
Make My Day –
Just Run A Web Scanner

Toshinari Kureha, Fortify Software

Countering the faults of typical web
scanners through bytecode injection

Agenda
 Problems With Black Box Testing

 Approaches To Finding Security Issues
 4 Problems With Black Box Testing

 Solution:WhiteBox Testing With ByteCode Injection
 The Solution
 Demo Of Solution
 Building The Solution

 Q&A

Current Practice

Current Practice
How Do You Find Security Issues?
 Looking at architectural / design documents
 Looking at the source code

 Static Analysis

 Looking at a running application
 Dynamic Analysis

Current Practice
 Dynamic Analysis

 Testing & Analysis Of Running Application
 Find Input
 Fuzz Input
 Analyze Response

 Commercial Web Scanners
 Cenzic
 SPIDynamics
 Watchfire

Current Practice
Most People Use Web Scanners Because…

 Easy To Run
 Fast To Run
 “Someone Told Me To”

Dynamic Analysis
Demo

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 “Did I Do A Good Job?”

Question 1: How Thorough Was My
Test?
 Do You Know How Much Of Your

Application Was Tested?

Question 1: How Thorough Was My
Test?
 How Much Of The Application Do You

Think You Tested?

Truth About Thoroughness
 We ran a “Version 7.0 Scanner” on the

following:

70% classes
20% blocks
23% lines

45% classes
19% blocks
22% lines

34% classes
12% blocks
14% lines

EMMA Code Coverage Tool

18%

31.2%

30.5%
Web
Source

Java PetStore 2

JCVS Web

HacmeBooks
Application

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low

Question 2: Did I Find All
Vulnerabilities?
 3 Ways To Fail

 Didn’t Test
 Tested – But Couldn’t Conclude
 Can’t Test

Question 2: Did I Find All
Vulnerabilities?
1. Didn’t Test

 If The Web Scanner Didn’t Even Reach That
Area, It Cannot Test!

Application

Tested
Vulnerabilities
Not Found

Untested

Vulnerabilities
Found

Question 2: Did I Find All
Vulnerabilities?
2. Tested, But Couldn’t Conclude

 Certain Classes Of Vulnerabilities Sometimes
Can Be Detected Through HTTP Response
 SQL Injection
 Command Injection
 LDAP Injection

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 ServletOutputStream out = res.getOutputStream();
 String user = req.getParameter("user");
 if(user != null) {
 try {
 String[] args = { "/bin/sh", "-c", "finger " + user };
 Process p = Runtime.getRuntime().exec(args);
 BufferedReader fingdata = new BufferedReader(new
InputStreamReader(p.getInputStream()));
 String line;
 while((line = fingdata.readLine()) != null)
 out.println(line);
 p.waitFor();
 } catch(Exception e) {
 throw new ServletException(e);
 }
 } else {
 out.println("specify a user");
 }
 …

public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException
 {

 ServletOutputStream out = res.getOutputStream();
 String user = req.getParameter("user");
 if(user != null) {
 try {
 String[] args = { "/bin/sh", "-c", “sendMail.sh " + user };
 Process p = Runtime.getRuntime().exec(args);
 p.waitFor();
 } catch(Exception e) {
 e.printStackTrace(System.err);
 }
 out.println(“Thank you note was sent”);
 } else {
 out.println("specify a user");
 }
 …

Question 2: Did I Find All
Vulnerabilities?
3. Can’t Test

 Some Vulnerabilities Have No Manifestation In
Http Response

Application

Log
File

Client

I hope they’re not
logging my CC# into

plaintext log file

cc num

cc num

“Your order will be
processed in 2 days”

HTTP
Response

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low
 Did I Find All My Vulnerabilities?

 Didn’t Test, Tested But Couldn’t Conclude, Can’t Test

Question 3: Are All The Results
Reported True?
 No Method Is Perfect
 Under What Circumstances Do Web

Scanners Report False Positives?
 Matching Signature On A Valid Page
 Matching Behavior On A Valid Page

 Matching Signature On A Valid Page

Question 3: Are All The Results
Reported True?

Question 3: Are All The Results
Reported True?
 Matching Behavior On A Valid Page

 “To determine if the application is vulnerable to SQL
injection, try injecting an extra true condition into the
WHERE clause… and if this query also returns the
same …, then the application is susceptible to SQL
injection” (from paper on Blind SQL Injection)

 E.g.
 http://www.server.com/getCC.jsp?id=5

 select ccnum from table where id=‘5’
 http://www.server.com/getCC.jsp?id=5’ AND ‘1’=‘1

 select ccnum from table where id=‘5’ AND ‘1’=‘1’

Question 3: Are All The Results
Reported True?
 E.g.

 http://www.server.com/getCC.jsp?id=5
 select ccnum from table where id=‘5’
 Response:

 “No match found” (No one with id “5”)
 http://www.server.com/getCC.jsp?id=5’ AND ‘1’=‘1

 select ccnum from table where id=‘5\’ AND \‘1\’=\‘1’
 Response

 “No match found” (No one with id “5’ AND ‘1’=‘1”)
 All single quotes were escaped.

 According To The Algorithm (“inject a true clause and
look for same response”), This Is SQL Injection
Vulnerability!

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low
 Did I Find All My Vulnerabilities?

 Didn’t Test, Tested But Couldn’t Conclude, Can’t Test
 Are All The Results Reported True?

 Susceptible To False Signature & Behavior Matching

Question 4: How Do I Fix The
Problem?
 Security Issues Must Be Fixed In Source Code
 Information Given

 URL
 Parameter
 General Vulnerability Description
 HTTP Request/Response

 But Where In My Source Code Should I Look
At?

Question 4: How Do I Fix The
Problem?
 Incomplete Vulnerability Report -> Bad Fixes
 Report:

 Injecting “AAAAA…..AAAAA” Caused Application To
Crash

 Solution By Developers:
 ….
 if (input.equals(“AAAAA…..AAAAA”))
 return;
 …..

Web Scanner Review
 Good

 Found Real Vulnerabilities
 Was Easy To Run

 Bad
 How Thorough Was My Test?

 No Way To Tell, And Actual Coverage Is Often Low
 Did I Find All My Vulnerabilities?

 Didn’t Test, Tested But Couldn’t Conclude, Can’t Test
 Are All The Results Reported True?

 Susceptible To Signature & Behavior Matching
 How Do I Fix The Problem?

 No Source Code / Root Cause Information

Attacking The Problems
White Box Testing With

Bytecode Injection

Agenda
 Problems With Black Box Testing

 Approaches To Finding Security Issues
 4 Problems With Black Box Testing

 Solution:WhiteBox Testing With ByteCode Injection
 The Solution
 Demo Of Solution
 Building The Solution

 Q&A

Review…

Web
Scanne

r
Web

Application

Application Server

HTTP

Database

File
System

Other
Apps

and Proposal

Verify
Results Verify

Results
Verify

Results
Verify

Results
Watch
Result

How Will Monitors Solve The
Problems?
 How Thorough Was

My Test?
 Did I Find All My

Vulnerabilities?
 Are All The Results

Reported True?
 How Do I Fix The

Problem?

Monitors Inside Will Tell
Which Parts Was Hit

Monitors Inside Detects
More Vulnerabilities

Very Low False Positive
By Looking At Source Of
Vulnerabilities

Monitors Inside Can Give
Root Cause Information

How To Build The Solution
How Do You Inject The Monitors Inside

The Application?
Where Do You Inject The Monitors

Inside The Application?
What Should The Monitors Do Inside

The Application?

How Do You Inject The Monitors?
 Problem: How Do You Put The Monitors Into The

Application?

 Assumption: You Do Not Have Source Code,
Only Deployed Java / .NET Application

 Solution: Bytecode Weaving
 AspectJ for Java
 AspectDNG for .NET

How Does Bytecode Weaving Work?

Original
.class

AspectJ New
.class

New Code &
Location Spec.

Similar process for .NET

How Does Bytecode Weaving Work?
List getStuff(String id) {
 List list = new ArrayList();
 try {

String sql = “select stuff from
mytable where id=‘” + id + “’”;
JDBCstmt.executeQuery(sql);

 } catch (Exception ex) {
log.log(ex);

 }
 return list;
}

List getStuff(String id) {
 List list = new ArrayList();
 try {

String sql = “select stuff from
mytable where id=‘” + id + “’”;
MyLibrary.doCheck(sql);
JDBCstmt.executeQuery(sql);

 } catch (Exception ex) {
log.log(ex);

 }
 return list;
}

 Before
“executeQuery()”

Call
“MyLibrary.doCheck()”

Bytecode Injection Demo

Applying Byte-Code Injection To
Enhance Security Testing
How Do You Inject The Monitors Inside

The Application?
Where Do You Inject The Monitors

Inside The Application?
What Should The Monitors Do Inside

The Application?

Where Do You Inject The Monitors?
 All Web Inputs (My Web Scan Should Hit All Of

Them)
 request.getParameter, form.getBean

 All Inputs (Not All Inputs Are Web)
 socket.getInputStream.read

 All “Sinks” (All Security Critical Functions)
 Statement.executeQuery(String)
 (FileOutputStream|FileWriter).write(byte[])
 …

Applying Byte-Code Injection To
Enhance Security Testing
How Do You Inject The Monitors Inside

The Application?
Where Do You Inject The Monitors

Inside The Application?
What Should The Monitors Do Inside

The Application?

What Should The Monitors Do?
Report Whether The Monitor Was Hit
Analyze The Content Of the Call For

Security Issues
Report Code-Level Information About

Where The Monitor Got Triggered

aspect SQLInjection {
 pointcut sqlExec(String sql):call(ResultSet Statement.executeQuery(String))
 && args(sql);
 before(String sql) : sqlExec(sql) { checkInjection(sql, thisJoinPoint); }
 void checkInjection(String sql, JoinPoint thisJoinPoint){

System.out.println("HIT:" +
thisJoinPoint.getSourceLocation().getFileName() +

thisJoinPoint.getSourceLocation().getLine());
if (count(sql, '\'')%2 == 1) {

 System.out.println("*** SQL Injection detected. SQL statement
being executed as follows: “ + sql);

}
…..

What Should The Monitors Do?

1) Report whether API was hit or not

2) Analyze The Content Of The API Call

3) Report Code-Level Information

Proof Of Concept
 Running The Custom Solution

With Additional Work on UI

Coverage

With Additional Work on UI

Security Issues Detail

Security Issues Detail – SQL Injection

Security Issue Detail – Privacy
Violation

Conclusions – Web Scanners
 Good

 Easy To Use
 Finding Smoking Gun

 Bad
 Lack Of Coverage Information
 False Negative
 False Positive
 Lack Of Code-Level / Root Cause Information

Conclusions – White Box Testing
 Bytecode Injection Require Access To

Running Application
 In Exchange …

 Gain Coverage Information
 Find More Vulnerabilities, More Accurately
 Determine Root Cause Information

Conclusions – Use Your Advantage

Access To
Application

Security
Knowledge

Attempts

Time

DefenderAttacker

Thank You
 Questions?

 Email: tkureha at fortifysoftware.com

