.
—

DTrace The Reverse Engmeer S

\
Tiller Beauchamp

David Wes}on \
SAIC

What Is DTrace ™?

DTRACE SACKGROUND)

*Dtrace was created by Sun Microsystems, Inc. and released under the Common Development and Distribution
License (CDDL), a free software license based on the Mozilla Public License (MPL). 5;‘3;5

DTrace Background

*Solaris

Kernel-based dynamic tracing framework
Created by Sun Microsystems

First released with Solaris™ 10 operating System
Now included with Apple OS X Leopard, QNX
Soon to be included with FreeBSD (John Birrell)
OpenBSD, NetBSD, Linux?

™ is a trademark of Sun Microsystems, Inc. in the United States and/or other countries.

DTrace is a framework for performance
observability and debugging in real time

Tracing is made possible by thousands of
“probes” placed “on the fly” throughout the system

Probes are points of instrumentation in the kernel

When a program execution passes one of these
points, the probe that enabled it is said to have
fired

DTrace can bind a set of actions to each probe

\ .
DTrace Architecture

D program

are source files
a.d b.d

1 (:.ntrstat)) (plockstat(i))

(dtrace (1M)) (lockstat(l))

!

(libdtrace (3LIE))

dtrace (/D)

DTrace

!

Csysinfo) (vminfo) (fasttrap) *

DTrace

consumers

userland
kernel

DTrace

providers

(‘syscair) ((progite) (st) (sat)'

Source: Solaris Dynamic Tracing Guide

A I

=N

‘The D Language

D is an interpreted, block-structured language
D syntax is a subset of C
D programs are compiled into intermediate form

ntermediate form is validated for safety when
your program is first examined by the DTrace
kernel software

The DTrace execution environment handles any
runtime errors

T'he D Language

D does not use control-flow constructs such as if
statements and loops

* D program clauses are written as single, straight-
line statement lists that trace an optional, fixed
amount of data

« D can conditionally trace data and modify control
flow using logical expressions called predicates

* A predicate is tested at probe firing before
executing any statements

DTrace Performance

DTrace is dynamic: probes are enabled only
when you need them

No code is present for inactive probes

There is no performance degradation when you
are not using DTrace

When the dtrace command exits, all probes are
disabled and instrumentation removed

The system is returned to its original state

« DTrace takes the power of multiple tools and
unifies them with one programmatically
accessible interface

* DTrace has features similar to the following:
- truss: tracing system calls, user functions
— ptrace: tracing library calls
- prex/tnf”: tracing kernel functions
— lockstat: profiling the kernel
— gdb: access to kernel/user memory

« DTrace combines system performance statistics,
debugging information, and execution analysis
Into one tight package

* Areal "Swiss army knife” for reverse engineers

« DTrace probes can monitor every part of the
system, giving “the big picture” or zooming in for a
closer look

« Can debug “transient” processes that other
debuggers cannot

Creating DTrace Scripts

* Dozens of ready-to-use scripts are included with
Sun’s DTraceToolkit; they can be used as
templates

* These scripts provide functions such as syscalls
by process, reads and writes by process, file
access, stack size, CPU time, memory r/w and
statistics

« Complex problems can often be diagnosed by a
single “one-liner” DTrace script

Exétmple: Syscall Count

« System calls count by application:
dtrace -n 'syscall::.entry{@[execnhame] = count();}".

Matched 427 probes
Syslogd
DirectoryService
Finder

TextMate

Cupsd

Ruby 4309

vmware-vmx 63899

A W WU N -

SAIC

Exam\ple: File Open Snoop

#!/usr/sbin/dtrace -s

syscall::open*:entry {
printf ("%s %s\n",
execname,

copyinstr (arg0)) ;

A Ir=

=N

Exan'\nple: File Snoop Output

vmware-vmx
Finder

iChat

Microsoft Power
nmblookup
nmblookup
nmblookup
nmblookup
Nmblookup

/dev/urandom
/Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
/Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
/Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
/System/Library/PrivateFrameworks/ByteRange ... ByteRangelocking
/dev/dtracehelper

/dev/urandom

/dev/autofs _nowait

/System/Library/PrivateFrameworks/ByteRange... ByteRangelLocking

DTrace Lingo

Probes are points of instrumentation
Providers are logically grouped sets of probes

Examples of providers include syscall, lockstat,
fbt, i0, mib

Predicates allow actions to be taken only when
certain conditions are met

Actions are taken when a probe fires

\ DTrace Syntax

Generic D Script

Probe: provider.module:function:name
Predicate: /some condition that needs to happen/
{
Action: action1;
action2; (ex: printf();)

How Can We Use DTrace?
DTHACE AND HEYVERSE
ENGINEERING (KE)

A Ir=

=

" DTrace for RE

 DTrace is extremely versatile and has many
applications for RE

* Itis very useful for understanding the way a
process works and interacts with the rest of the
system

« DTrace probes work in a manner very similar to
debugger “hooks”

« DTrace probes are useful because they can be
described generically and focused later

" DTrace for RE

Think of DTrace as a rapid development
framework for RE tasks and tools

One of DTrace’s greatest assets is speed

DTrace can instrument any process on the
system without starting or stopping it

Complex operations can be understood with a
succinct one-line script

You can refine your script as the process
continues to run

\Helpful Features

DTrace gives us some valuable features for free:

Control flow indicators

Symbol resolution

Call stack trace

Function parameter values

CPU register values

Both in kernel space and user space!

£

\

Control Flow

-> -[AlContentController finishSendContentObject:]
-> -[AlAdium notificationCenter]
<- -[AlAdium notificationCenter]
-> -[AlContentController processAndSendContentObject:]
-> -[AlContentController handleFileSendsForContentMessage:]
<- -[AlContentController handleFileSendsForContentMessage:]
-> -[AdiumOTREnNcryption willSendContentMessage:]
-> policy_cb
-> contactFrominfo
-> -[AlAdium contactController]
<- -[AlAdium contactController]
-> accountFromAccountID

N L N N N L N N N N

E

\

Symbol and Stack Trace

dyld strcmp
dyld ImagelLoaderMachO::findExportedSymbol(char
dyld' ImagelLoaderMachQO::resolveUndefined(...
dyld ImagelLoaderMachO::doBindLazySymbol(unsigned
dyld dyld::bindLazySymbol(mach_header const, ...
dyld stub_binding helper_interface2+0x15
Ftpd yylex+0x48
Ftpd yyparse+0x1d5
ftpd ftp_loop+0x7c
ftpd main+0xe46

o)

F}mction Parameters

DTrace’s copyin® functions allow you to copy data
from the process space:

printf ("arg0=%s", copyinstr(arg0))

Output:

1 —-> strcmp arg0= 1sspecial 1

£

C\’U Register Values

Uregs array allows access to reading CPU registers

printf ("EIP:%x"”, uregs[R EIP]);

Example:
EIP: Oxdeadbeef
FEAX: Oxffffeaeb6
EBP: Oxdefacedd
ESP: 0x183f£6000

£

Déstructive Examples

#!/usr/sbin/dtrace -w -s
syscall::uname:entry { self->a = arg0; }

syscall::uname:return{
copyoutstr(“Windows”, self->a, 257);
copyoutstr("PowerPC”, self->a+257, 257);
copyoutstr(“2010.b177, self->a+(257*2), 257);
copyoutstr(“fud:2010-10-317, self->a+(25773), 257);
copyoutstr(“PPC”, self->addr+(25774), 257);

Adapted from: Jon Haslam, http://blogs.sun.com/jonh/date/20050321

o)

syscall::write: entry {
self->a = arg0;

}

syscall::write: return {
printf (“write: %s”,

copylnstr (self->a);

£

\

" Got Ideas?

Using DTrace:

* Monitor stack overflows
* Code coverage

* Fuzzer feedback

* Monitor heap overflows

£

DTrace vs. Debuggers

 Don’t think of DTrace as a DBG.

« User mode and kernel mode debuggers allow you
to control execution and inspect process
information

 DTrace can instrument both the kernel and user
land applications at the same time

* To trace execution, debuggers use instructions to
pause and resume execution

« DTrace carries out parallel actions in the kernel
when a probe is hit

DTrace vs. Debuggers

 Traditional debuggers also affect the target
process’s memory layout. DTrace doesn’t

« DTrace does not directly perform exception
nandling

 DTrace can halt process and transfer control to
external debugger

« Currently DTrace is not susceptible to traditional
anti-debugging techniques (isdebuggerpresent())

 However, Apple has implemented probe blocking
with use of the PT_ATTACH_DENY

CAlr
b

DIrace vs. Tracers

* Truss, Itrace, and strace operate one process at a
time, with no system-wide capability

* Truss reduces application performance

* Truss stops threads through procfs, records the
arguments for the system call, and then restarts
the thread

* Valgrind™ |s limited to a single process and only
runs on Linux

 Ptrace is much more efficient at instruction level
tracing but it is crippled on OS X

=
*Valgrind is Open Source/Free Software and is freely available under the GNU Genera | Public License. AV .

\ .
DITrace Limitations

The D language does not have conditionals or
loops

The output of many functions is to stdout (i.e.,
stack(), unstack())

Lack of loops and use of stdout means DTrace is
not ideal for processing data

We can fix this

\
\
‘I4

RE:Trace
Havarss englnzarine wiin Huoy
af)e] DT racs

>
)
=1
5
3
P
S
s
&
S U
5
<

 RE:Trace combines Ruby with DTrace

* Ruby gives us the power of OOP, text processing,
iteration

 RE:Trace utilizes Ruby libdtrace bindings, written
by Chris Andrews

« Can be the glue which combines the power of
several existing Ruby RE frameworks (idarub,
librub, metasm, MSF3)

 RE:Trace is similar to programmatic debuggers
(pyDBG, knoxDBG, immDBG)

* Wraps IDA interface

* Ruby code is the client

« Server is IDA plugin

* Ruby glues it all together

« |daRub was released by Spoonm at REcon 2006

ida.set_item_color(eip, 3000)

More info:

http://www.metasploit.com/users/spoonm/idarub/
AL

RE:Trace and Exploit Dev

* Vulnerability analysis times of conventional
debuggers can be dramatically reduced with
RE:Trace

« DTrace probes allow you to track data input flow
throughout a process to understand where and
why memory corruption took place

* Methods that cause stack and heap corruption
can be pinpointed using IDARub to integrate
IDA’s static analysis features

RE:Trace and Code Coverage

DTrace can “hook” every function in a process

This makes it perfect for implementing a “code
coverage aware” fuzzer

Code coverage is useful for understanding what
areas are being fuzzed

Current RE code coverage monitors are mostly
block based (PaiMei)

We can use IDA to obtain block information or
check code coverage at the function or instruction
level

Writing a Stack Overflow Monitor

A I

=N

Stack Overflow Monitoring

Programmatic control at EIP overflow time allows
you to:

e Pinpoint the vulnerable function

e Reconstruct the function call trace

e Halt the process before damage occurs (HIDS)
e Dump and search process memory

Send feedback to fuzzer

Attach debugger

ow Detection In One

Probe

#/usr/sbin/dtrace -w -s

pidStarget:::return

/ uregs[R EIP] == 0x41414141 / {
printf ("Don’t tase me bro!!!");
stop ()

A few issues to be aware of:
* DTrace drops probes by design

* Tune options, narrow trace scope to improve
performance

« Some libraries and functions behave badly

 Stack overflows can cause violations before
function return

First Approach

e Store RETURN value at function entry
e uregs[R SP], NOT uregs[R_ESP]

e Compare EIP to saved RETURN value at function
return

o |f different, there was an overflow

Simple enough, but false positives from:
e Tail call optimizations
e Functions without return probes

DTrace and Tail Calls

* Certain compiler optimizations mess with the
standard call/return control flow

 Tail calls are an example of such an optimization

 Two functions use the same stack frame, saves
resources, less instruction

* DTrace reports tail calls as a return then a call,
even though the return never happens

* EIP on return is not in the original calling function,
it is the entry to second

« Screws up simple stack monitor if not aware of it

CAlr
b

New Approach

« Store RETURN value at function entry

At function return, compare saved RETURN value
with CURRENT value

* Requires saving both the original return value and
its address in memory

 Fires when saved RETURN ! = current RETURN
and EIP = current RETURN

\
But Missing Return Probes???

Still trouble with functions that “never return”
« Some functions misbehave

« DTrace does not like function jump tables
(dyld_stub_*)

* Entry probe but no exit probe

Determining Missing Returns

Using DTrace — | flag

. List entry/exit probes for all functions

. Find functions with entry but no exit probe
Using DTrace aggregates

. Run application

. Aggregate on function entries and exits

. Look for mismatches

Exclude these functions with predicates
« [/ probefunc ! = “everybodyJump” /

® Terminal Shell Edit View Window Help @ = © (= (100w BE= Tuel2:18AM % Q

demo$

Exploit — bash — 82x5

Advanced Tracing

Diving in deeper:

* |nstruction-level tracing

* Code coverage with IDA Pro and |IdaRub
 Profiling idle and GUI code

* Feedback to the fuzzer, smart/evolutionary
fuzzing

« Conditional tracing based on function parameters
(reaching vulnerable code paths)

Instruction Tracing

CODE= COYVERAGE

A Ir=

=N

Cod\e Coverage Approach

Approach

Instruction-level tracing using DTrace

Must properly scope tracing

Use IdaRub to send commands to IDA

IDA colors instructions and code blocks

Can be done in real time, if you can keep up

Tracing Instructions

* The last field of a probe is the offset in the
function

* Entry = offset O
* Leave blank for every instruction

« Must map static global addresses to function
offset addresses

Print address of every instruction:
pid$target:a.out:: { print(“%d”, uregs[R_EIP]); }

Tracing Instructions (cont.)

* DTrace to print instructions
* Ruby-Dtrace to combined DTrace with Ruby
 |darub and rublib to combined Ruby with IDA

Tracing libraries

* When tracing libraries, must know memory layout
of program

« vmmap on OS X will tell you

« Use offset to map runtime library EIPs to
decompiled libraries

Coverage with DTrace

Capabilities:

» Associate fuzz runs with code hit

* Visualize code paths

« Record number of times blocks were hit
 Compare idle traces to other traces

Limitations:

* |nstruction tracing can be slow for some
applications

* Again, tuning and limiting scope

\ : . ;
Coverage Visualization

EIN 1L

loc_92A8:

mov [ebp+var_2C], edx
test eax, eax

jz short loc_92B2

1
Bl N 1

raph overview

YVYYV

v v
g —:—lﬂﬂu.l BN ’ENLQ
L 1C]| |mov ebx, eax | [mousx edx, [ebp+var_21]| |movsx eax, [ebp+uvar_21]

mov [ebp+var_26], edx| (mov [ebp+var_ 28], eax
jmp short loc_92DD

=

I
BN

Bl N 1

loc_92DD:
[ebp+var_21]| |xor ebx, ebx
var_20], eax| [jmp short loc_92F7

loc_92F7

A I

=

Runtime Call Graphs

ASWRegistration 0x16¢4520e

ASWAppKit -[ASWAnimatedTabView selectTabViewltem:
.——<

»View selectTabViewltem:withDirection:

1TabView shouldSelectTabViewItem: CoreFoundation'-[NSArray makeObjectsPerformSelector:withObject:

ASWRegistration 0x16¢c4¢9d8

EnhancedLinkTextView toggleTrackingState ASWAppKit -[NSWindow(ASWWindow) allViews ASWAppKit -[NSTabView(ASWTabView) addAllSubviewsTo:

>~

ASWAppKit'-[NSView(ASWView_Extensions) addAllSubviewsToArray:

«dLinkTextView remove TrackingRects[> ASWAppKit' -[AS'

ASWAppKit'_1686.get pe_thunk.bx

Writing a Heap Overflow Monitor

MIONTTORING Trle rlEAF

A I

=N

the Heap with RE:Trace

The heap has become “the” major attack vector replacing
stack-based buffer overflows

Relatively common unlink() write4 primitives are no longer
as “easy” to exploit on many platforms

See Aitel and Waisman’s excellent “Debugging with I1D”
presentation for more details

As they point out, the key to the “new breed” of heap
exploit is understanding the heap layout and allocation
patterns

ImmDBG can help you with this on Win32, and Gerrado
Richarte’s heap tracer can help you with visualization and
double free() on Solaris and Linux

the Heap with RE:Trace

« Many Different ways to use DTrace for heap
exploits

- Standard double free(), double malloc(), Leak
Detection

* Heap Visualization (Directed
Graphs/OpenGL/Instruments)

» Pesky off by one errors
« Spot app specific function pointers to overwrite

* Find heap overflows/corruptions that might not be
immediately dereferenced

0S X Heap Exploits

e ktrace = Bonds on the Pirates

* DTrace =

Bonds on the Giants

» Older techniques such as overwriting

initial_ma
* YOU now

loc_zones function pointers are dead
nave to overwrite app specific data

« DTrace a

ready hooks functions to understand

heap layout and allocation patterns (what, where,

when)
A slew of

Heap Tools for OS X (vmmap,

MallocScribble, MallocCheckHeap, leaks)
 DTrace is extensible and *quick® to use

}.
s
H
o '||
S il
< Wy
S
S ll|I
E

Heap Visualization

Directed Graph of Heap Allocation Sizes:

w @ w Oc201610) { 0201640) ((x201670) { 0x2014%0 w w w

e -
Y ___/aa ! A
An Employee-Owned Company

2508820480

RE:Trace Heap Smasher()

Refresher:

* When you malloc() on OS X, you are actually

calling the scalable zone allocator, which breaks
allocations into different zones by size:

Zone Zone Size Allocation Size Allocation Quantum

Type

Tiny 2MB < 992 Bytes 32 bytes

Small 8MB 993-15-369 bytes 1024 bytes

Large - 15,360 — 1 page (4096 bytes)
16,773,120 bytes

Huge - 16,773,121 bytes 1 page (4096 bytes)

Adapted from: OS X Internals A System Approach

RE:Trace Heap Smasher()

In our heap smash detector, we must keep track
of four different “heaps”

We do this by hooking malloc() calls and storing
them to ruby hashes with the pointer as the key
and the size allocated as the value

We break the hashes into tiny, small, large, and
huge by allocation size

We then hook all allocations and determine if the
pointer falls in the range of the previous
allocations. We can adjust the heap as memory is
free()'d or realloc’d()

CAlr
b

RE:Trace Heap Smasher()

* By hooking C functions (strncpy, memcpy,
memmove, etc.) we can determine if they are
over-allocating to locations in the heap by looking
at the arguments and comparing to our heap

records

pid$target::strncpy:entry {
self->sizer = arg2;
printf("copyentry:dst=0x%p|src=0x%p;size=%i", arg0, arg1, arg2);
self->sizer = 0;

}

RE:Trace Heap Smasher()

* We can check to see if the allocation happens in
a range we know about (check the hash).

 |f it does, we know the size allocation, and we
can tell if a smash will occur

« Compared to our stack smash detector, we need
very few probes. A few dozen probes will hook all
the functions we need

* We can attach to a live process on and off without
disturbing it

RE:Trace Heap Smasher()

 We also keep a hash with the stack frame, which
Is called the original malloc()

« When an overflow is detected, we know:

— Who allocated it (stack frame)

— Who used it (function hook)

— Where the overflowed memory is
— How large the overflow was

— We can find out if its ever free()'d

® iTerm Shell Edit View Bookmarks Window Help B +~ = «¢) 019 Wed2:28PM Q
e 00 Default (123,35) |
Default Default J—
= hochi@TEKDBZ:~/retrace_v2$ I

RE:Trace Heap Smasher()

Future additions:
* Graphviz/OpenGL Graphs

* There is a new version of Firefox which has probes in the
JavaScript library

« This would give us functionality similar to Alexander
Soitorov’s HeapLib (Heap Fung Shui) for heap
manipulation generically

o Safari/DTrace should follow soon
 You tell me?

Using DTrace Defensively

DTRACE DEFENDSE

A I

=N

Basic HIDS with DTrace

« Using Dtrace, you can profile your applications
basic behavior

* You should then be able to trace for anomalies
with predicates

* This is great for hacking up something to protect a
custom application (monitor for return-to-libc)

« Easy to create a rails interface for monitoring with
Ruby-DTrace

Basic HIDS with DTrace

Problem: “l want to use QuickTime, but it's got a
HQ#S@# of holes”

Solution: Make a DTrace script to call stop() when
weird stuff happens

QuickTime probably never needs to call /bin/sh or
mprotect() on the stack to make it writable
(Houston we have a problem)

| / od
*QuickTime® is a registered trademark of Apple Inc. in the United States and/or other countries. AV .

% -

Basic HIDS with DTrace

#!/usr/sbin/dtrace -g -s

proc:::exec
/execname == "QuickTime Player" &&
args[0] == "/bin/sh"/

printf ("\n%s Has been pOwned! It tried

O

to spawned %s\n”, execname, args[0])

}

HIDS Video

Default

hochi@TEKDBZ : ~/Desktop$ D

DTrace and Rootkits

* Check out Archim’s paper “B.D.S.M the Solaris
10 Way,” from the CCC Conference

* He created the SInAr rootkit for Solaris 10

* Describes a method for hiding a rootkit from
DTrace

* Only works on SPARC

* DTrace FBT (kernel) provider can spy on all
active kernel modules

« Should have the ability to detect rootkits, which
don’t explicitly hide from DTrace (SInAr is the only
one | could find)

* Expect more on this in the future

CAlr
b

DTrace for Malware Analysis

* Very easy to hack up a script to analyze MalWare
« Example: Leopard DNS Changer (OSX.RSPlug.A)

* Why the heck is my video codec calling...

/usr/sbin/scutil
add ServerAddresses * $s1 $s2
set State:/Network/Service/$SPSID/DNS

* You can monitor file 1/O and syscalls with just two lines
« Scripts to do this now included with OS X by default

« Malware not hiding from DTrace yet

« BUT Apple made that a feature (yayyy!)

Hiding from DTrace

In Jan. Core DTrace developer Adam Leventhal
discovered that Apple crippled DTrace for Leopard

 On OSX Your application can set the
‘PT_ATTACH_DENY” flag to hide from DTrace just like
you can for GDB

« Leventhal used timing attacks to figure out they are hiding
iTunes™ and QuickTime from DTrace

* Very easy to patch in memory or with kext
 Landon Fuller released a kext to do this

http://landonf.bikemonkey.org/code/macosx/Leopard PT_DENY_ATTACH.20080122.html

/= 1

~A Ir—
i

\ .
Conclusion

DTrace can:

« Collect an unprecedented range of data

« Collect very specific measurements

« Scope can be very broad or very precise

Applied to Reverse Engineering:
« Allows researchers to pinpoint specific situation (overflows)
* Or to understand general behavior (heap growth)

« Automated feedback and integration with fuzzers

Kernel tracing
mproved overflow monitoring

Heap manipulation libraries (think a cross-
platform, cross-browser implementation of
Soitorov’'s HeapLib)

Utilizing application-specific probes (probes for JS
In browsers, MySQL probes, ...)

Your own ideas! SAIC.

Thank You!

See the RE:Trace framework for implementation:

http://re-tracer.blogspot.com/

Questions?
Tiller Beauchamp David Weston
SAIC SAIC
Tiller.L.Beauchamp@SAIC.com David.G.Weston@saic.com

SAIC

