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Abstract 

This paper will examine how DTrace, a kernel- 
based dynamic scriptable tracer, can be 
effectively used for reverse engineering tasks. 
DTrace offers an unprecedented view of both 
user and kernel space, which has many 
interesting implications for security researchers. 
In this paper we will introduce DTrace, 
comparing it to existing debuggers and tracers.  
We will then walk the reader through various 
applications of DTrace. We will show how to 
monitor for stack and heap overflows, generate 
code coverage graphs, trace code paths visually 
in target applications over the network with IDA 
Pro, and discuss intrusion detection and evading 
DTrace.  

Introduction 

DTrace was first introduced in Solaris 10 which 
was released in 2004 by Sun Microsystems.  Its 
development began in 2001 with Sun kernel 
engineer Bryan Cantrill as the sole developer. 
The composition of the DTrace core 
development team was later completed with the 
addition of Adam Leventhal and Mike Shapiro.  

Sun Microsystems describes Dtrace as a 
“dynamic tracing framework for troubleshooting 
systemic problems in real time on production 
systems.” DTrace is made up of several 
components in the OS kernel and user space and 
tied together through the D scripting language.   
DTrace dynamic tracing allows you to view 

nearly all activity in the system on demand 
through software embedded sensors called 
“probes.”  OS X Leopard and Solaris ship with 
thousands of possible probes in places ranging 
from deep inside the kernel to user-level 
applications like web browsers and chat 
programs.  This extensive visibility provides the 
data that an administrator, developer, or user 
needs to understand the dynamic and complex 
relationships between software components. 

Questions can be asked and answered by 
querying the data gathered by DTrace probes 
through D scripts.  D  is a block-based 
interpreted language that was created for use 
with DTrace.  D syntax is a described as a 
subset of C, but is structured much like the 
syntax of Awk.  The dynamic aspect of DTrace 
comes from the fact that probes can be enabled 
when needed, and are removed once the 
requested data has been gathered. This is a very 
unobtrusive way of instrumenting a system or 
process, and it is the relative safety of DTrace 
probes that enables its use on production 
systems. 

DTrace was Sun’s first software component to 
be released under their own open source 
Common Development and Distribution License 
(CDDL).  The open sourcing of DTrace paved 
the way for the framework to be included in 
other operating systems.  However, skepticism 
about CDDL had slowed efforts to port DTrace 
to FreeBSD. RedHat decided to compete with 
their SystemTap product instead. DTrace was 
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ported to Apple’s OS X 10.5 “Leopard,” 
released in October 2007. Two weeks later it 
was announced that DTrace had been ported to 
QNX.  The DTrace community continues to be 
very dynamic. 

DTrace Vernacular 

The processing and buffering of all probe data 
takes place in the DTrace kernel module.  Each 
probe definition is composed of the four 
elements separated by colons.  The general  
form is:  

provider:module:function:name 

Provider: A provider is a DTrace kernel module, 
which logically groups together various probes 
that are related.  Examples of providers in 
DTrace include: fbt which instruments kernel 
functions, pid; which instruments user land 
processes, and syscall which instruments system 
calls. 

Module: A module is the program location of 
the group of probes.  This could be the name of 
a kernel module where the probes exist, or it 
could be a user land library.  Example modules 
are the libc.so library or the ufs kernel module. 

Function:  Specifies the specific function for 
which this probe should fire on.  This could be 
something like a particular function in a library 
such as printf() or strcpy(). 

Name:  This is usually the meaning of the probe.  
Sample names are “entry“ or “return” for a 
function or “start” for an I/O probe.  For 
instruction level tracing this field specifies the 
offset within the function.  

Understanding the DTrace vernacular allows 
you to understand the purpose of a particular 
probe.  You can list all the probes on a DTrace 
instrumented system by provider by running the 
“dtrace –l” command.  It will list the probes in 
the format described above. 

DTrace Architecture 

The bulk of DTrace functionality resides within 
the kernel.  This means that probe data collected 
in user land must be first copied into kernel 
entry points before it can be processed.  To 

provide bi-directional communication between 
user space and the kernel, DTrace provides a 
conduit in the form of the shared library 
libdtrace. 

 

 

The DTrace user command depends on libtrace 
to compile a D script into an intermediate form. 
Once the program is compiled, it is sent into the 
operating system kernel for execution by the 
DTrace kernel modules. It is at this time that the 
probes specified within your script are discretely 
activated.  After the script has completed its 
execution, the activated probes are removed and 

probe definition 
/ optional predicate / 
{ 
  optional action statements; 
} 

 

Figure 1. Anatomy of D Program 

Figure 2. DTrace Architectural Overview  
source: [1] 
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the system is returned to its normal operating 
state. 
 
The D Language 
 
As stated earlier the D language syntax is a 
subset of C.  Unlike C, the D language does not 
use traditional conditionals such as “if … else.”  
Instead D uses the concept of a “predicate” as a 
conditional statement. A predicate expression is 
evaluated as the probe is triggered. If the 
predicate is evaluated as true, then any 
statement or action associated with the clause 
executes.  If the predicate value is false then the 
probe is not triggered and instrumentation 
continues. Several predicates and probes can be 
linked together to form a D program. DTrace 
gives accessibility to an enormous amount of 
data. Effective D scripts should only instrument 
what is needed and choose the right action for 
the job. 
 
DTrace and Reverse Engineering 
 
Reverse engineering in the context of security 
research is essentially the search to understand 
how a piece of software works.  Reverse 
engineering requires time-consuming careful 
analysis, and DTrace can make that analysis 
much easier and faster in a number of ways. 
 
The greatest strength of DTrace is the scope and 
precision of the data that can be gathered by 
relatively simple D scripts.  A reverse engineer 
can learn a lot about a piece of software from 
just one or two well place probes.  This puts 
DTrace in category of a ‘rapid development’ 
environment for reverse engineers.  
 
The remainder of this paper will explore how 
DTrace can be used for various common reverse 
engineering tasks.  First we explain how DTrace 
can be used for detecting and pinpointing stack 
based buffer overflow. Secondly we examine 
detecting heap-based overflows and other heap 
memory management issues.  We then look at 

how to use DTrace with IDA Pro to visualize 
block level code coverage. Finally we discuss 
intrusion detection possibilities with DTrace and 
various ways to avoid DTrace’s monitoring. 
 
Stack Overflow Monitoring 
 
One interesting challenge is to use DTrace to 
build a stack overflow detector.  Such a monitor 
has been written in Python based on PyDbg, 
which is included with the PeiMei framework. 
[3] PeiMei’s detector works by setting 
breakpoints and single-stepping through the 
application.  We wish to build a similar monitor 
using DTrace that does not require the use of 
breakpoints. 
 
The simplest approach is to monitor the EIP 
register for a known bad value, such as 
0x41414141, or a particular value you might 
find in an exploit you want to analyze, for 
instance 0xdeadbeef.  This would require 
activating only one probe for each function 
entry.  Still, this could be a significant number 
of probes.  The table below lists some common 
applications and the number of entry probes 
available on OS X for those applications.  These 
numbers include library functions. 
 

Program Probes 
Firefox 202561 
Quicktime 218404 
Adium 223055 
VMWare Fusion 205627 
cupsd 91892 
sshd 59308 
ftp client 6370 

 
However, we cannot accurately estimate in 
advance the performance impact of 
instrumenting every entry probe on an 
application since probes will only have an 
impact when they are hit.  An application may 

Figure 3. Number of entry probes in 
common applications on OS X 10.5 
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import many libraries but only make a few 
function calls.  Conversely, an application may 
call one function in a tight loop, creating a 
heavy performance hit when traced.  
 
To avoid dropping probes and hindering 
application performance, we first ensure our 
probes do not trace unimportant modules and 
functions that are called too frequently. The 
DTrace script shown in figure 4 can be used to 
report the most frequently called functions. 
 

When the above script is run against FireFox 
and QuickTime Player it is obvious which 
functions and libraries can be exclude from our 
traces.  In QuickTime Player, there are a large 
number of calls to the __i686.get_pc_thunk.cx 
function.  Both applications are making the 
majority of their calls to functions in the 
libSystem.B.dylib module. By excluding these 
frequently hit functions and libraries we will see 
a significant performance improvement when 
tracing these applications.  Our experience with 
DTrace has shown that it is much more effective 
to build specific scripts that activate a limited 
number of probes, rather than to try to build a 
generic DTrace script that can apply to every 
situation. 
 
Once a reasonable subset of the application has 
been selected for tracing, a simple DTrace 
script, shown below in figure 4, can be used to 
check the value of the next instruction at 
function return time. 
 
This probe will fire whenever the value of EIP 
is 0x41414141.  Typically this would cause the 

application to crash.  But with DTrace we can 
stop the application before it attempts to execute 
the instruction at 0x41414141.  This allows us 
to carry out data collection and analysis, such as 
printing CPU register values and function 
parameters, dumping memory, or attaching a 
traditional debugger and examining the stack. 
 

This example makes the limiting assumption 
that when an overflow occurs, EIP will be 
0x41414141.  This may be reasonable for doing 
basic fuzzing, but an effective stack overflow 
detector should be able to detect overflows in a 
much more generic fashion.   This can be 
achieved by recording the return address in the 
stack frame created at function entry time.  The 
recorded return address can then be compared to 
the return value at function return time.  We do 
not compare the value of EIP with the saved 
return value because of the way DTrace handles 
tail call optimizations ([2]).  DTrace reports a 
tail call as a return from the calling function, 
and an entry to the function being called.  
However, the EIP at function return time is the 
first instruction of the function being called, not 
the return value stored in the stack frame.  This 
will trip up an integrity monitor that compares 
saved return values with the actual value of EIP.  
Instead, we alert when the saved return address 
is different from the current return address, and 
EIP is equal to the current return address. 
 
The above logic works well for most 
applications.  However, some peculiarities of 
DTrace must be accounted for.  In particular, 
DTrace can not trace functions that use jump 

#!/usr/sbin/dtrace -s 
 
pid$target:::entry { 
@a[probemod,probefunc] = count(); 
} 
 
END { trunc(@a,10); } 
 

Figure 4. Script to count function calls 
 

#/usr/sbin/dtrace -s 
pid$target:a.out::return  
 / uregs[R_EIP] == 0x41414141 / { 
   printf("Don’t tase me bro!!!"); 
   printf(“Module: %s Function %s”,  
           probemod, probefunc); 
      ... 
} 

 
Figure 5. Checking EIP for a bad value 
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tables. [2] When DTrace cannot determine what 
is happening in a function it chooses to not 
allow instrumentation.  For this reason, you may 
end up with a function for which there is an 
entry probe, but no exit probe. This is the case 
when DTrace cannot fully instrument a function 
due to its use of function jump tables. If this 
type of function is called and accounted for in 
our stack monitor, but never returns, then our 
list of saved return addresses will become out of 
sync with the real stack.  These functions must 
be ignored during tracing in order to properly 
monitor the stack.  DTrace’s “–l” command 
parameter can be used to list matching probes 
for a given probe definition.  The list of entry 
probes can be compared with the list of return 
probes to determine which functions our 
monitor should ignore. 
 
With these considerations implemented, our 
DTrace-based stack overflow monitor was able 
to detect the recent RTSP overflow in 
QuickTime Player. The initial output is shown 
below. The full output of the program includes 
the call trace. 
 

The monitor will catch stack overflows that 
depend on overwriting the return address.  In 
many cases overflows will modify more data on 
the stack than just the return address.  This can 
result in invalid memory access attempts when 
the function attempts to dereference overflowed 
data before it returns.  This situation is more 
common when fuzzing applications, rather than 
when detecting well crafted exploits that 
properly control EIP. An additional DTrace 
script can be used to pinpoint the exact 
instruction that causes the overflow.  This is 
done by tracing each instruction in the 
vulnerable function, and checking the stack 
return value after each instruction.  Once the 
overflow is detected, we know that the last EIP 
value is the instruction that caused the overflow. 
 
It may be worth exploring other ways DTrace 
can be used to monitor for overflow.  Similar to 
the heap overflow monitor discussed below, 
function parameter sizes and addresses could be 
recorded and later verified when bcopy, 
memcpy or strcpy are used to copy data into 
those locations.  Another approach would be to 
record the stack frame boundaries and when the 
bcopy, memcpy or strcpy functions are called,  
then verify that the parameter will not write past 
a frame boundary. This is an area of future 
work.  
 
Heap Overflow Monitoring 
 
One of the most powerful features of DTrace is 
ability to ‘hook’ functions generically.  As 
shown above this functionality when combined 
with Ruby or some other object-oriented 
scripting language can make for a very powerful 
reverse engineering platform.  In recent years 
many development teams have embraced secure 
coding practices. The increased awareness 
among software companies along with advances 
in operating system protections such as non 
executable stacks have made traditional “low 
hanging fruit” like stack overflows increasingly 
rare in widely used platforms.  This has made 

# ./eiptrace.d -q -p 4450 
 
   STACK OVERFLOW DETECTED 
   STACK OVERFLOW DETECTED  
   STACK OVERFLOW DETECTED  
 
Module: QuickTimeStreaming 
Function: _EngineNotificationProc 
Expected return value: 0x1727bac4 
Actual return value: 0xdeadbeef 
Stack depth: 14 
Registers: 
 EIP: 0xdeadbeef 
 EAX: 0xffffeae6 
 EBX: 0x11223344 
 ECX: 0x00000005 
 EDX: 0x00000000 
 EDI: 0x31337666 
 ESI: 0x41424142 
 EBP: 0xdefacedd 
 ESP: 0x183f6000 
 
... 
 
 Figure 6. A Stack overflow detected 
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‘heap overflows’ an increasingly import attack 
vector for exploit writers and security 
researchers. 
 
Nemo, of FelineMenace.or,g wrote the de facto 
treatise on “Exploiting Mac OS X heap 
overflows” in Phrack 63 [11].  His attack relies 
on manipulating the size and frequency of 
allocations to the heap (on OS X called 
“zones”), combined with a heap overflow to 
overwrite function pointers contained in the 
initial heap struct called ”malloc_zone_t.” The 
struct is loaded into process space and contains 
function pointers to various dynamic allocation 
routines such as malloc(), calloc(), realloc(), 
etc… When the addresses to these functions are 
overwritten the next call can result in arbitrary 
code execution.  This is just one of many heap 
exploitation techniques that rely on tracking the 
size, amount, and allocation patterns of the heap 
structures.   
 
The emergence of the heap as one of the main 
exploit attack vectors has brought along with it 
the need for an advance in tools to help the 
reverse engineer understand how the heap 
structure evolves.   
 
There are a number of tools released recently 
which focus on understanding the way the heap 
evolves from a reverse engineering perspective.  

On the Windows platform, the Immunity 
Debugger has an extremely powerful API which 
provides many tools for understanding the way 
a heap evolves. On the Linux and Solaris 
platforms, Core Security’s HeapTracer tool 
written by Gerado Richarte uses truss or ltrace 
to monitor system calls which allocate or de-
allocate dynamic memory.  Building on this 
same idea as a platform the heap overflow 
monitor included with RE:Trace keeps track of 
the “heap” state by hooking dynamic allocation 
functions. RE:Trace’s Heap Smash detector 
does more then just track allocations to the 
heap, it goes one step further by also hooking 
functions that attempt to allocate data to the 
heap. 

The RE:Trace Heap Smash Detector works by 
creating a Ruby hash which keeps track of the 
request size of malloc() calls as a value and the 
valid return pointer as a key.  Its also keeps 
track of any calloc(), realloc(), or free() calls 
accordingly.  This running ‘tab’ or the state of 
the heap is then used to check whether 
operations using the space will overflow it.  A 
second hash keeps track of the stack frame 
which allocated that original memory chunk. 
For example, in RE:Trace the standard C 
strncpy() call is hooked and the destination 
address and size parameters are checked against 
the malloc() hash to see what the valid size of 
allocated region is.  If the size of the strncpy() is 
larger then the allocated block we know that a 
heap overflow has occurred. The heap smasher 
has identified precisely where the overflow 
occurred, how large it is, and what stack frame 
made the original malloc() called. Not bad for a 
relatively short script!  

 

Figure 8. Strncpy() being hooked 

pid$target::malloc:entry{ 
  self->trace = 1; 
  self->size = arg0; 
} 
pid$target::malloc:return 
/self->trace == 1/  
{ 
ustack(1); 
printf("mallocreturn:ptr=0x%p|size=%
d", arg1, self->size);  
self->trace = 0; 
self->size = 0; 
} 

Figure  7.  Probe instrumenting malloc entry 
size argument and return pointer 



7 

A similar vulnerability tracing technique has 
been created using Microsoft’s Detours suite. 
[14] The tool called “VulnTrace” uses a DLL 
injected into process space which intercepts 
functions imported in IAT table so it can inspect 
function arguments for security flaws.  This 
method is much more laborious and time 
consuming than the method used for RE:Trace, 
and must be tailored to each application being 
instrumented.  Performance and memory 
addressing may be affected because of the 
additional DLL.  DTrace is implemented as an 
operating system component with very little 
overhead and does not interfere with the 
software under test. 

There are some caveats about the OS X zone 
allocation algorithm which must be taken into 
account when implementing the heap smash 
detector.  As noted by Nemo is his article 
“Exploiting OS X heap overflows,” OS X keeps 
separate “zones” or heaps for different sized 
allocations.  The following table from A. 
Singh’s “Mac OS X internals” shows the 
division of the ‘zones’ by allocation size. 

Zone 
Type 

Zone 
Size 

Allocation 
Size (bytes) 

Allocation 
Quantum 

Tiny 2MB < 1993 32 bytes 
Small 8MB 1993-15,359 1024 bytes 
Large - 15,360 - 

16,773,120 
1 page  

(4096 bytes) 
Huge - > 16,773,120  1 page 

 (4096 bytes) 
Figure 9. Scalable Zone Types on OS X 

Leopard. Source: [6] 

We can keep a running tally of each of the zones 
by hooking the allocation sizes and using 
separate hashes for each.  One interesting aspect 
about the tiny and small “zones” is that they are 
fixed at 2mb and 8mb respectively making it 
easier to calculate how much has been allocated 
to each.   

We can easily spot double free() and double 

malloc() errors using the structure laid out 
above.  One interesting fact about OS X zones 
noted by Nemo is the allocation algorithm in use 
will not free() a zone located at the same 
address twice in most cases. [11]  Yet under the 
right circumstances, (i.e. the attempted double 
free() is the same size and free()’d pointer still 
exists) the condition is exploitable and therefore 
worth detecting.  We are able to monitor for 
precisely this condition with the RE:Trace Heap 
Smash Detector.  Future additions to the 
framework may included integration with IDA 
disassembled via IDARub for automatic probe 
creation. 
 
Code Coverage 
 
Function level tracing can give us some hints as 
to which parts of code have been executed 
during a particular run of the software.  
Combined with symbols resolution this can be 
quite meaningful for someone wishing to gain 
an understanding of the behavior of an 
application.  Function level tracing can be 
particularly helpful if you wish to understand 
how a certain vulnerable function can be 
triggered.  But in terms of code coverage, 
function level measurements are fuzzy at best.  
There is no real indication as to the complexity 
of a function, or even as to how much of the 
code inside a function was executed.  At the 
function level, we can learn about what the 
application is doing, but we cannot obtain a 
good measurement of how well we have tested 
our software. 
 
Block level tracing can provide us with much 
more accurate measurements of code coverage.  
A block of code is a set of instructions for which 
if the first instruction is executed, then all 
instructions in the block are executed.  
Conditional jump instructions separate blocks of 
instructions.  This is represented in the IDA Pro 
disassembler graph view as illustrated below. 
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Figure 10. IDA Pro Disassembler graph 
 

The arrows between each block represent the 
possible code paths that may be taken during 
execution. When auditing an application, we are 
interested in how many blocks of code we can 
execute. DTrace can provide us with this 
measurement with its ability to do instruction 
level tracing.  This gives us the ability to see 
which blocks in a function are being executed 
and which are not.  Combining run time 
instruction traces with static binary analysis, we 
can answer questions such as what percentage 
of total instructions were executed, what 
percentage of blocks were executed, how many 
times a block executed, and which blocks were 
never executed.  This provides important 
metrics to software testers, and can also be used 
as feedback into a smart or evolutionary fuzzing 
engine that changes its behavior depending on 
the feedback it gets from its monitor.  
 
Instrumenting probes at every instruction in a 
large application can be very expensive in terms 
of performance.  It helps to narrow the scope to 
a single library that the application imports, or 
just the application code itself.  Further 
improvements can be made with the help of 
static analysis.  Only a single instruction needs 
to be instrumented per block. 

 
With DTrace’s instruction level tracing, specific 
instruction probes are specified as an offset 
within its function, rather than a memory 
address relative to the start of the library or the 
instructions global address in virtual memory. 
For example, the following probe definition will 
fire at the instruction that at the offset 3f in the 
function getloginname of the /usr/bin/login 
program: 
 
pid4573:login:getloginname:3f {} 
 
DTrace is strictly a runtime analysis tool and 
has no notion of code blocks.  Static analysis 
with a disassembler must be used to determine 
the addresses of the first instruction of every 
block. Once a list of addresses to instrument has 
been determined, they must be mapped from the 
global address to the offset within their function 
so that they can be used with DTrace probes.   
 
We use a combination of technologies to 
connect DTrace with IDA Pro to visualize our 
code coverage in real time. Ruby-dtrace is used 
to wrap libdtrace, allowing programmatic 
responses to be coded in Ruby and executed 
when particular probes fire [4].  IDArub is used 
to allow a remote interface to the IDA Pro API 
[5].  IDA Pro is run on a Windows system and 
the Ruby environment sends commands to IDA 
over the network. When a probe fires, indicating 
that an instruction is executing in the traced 
application, that instruction is colored in IDA 
Pro.  The comment field for that instruction can 
also be updated to indicate the number of times 
the instruction has executed.  Figure 11 shows 
how the code coverage is represented.  Red 
blocks indicate code that has been executed 
while white block have not been executed. 
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Figure 11. Code coverage representation in 

IDA  

The code coverage visualization makes it easy 
to see when large portions of code are not being 
executed.  Manual analysis can be carried out to 
determine what conditions are necessary to 
cause the missed code to be executed.  
 
RE:Trace: DTrace/Ruby Framework 
for Reverse Engineering 
 
As noted earlier, Chris Andrew’s Ruby-DTrace 
adds flexibility to the already powerful DTrace 
framework enabling reverse engineer’s to write 
scripts that would not be possible in the D 
language alone. Yet there are indeed many 
pieces of boiler plate functionality (i.e. CPU 
Context, memory dump/search, etc..) that 
normal reverse engineering activities require.  
We have packaged together this functionality, 
along with additional features into a framework 
we call RE:Trace.  Integrating the power of 
Ruby and DTrace, RE:Trace is the framework 
which powers the aforementioned Stack Pin 
Point, Heap Smash, and Code Coverage scripts.   

Bundling features reverse engineers need into an 
object oriented framework with many helper 
functions, allows RE:Trace to become the basis 
for many powerful tools.  RE:Trace is being 
actively developed and will soon be released 
with features such as command line interaction 
via Ruby’s IRB, and the ability to enabled 
probes without using D syntax. 
 
Using DTrace Defensively 
 
The fact that DTrace instruments nearly the 
entire system makes DTrace extremely 
extensible and applicable to a number of tasks.  
While we have mainly looked at DTrace from a 
reverse engineering perspective there are ways 
to use DTrace’s feature set to defend a system. 
Commercial HIDS (Host-Based Intrusion 
Detection Systems) have become fairly common 
place on win32 systems. Vendors have put out 
products like McAfee’s “Entercept” and Cisco’s 
“Security Agent”.  According to McAfee’s 
white paper “System Call Interception,” the 
“Entercept” technology works by altering the 
function pointers in the system call table within 
the kernel.  The function pointers are altered so 
that the “Entercept” kernel driver can hook any 
system call and apply its security method to 
determine whether or not the call made by the 
user land process is valid.  Cisco’s “Security 
Agent” has essentially the same architecture. 
 
By design, DTrace allows a user to do 
essentially the same type of system call 
intercept as McAfee and Cisco’s commercial 
offerings in an almost completely unobtrusive 
way.  A custom host-based intrusion detection 
system based on system call introspection would 
be simple to implement in the D Language.  
Using Subreption’s publicly available exploit 
for the QuickTime 7.3 RTSP stack based buffer-
overflow as an example we can see how a quick 
custom HIDS can be created easily with a D 
Script. [10] 
 
The Subreption exploit for QuickTime 7.3 on 
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Leopard OS X 10.5.1 uses a classic ‘return-to-
libc’ attack to exploit the stack overflow.  A 
‘return-to-libc’ exploit leverages a buffer 
overflow to setup arbitrary arguments on the 
targets stack before returning into the System() 
function to execute a system call.  This is 
probably the most popular exploit technique on 
platforms that have non-executable stacks.  The 
payload of many of these attacks rely on a series 
of system calls which usually involve a call to 
“/bin/sh”, or “/bin/bash”. If we are looking at 
protecting a vulnerable QuickTime 7.3 from a 
“return-to-libc” exploit we would first profile 
QuickTime’s normal operation through system 
calls. DTrace can be used to do this profiling 
with the script shown in figure 12. 
 

Once we have established a profile or average 
system calls made, we can begin to create 
signatures for possible attacks that will not 
create “false positives” Clearly blacklisting 
known attacks based on or one two public 
exploits will not suffice for an ‘Enterprise’ 
HIDS but it will serve to illustrate how a HIDS 
could be built on DTrace.  (for further details 
take a look at Sun’s DTrace based HIDS patent 
application # 20070107058) 
 
By comparing the output of system calls from 
the short D script shown during normal 
operation and operation while being exploited, 
we can determine which system calls can be 
used as ‘signatures’ for our HIDS D script.  
After analyzing the ‘return-to-libc’ attack 
system calls, it is obvious that QuickTime 
Player would not normally make a system call 

to execute ‘/bin/sh’ during everyday operation 
(of course this is a trivial example).  Using the 
DTrace predicate “/execname == "QuickTime 
Player" & args[0] == "/bin/sh"/” would suffice 
to create a generic D script which would detect 
the  default payload for the Subreption 
QuickTime exploit and its variants. After 
detecting the exploit with the syscall probe it is 
trivial to trigger an action which logs, prints out, 
or stop()’s the process under attack.  The entire 
script, shown in figure 13, is a just a few lines. 
 

Although the above example is extremely basic, 
it could certainly be improved upon with the 
addition of attack signatures.  There are several 
advantages to implementing a ‘custom’ HIDS.  
The first is that attacks cannot test the 
effectiveness of a custom HIDS without 
attacking the target.  Commercial off-the-shelf 
HIDS can be profiled in a controlled 
environment to ensure that exploits evade 
detection.  The second, is that for a custom 
application, the HIDS can be tailored to avoid 
false positives.  Generic system call monitoring 
can often mislabel normal operation.  Using 
Ruby-DTrace to implement a HIDS could allow 
a developer to create a much more advanced 
database complete with signatures stored in a 
relational database and a Ruby-On-Rails 
interface. 
 
 

#!/usr/sbin/dtrace  -q -s 
proc:::exec 
/execname == "QuickTime Player" 
&&  args[0] == "/bin/sh"/  
{  
printf("\n%s Has been p0wned! 
it spawned %s\n", execname, 
args[0]); 
} 
 

Figure 13. Trivial QuickTime HIDS D script 

#!/usr/sbin/dtrace  -q –s 
proc:::exec 
/execname == "QuickTime 
Player"/ 
{ 
printf("%s execs %s\n", 
execname, args[0])  
} Figure 12. Profiling QuickTime System Calls 
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Hiding Applications From DTrace 
 
In    a blog posting dated January 18, 
2008, DTrace core developer Adam Leventhal 
came across some surprising behavior while 
using DTrace to monitor system-wide behavior: 
“Apple is explicitly preventing DTrace from 
examining or recording data for processes which 
don't permit tracing. This is antithetical to the 
notion of systemic tracing, antithetical to the 
goals of DTrace, and antithetical to the spirit of 
open source.” [11]   
 
To accomplish this, Apple is using the same 
method it uses to keep GDB from attaching to 
certain software. As explained by Landon Fuller 
“PT_DENY_ATTACH is a non-standard 
ptrace() request type that prevents a debugger 
from attaching to the calling process.”  [10] 
 
Both Apple’s version of GDB and DTrace 
check to see if this flag is set before a process 
can be debugged or instrumented. Landon Fuller 
is also the author of a kext or Kernel Extension 
for XNU that allows any process to be 
instrumented by DTrace.  By altering the ptrace 
function pointer in the sysent struct within the 
XNU kernl with a pointer to a custom PTrace 
wrapper, Fuller enables anyone to use DTrace in 
its intended form. 
 
In his presentation at the Chaos Computer 
Congress  entitled “B.D.S.M The Solaris 10 
way” Archim reports significant work that gives 
his rootkit “SInAR” the capability to hide from 
DTrace on the Solaris platform. The problem 
from a rootkit writer’s perspective is that 
DTrace’s fbt provider keeps a list of all modules 
loaded in the kernel.  So if even if you have 
found a way to hide your process from mbd, ps, 
etc., a clever admin with DTrace may still detect 
a kernel-based rootkit.  One problem Archim 
came across is that even modules which have 
mod_loaded and mod_installed set to 0 will still 
be discovered by DTrace.  Archim describes the 
method he uses to hide from DTrace: 

 
 “When you combine a call to 
dtrace_sync() and then 
dtrace_condense(&fbt_provider), you will 
be removed from the list of providing 
modules in DTrace.”   

 
This will force DTrace to remove the rootkit 
from DTrace’s internal link list of providers and 
have its probes set on inactive.  At the present 
time, the 0.3 version of SInAR on vulndev.org 
only works on SPARC.  There is currently no 
known rootkit for OS X Leopard or Solaris 10 
x86 capable of hiding from DTrace 
 
Conclusion 
 
DTrace is a powerful tool that allows us to 
collect an enormous range of information about 
a running program. Like any tool, it is important 
to understand its strength and weakness. In 
general, DTrace is very well suited for 
collecting and reporting statistics or specific 
values at a given point in time.  This turns out to 
be very useful for reverse engineers, who are 
interested in pinpointing very specific 
conditions, such as copy a large value into a 
small space, as well as understanding general 
behavior, such as the growth patterns of heaps. 
 
The introduction of DTrace to the reverse 
engineering world invites many opportunities 
for improving related techniques. We have 
shown how DTrace can be used to detect and 
pinpoint stack and heap overflows, and visualize 
code coverage. We have also discussed DTrace 
as an intrusion detection tool, and issues related 
to subverting DTrace. There are many more 
interesting areas to explore for future work.  
These include implementing automated fuzzer 
feedback based on code coverage results or 
parameter values; detection of rootkits using 
DTrace timing calculations; and kernel bug 
pinpointing. 
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