registers.

 So keeping and using data within the processor's registers for as
long as possible == speed

 x86 architecture has 8 – 16 general purpose 32-bit registers, 8 – 16
vector registers

 So, what about the SPU?

 128!

© 2007 Security-Assessment.com

Back to the SPU - omg

 Each vector register on the SPU is 128-bits wide

 When you create a vector, you can use different data lengths to a
total length of 128bits. Examples:

 16 8-bit values

 4 32-bit values

 2 64-bit values

© 2007 Security-Assessment.com

Back to the SPU - omg

© 2007 Security-Assessment.com

Operations

 SIMD vector operations are a simple concept

 Establish a vector with values

 e.g. Vector A contains:
0x11111111,0x22222222,0x33333333,0x44444444

 Apply the operation against the vector with another value (could be
another vector..)

 New vector is created with the resulting values.

 SPU supports all your basic math and (most) bitwise operators
natively

© 2007 Security-Assessment.com

Time travel

 Review of our previous MD5 findings

 Everything uses unsigned 32bit integers

 So, we use vectors containing 4 32-bit unsigned integers

 There are 68 predefined values that we reference

 We have lots of available registers. Use vectors for everything

 Very simple maths is done

 SPU natively supports that

 Bitwise operations are done

 All supported by intrinsics, except one.

 We can't split up the operations as each operation is interdependent

 Still a problem

© 2007 Security-Assessment.com

Back to the SPU - omg

 Why don't we run individual md5 calculations simultaneously?

 A, B, C, D are each vectors of 4 32-bit words

 At each step of md5, we merely conduct the operation against a
vector of numbers rather than a single number.

 That allows us to conduct 4 simultaneous MD5 calculations per SPU
core.

 That's 24 concurrent calculations in a Playstation 3

 So, that's at least 4 times the performance?

© 2007 Security-Assessment.com

SPU Programming Overview

 Vector operations using the Cell is damn easy with IBM's SDK.

 The term is using “intrinsics”

 Close-to-assembly level of operations

 Very well documented

 Examples

 Scalar

 unsigned int i = 1;

 Vector:

 vector unsigned integer vec_i = {1,2,3,4};

 (Alternative) Vector:

 vec_uint_32 vec_i = {1,2,3,4};

© 2007 Security-Assessment.com

SPU Programming Overview

 More examples:

 Scalar:

 i = i + 1;

 Vector:

 vec_i = spu_add(vec_i,1);

 Scalar:

 i = i ^ 1;

 Vector:

 vec_i = spu_xor(i,1);

© 2007 Security-Assessment.com

Code snippets

 md5.c
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 – (n))))

 spu_md5.c
vec_uint4 rotate_left (vec_uint4 * vec_x, unsigned int n) {
 int rshift = 32-n;
 return spu_or(spu_sl(*vec_x,n),spu_rlmask(*vec_x,-(rshift)));
}

 Negative value of 32-n is required to emulate the right shift when
using spu_rlmask

© 2007 Security-Assessment.com

Code snippets

 md5.c
#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))

 spu_md5.c
vec_uint4 f_round_1(vec_uint4 * vec_x, vec_uint4 * vec_y, \
vec_uint4 * vec_z)
{
 vec_uint4 vec_f;
 vec_uint4 vec_f1;
 vec_uint4 vec_f2;
 vec_f1 = spu_and(*vec_x,*vec_y);
 vec_uint4 vec_comp_x = spu_nor (*vec_x,vec_null);
 vec_f2 = spu_and (vec_comp_x, *vec_z);
 vec_f = spu_or (vec_f1, vec_f2);
 return(vec_f);
}

 Long, drawn-out programming style

© 2007 Security-Assessment.com

SPU Programming Overview

 The “NOT” bitwise operator

 Inverts the bit values

 No “spu_not”!

 Scalar:
d = ~c

 Vector:
vec_d = spu_eqv(vec_c,vec_null);

 Vector:
vec_d = spu_nor(vec_c,vec_null);

 vec_null = {0x00000000, 0x00000000, 0x00000000, 0x00000000};

© 2007 Security-Assessment.com

SPU Programming Overview

 SPUs are like 100 meter runners

 They can go really fast in a straight line

 Don't put hurdles in their way

 Branch conditions trip them up

 Calculate both possibilities if possible

 Select the answer to use based on a condition

 Use spu_select with a comparison intrinsic

 Keep as much of your code linear

© 2007 Security-Assessment.com

What you all want to know...

 So, how fast is my MD5 vector implementation on a Playstation 3?

© 2007 Security-Assessment.com

The Result!

1.4 1.9 billion MD5
calculations a second

© 2007 Security-Assessment.com

The Result!

 Calculation time != cracking time

 This level of performance brings new problems

 How do you feed enough data in for the implementation to chew
through?

 I don't believe you can

 Need to instruct the SPU to generate it's own test values

 Which happens to adhere to the principle of keeping the SPU as
independent as possible

© 2007 Security-Assessment.com

Other implementations

 Not specific to Cell.

 It's only the strongest SIMD implementation out there.

 Other implementations:

 MMX/SSE (x86)

 Altivec (PowerPC)

 GPUs

 I haven't seen any implementations of this technique anywhere
else.

© 2007 Security-Assessment.com

SSE MD5

 SSE uses the same width for vector registers

 128bits wide

 Supports 4 x 32bit unsigned integers

 Took 2 hours to port.

 No prior SSE experience

 Just picked up an SSE reference document

 Search/replace for most things

 Roughly double the performance.

© 2007 Security-Assessment.com

Repercussions

 Finding collisions is likely to be easier

 Salted password cracking

 Complex password cracking

 “What about my Linux?”

 While distributions typically use an MD5-based password hashing
mechanism, it's not just plain MD5

 The biggest defense is that passwords are hashed through 1000
MD5 iterations

 But the gap is closing

 New hash needed, more iterations

© 2007 Security-Assessment.com

Repercussions

 “What about my Windows?”

 Windows revision up until Vista store LM hashes – a very weak
DES-based implementation

 The native alternative is NTLM hashes. This is MD4

 Just to note: NTLM hashes uses UTF-16 for password data

© 2007 Security-Assessment.com

Grumblings

 You would think I'm rather happy with the Cell

 Unfortunately due to limited availability, it complicates things

 Using this technology for defense is difficult

 Though I think having PS3s hooked up to servers in datacentres
would be pretty sweet.

 Ongoing security research is difficult due to accessibility of faster
Cell processors

 In my opinion, it is incorrectly marketed leading to non-widespread
availability

 Latest revision of the Cell shrunk the size of the die, but offered no
improvements

 It's starting to look like the Cell is the “PS3 processor”

Questions?

© 2007 Security-Assessment.com

http://www.security-assessment.com
nick.breese@security-assessment.com

