
Black Hat Europe 2007

Vboot Kit:                      
Compromising Windows Vista Security

Nitin Kumar , Security Researcher and Consultant

nitin.kumar@nvlabs.in

Vipin Kumar, Security Researcher and Consultant

vipin.kumar@nvlabs.in

http://www.nvlabs.in



29 March 2007

2

http://www.nvlabs.in

Introduction

Overview
Transfer of execution from BIOS to boot-sector
Vista Boot Process
Vbootkit (how it works)
Capabilities

Demonstration Time
Privilege escalation shell code in action



29 March 2007

3

http://www.nvlabs.in

Transfer of execution from BIOS to boot sector

CD-ROM : 2KB sector loaded at 0000h:7C00h 
HDD: 512 bytes from MBR loaded at 
0000h:7C00h .MBR finds a valid boot partition 
and loads partition boot sector 
PXE (Preboot Execution Environment): can 
download and load up to 500KB code at 
0000h:7C00h

NOTE: After loading, all code is executed in real 
mode



29 March 2007

4

http://www.nvlabs.in

Vista Boot Process

MBR load NT BootSector ( 8 KB in size, currently 
only 5 KB is used).NT boot sector has the ability to 
read FAT32 and NTFS.It finds and loads a file 
BOOTMGR.EXE from the system32 or 
system32/boot directory    at 2000h:0000h

BOOTMGR.EXE has 16 header prepended to 
itself.This 16 bit header checks the checksum of 
embedded PE EXE and maps it at 0x400000

NOTE:-First security check is simple checksum protection.



29 March 2007

5

http://www.nvlabs.in

Vista Boot Process(continued)

Execution of BOOTMGR starts in 32 bits in BmMain 
function.It verifiies itself 2 times using the functions 
ImgpValidateImageHash & BmFwVerifySelfIntegrity

After this, it checks for hibernation state,if it’s found, it 
loads winresume.exe and gets done

It then mounts BCD database and enumerates boot 
entries,settings etc

NOTE:- 2 protections mentioned should be patched



29 March 2007

6

http://www.nvlabs.in

Vista Boot Process(continued)

After user selects a boot entry,It is launched using 
BmLaunchBootEntry with added switches

Now Winload.exe is loaded,It loads NTOSKRNL.EXE, 
HAL.DLL, dependencies, boot drivers after loading 
SYSTEM registry hive

Creates a PsLoadedModuleList & 
LOADER_PARAMETER_BLOCK structure which contains 
memory map,options list etc

Control is then transferred to kernel using 
OslArchTransferToKernel after stopping boot debugger



29 March 2007

7

http://www.nvlabs.in

Summary of Booting Process

BIOS MBR Partition Boot Sector NT 
Boot 
Sector

WINLOAD.EXE BOOTMGR.EXE

NTOSKRNL.EXE     HAL.DLL  Boot drivers



29 March 2007

8

http://www.nvlabs.in

Vista Kernel Start-up

NTOSKRNL uses 2 phases to initialize system
First phase(phase 0) initializes the kernel itself

Calls HalInitialiseBios
Inits Display driver
starts Debugger
Calls KiInitializeKernel

Second phase (phase 1) initializes the system 
Phase1InitializationDiscard 

• HalInitSystem
• ObInitSystem
• Sets boot time bias for ASLR
• PsInitialSystemProcess
• StartFirstUserProcess ( starts SMSS.EXE)



Vboot Kit

Mission Status: Completed successfully



29 March 2007

10

http://www.nvlabs.in

Vboot Kit- The Objective

The objective is to get the Windows Vista running 
normally with some of the our changes done to the 
kernel.
Also, the Vboot kit should pass through all the 
security features implemented in the kernel without 
being detected.
No files should be patched on disk,it should run 
complete in memory to avoid later on detection.



29 March 2007

11

http://www.nvlabs.in

Weak Points

Windows Vista loader assumes that the system 
has not been compromised till it gains 
execution
Windows Vista assumes that the memory 
image of an executable file is intact between 
the loading of file( system checks its validity 
just after loading a file) and execution of the file

These are the two main weaknesses Vbootkit 
exploits to get the job done.



29 March 2007

12

http://www.nvlabs.in

Another Weak point
Every security protection implemented is of the following type
If (good) //security not compromised
{ // continue action
}
Else  //security has been compromised
{ //do something special
}

The above code when compiled by any compiler or assembler takes the 
following form

cmp, eax,1  //assume eax contains security status
Je good

//control arrives here if security compromised
;do somethin special
Skip goog
Good:



29 March 2007

13

http://www.nvlabs.in

Vboot Kit Features

Proof of Concept code
Supports booting from CD-ROM and PXE
Fully demonstrates patching every protection 
implemented by Microsoft
Displays our signature at OS selection menu
Is just 1340 lines of code ( nearly 1749 bytes after 
assembling)
Demonstrates a kernel mode shell code which 
peroidicaly escalates all cmd.exe to SYSTEM 
privileges
Supports pluggable shellcodes at compilation time



29 March 2007

14

http://www.nvlabs.in

Vboot Kit overview

Hook INT 13 ( for disk reads)
Keep on patching patching files as they load

Gain control after bootmgr has been loaded in 
memory

The above would give us control so as we can 
patch the 16 bit header and the bootmgr itself.



29 March 2007

15

http://www.nvlabs.in

Vboot kit – Functional workout

Our code gains execution from the CD-Rom, relocates ourselves to 0x9e000.
Hook INT 13 .
The hook searches every read request for a  signature,if the signature 
matches it executes its payload.
Vbootkit reads MBR and starts normal boot process with INT 13 hook 
installed
When the NT boot sector loads bootmgr.exe , our hooks finds the signature 
and executes the payload
The signature is last 5 bytes from bootmgr.exe excluding zeroes 
for RC1 signature is 9d cd f5 d4 13 ( in hex)
for RC2 signature is 43 a0 48 a6 23 ( in hex)
The payload patches bootmgr.exe at 3 different places

Since the resources are read from MUI file,we implemented a detour style 
patch so as the MUI resources are patched
To gain control after winload has been loaded, but haven’t started executing
To disable FVE ( full volume encryption)



29 March 2007

16

http://www.nvlabs.in

Vboot kit – Functional workout(continued)
Now, the 16 bit header starts execution and we face the first security 
check.It’s a simple checksum protection stored the PE Header.
The checksum algorithm is very simple

Do a add with carry on the buffer excluding the bytes where checksum is 
stored

Then,extract high 16 bits and low 16 bits and add them,neglecting any 
carry , then add the file size to the 16 bit value to get the final checksum

computenextword :       
sub     edx,2  ;assume edx contains size to checksum                   
mov     cx,[esi]               ; load 2-byte block                     
add     eax,ecx                ; compute 2-byte checksum  
adc     eax,0                    ;add carry                                
skip:   add esi,2          ; update source address  
cmp     edx,0                   ;buffer ful

                    mov     edx,eax              ; copy checksum value
shr     edx,16                  ; isolate high order bits
and eax,0ffffh             ; isolate low order bits
add eax,edx                ; sum high and low order bits
mov     edx,eax               ; isolate possible carry
shr     edx,16                   ;
add eax,edx                 ; add carry
and eax,0ffffh              ; clear possible carry bit
add eax,filesize   //final checksum is now in eax

ly checksummed        
jne   computenextword ;  more 2-bytes blocks

NOTE:- this protection is defeated by computing and fixing checksum after patching bootmgr



29 March 2007

17

http://www.nvlabs.in

Vboot kit – Functional workout(continued)

Now the bootmgr is mapped at 0x400000 and gains execution in 32-bit mode
The first job bootmgr performs is to verify it’s own digital signature.This is done 2 
times using 2 different functions ImgpValidateImageHash and 
BmFwVerifySelfIntegrity
Both the patches are single byte patches , reversing the condition JE ( jump if 
equal ) to JNE (jump if not equal)
Now after bootmgr loads its resources,detour takes control , relocates the vboot kit 
a second time, to protect itself to 0x45b000, patches the display message and 
passes control back to bootmgr
Now bootmgr displays boot menu together with our signature
After the user , selects an Entry to boot, the bootmgr calls BlImgLoadPEImageEx
to load Winload.exe.It also verifies the digital signature of the file



29 March 2007

18

http://www.nvlabs.in

Vboot kit – Functional workout(continued)

After winload.exe has been mapped to memory and it’s digital signature 
has been verified, our detour takes control and applies 2 detours

First detour to relocate ourselves ( once again)
Second detour so as we can patch NTOSKRNL.exe and other 
drivers

Winload completely trusts bootmgr.exe that it has provided a safe 
environment, so it validates all the options, maps SYSTEM registry hive, 
loads boot drivers , prepares a structure called loader block.This loader 
block contains  entry of al drivers loaded, their base adresses.It also 
also contains the memory map of the system( which block is used).It 
also passes the famous option list, which is processed by kernel to set 
some features such as enabling of debugger,DEP ( Data Execution 
Policy) and so on.



29 March 2007

19

http://www.nvlabs.in

Vboot kit – Functional workout(continued)

Structure of loader block Winload passes to NTOSKRNL

kd> dt _LOADER_PARAMETER_BLOCK 0x8081221c
+0x000 LoadOrderListHead : _LIST_ENTRY [ 0x8082f7d4 - 0x8084f1f0 ]
+0x008 MemoryDescriptorListHead : _LIST_ENTRY [ 0x80a1f000 - 0x80a20630 ]
+0x010 BootDriverListHead : _LIST_ENTRY [ 0x80833c64 - 0x80832228 ]
+0x018 KernelStack      : 0x81909000
+0x034 ArcBootDeviceName : 0x80812e24  "multi(0)disk(0)rdisk(0)partition(1)"
+0x03c NtBootPathName   : 0x80812ca8  "\Windows\"
+0x044 LoadOptions      : 0x8080a410  "/BOOTDEBUG /NOEXECUTE=OPTOUT  

/NOPAE /DEBUG"
+0x048 NlsData          : 0x8084e200 _NLS_DATA_BLOCK
+0x054 SetupLoaderBlock : (null) 
+0x058 Extension        : 0x80812e5c _LOADER_PARAMETER_EXTENSION
+0x068 FirmwareInformation : _FIRMWARE_INFORMATION_LOADER_BLOCK



29 March 2007

20

http://www.nvlabs.in

Vboot kit – Functional workout(continued)
Our Winload detour takes control just before the control is passed to 
kernel.This transfer of control takes place in a function called
OslArchTransferToKernel
This detour relocates vbootkit once again to blank space in kernel 
memory which has read/write access, and applies an 20 byte detour to 
a function called StartFirstUserProcess.It’s in the INIT section of 
kernel.It’s an 20 bytes patch,replacing stale code of Phase1init and 
jumping into it.

pushfd // save flags
Pushad /save registers
mov esi, NTOS_BASE_ADDRESS + NTOS_BLANK_SPACE
mov edi, NTOS_BASE_ADDRESS + 
NTOS_INIT_PHASE_1_INIT_DISCARD
mov ecx, 2048 ; copy the whole vbootkit code
rep movsb
mov eax, NTOS_BASE_ADDRESS + 
NTOS_PHASE_DISCARD_PATCH_STARTS
jmp eax



29 March 2007

21

http://www.nvlabs.in

Summary of Vboot kit detours/patches

BIOS MBR Partition Boot Sector NT 
Boot 
Sector

BOOTMGR.EXEWINLOAD.EXE

NTOSKRNL.EXE     HAL.DLL  Boot drivers

1/0

NOTE:- The ovals  shows the point where Vboot kit hijacks 
control.The first number shows detours applied to next stage and
second number shows patches applied.A red block shows relocation

1/0

1/1

2/3

1/3



29 March 2007

22

http://www.nvlabs.in

Summary of Protections Found & Defeated

Checksum protection ( BOOTMGR) ( 100 byte fix-up)
ImgpValidateImageHash ( Digital Signature BOOTMGR) (1 
byte jmp reverse)
BmFwVerifySelfIntegrity ( Digital Signature BOOTMGR) (1 
byte jmp reverse)
SelfIntegrityCheck( Digital Signature WINLOAD) removed in 
RC2 (1 byte jmp reverse)
OslInitializeCodeIntegrity(WINLOAD) (1 byte 1 updated to 
zero)
IntegrityChecks (WINLOAD) (1 byte 1 updated to zero)
DEP protection ( NTOSKRNL) ( 1 byte patch)



29 March 2007

23

http://www.nvlabs.in

The Payload

Every exploit has a payload, so Vboot kit has it’s 
own payload
The payload for Vboot kit is a privilege 
escalation  shellcode which increases privileges 
of less privileged process.The payloads runs in 
ring 0 ( kernel land). 
The payload also writes the signature string to 
the kernel land , user land shared memory



29 March 2007

24

http://www.nvlabs.in

Privilege Escalation Shell code (overview)

Vboot Kit POC code periodically raises every 
CMD.EXE to privileges of SERVICES.EXE
A thread is created which uses KeDelayExecution 
to sleep for  say 30 seconds
Since all threads started by Drivers are run in the 
context of System Process, our thread too gets the 
privileges.
We traverse the _EPROCESS structure one by 
one to find services.exe, copy it’s security token 
and then replace security token of CMD.EXE



29 March 2007

25

http://www.nvlabs.in

Looping through Processes
Every process has an associated _EPROCESS structure 
which is linked to each other as shown below.This contains 
all security parameters of a process

PCB

.

UniqueProcessId

Active Process Links

*BLINK *FLINK

…

*Token

….

Imagename

…..

PCB

.

UniqueProcessId

Active Process Links

*BLINK *FLINK

…

*Token

….

Imagename

…..

PCB

.

UniqueProcessId

Active Process Links

*BLINK *FLINK

…

*Token

….

Imagename

…..



29 March 2007

26

http://www.nvlabs.in

Time for the Demonstration



29 March 2007

27

http://www.nvlabs.in

Demonstration Time( Signature)

•From CD-ROM

Screenshot showing signature



29 March 2007

28

http://www.nvlabs.in

Demonstration Time ( Shell code in action)



29 March 2007

29

http://www.nvlabs.in

Time for the LIVE demonstration



29 March 2007

30

http://www.nvlabs.in

References

Brown, Ralf.  Ralf Brown’s Interrupt List. http://www.cs.cmu.edu/~ralf/files.html
Russinovich, Mark.  “Inside the Boot Process, Part 1.”
http://www.windowsitpro.com/Article/ArticleID/3952/3952.html
Windows Vista Security 
http://blogs.msdn.com/windowsvistasecurity/
Microsoft. Boot Configuration Data Editor FAQ, 
http://www.microsoft.com/technet/windowsvista/library/85cd5efe-c349-427c-b035-
c2719d4af778.mspx 
P. N. Biddle. “Next-Generation Secure Computing Base,” PDC, Seatlle, 2004, 
http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-
a6f2295b40c8/TW04008_WINHEC2004.ppt
M. Conover (2006, March). “Analysis of the Windows Vista Security Model,”
http://www.symantec.com/avcenter/reference/Windows_Vista_Security_Model_Analysis.pdf
Microsoft. “First Look: New Security Features in Windows Vista,” TechNet, 
http://www.microsoft.com/technet/technetmag/issues/2006/05/FirstLook/default.aspx
Randall Hyde ,Art of assembly  Language 
Bugcheck and Skape, Kernel Mode Payloads on Windows 
http://www.uninformed.org/?v=3&a=4&t=pdf



29 March 2007

31

http://www.nvlabs.in

Questionare ?
Questions ?

Comments ?

E-mail us

nitin.kumar@nvlabs.in

vipin.kumar@nvlabs.in

http://www.nvlabs.in


