IMMUNITY 8@

Macro-Reliability In Win32 Exploits

Introduction

Nowadays, Windows platforms are widely localized. While Windows NT 4.0 only
shipped in a few languages, Windows 2000 and XP have largely increased that number,
one that is still increasing with Windows Vista.

Thus raises the issue of large scale exploitation: exploits targeting English Windows only
are not sufficient anymore and methods have to be found to adapt to this new context. If
you consider an embedded device such as Immunity's SILICA, with only 3 buttons to
control exploitation, these methods should require as few user interaction as possible.
Targets are heterogeneous, and the exploit has to adapt itself to give the best chances of
exploitation.

Ideally, in order to have the best chances for a vulnerability to be exploited, one should
gather the following information about the targeted Windows box:

Major/Minor versions

Service Packs

Patches

Configurations

Language Packs

Software version and configuration

e Networking conditions between the attacker and target
e Host protection mechanisms installed on the target

In rare cases, such as kernel exploits, even the number of CPU's on the target machine
can affect the exploit's behavior.

In reality, all these are not that easy to get, and the attacker often has to satisfy themselves
with a small subset. In this paper, we will discuss various new techniques for obtaining
the high levels of reliability desired when attacking large numbers of hosts. This involves
new techniques to gather more information from the remote targets as well as methods to
harden exploits against target variation.

Common Return Addresses

One of the ideas that lead our reflection on the subject was to reduce the fingerprinting as
much as possible, and to go only for reliable information. Indeed fingerprinting is usually
noisy on the wire and we would rather avoid this. Moreover, if you look at the public
fingerprinting techniques, such as the Service Pack fingerprinting through the MSRPC

interface enumeration, they are not that reliable across a wide range of heterogeneous
hosts. For example, it is quite difficult to tell Windows 2000 SP3 from Windows 2000
SP4 from just MSRPC endpoints. There is currently no public information regarding
remote fingerprinting of the localization of the Windows box.

The attacker has a long list of information they desire to get the best exploitation
conditions. However, they can only count on the most basic information being available
to the remote anonymous user: the major version of Windows (meaning NT 4.0, 2000 or
XP). This can be done thanks to widely known techniques (like SMB negotiation for
example) with an acceptably high success rate.

Some work has already been done on Service Pack independent return addresses —
meaning that you can target a major version of Windows without having to know its
actual service pack by using an address that is common to all service packs of that
Windows version. But even with that, most “universal” exploits we can find in the wild
will only target English install of Windows. Real “universal” exploits are rare.

Let's dig a bit more into this.

The Naive Approach

The 1* thought one can have regarding this matter could be: would it be possible to try
and find addresses as much independent as possible of the targets? Let's say look at the
various binary components usually involved in running an executable:

e The DLLs: their image base address usually changes with language pack

e The EXEs: their image base doesn't change much, which is a good point

e The EXEs and DLLs: a different version number usually means different offsets
relatively to image base. But well, versionning is definitely not a reliable science!

We can usually get cross-SP return addresses in DLLs that haven't changed, and cross-
language return addresses in EXEs, but usually not both.

A naive idea is that EXEs and DLLs with same version and same image base might
provide common return addresses. The following small C program was written to try to
corroborate this idea:

dllvers.c

/*
DLLVers v0.01 (c) 2005 Kostya Kortchinsky <kostya[at]immunityinc[dot]com>

Lists all the DLL and EXE in $WINDIR%\system32 and prints their version number
and ImageBase. Quite useful to quickly track down unchanged binaries through
service packs and localizations.

*/

#define WIN32 WINNT 0x0501

#include <windows.h>

#include <string.h>

#include <stdio.h>

#include <dbghelp.h>

#pragma comment (1lib, "version")
#pragma comment (1ib, "dbghelp")

DWORD GetBaseAddress (char *FileName)

HMODULE hModule;

HANDLE hFile, hFileMapping;
PIMAGE_NT_HEADERS pNtHeader;
DWORD dwBaseAddress;

if (! (hFile = CreateFileA(FileName, GENERIC READ, 1, NULL, OPEN EXISTING, 0, (HANDLE)NULL))) {
return (-1);

}

if (! (hFileMapping = CreateFileMappingA (hFile, NULL, PAGE_READONLY | SEC_COMMIT, 0, 0, NULL))) {
CloseHandle (hFile);
return (-1);

}
CloseHandle (hFile) ;

if (! (hModule = (HMODULE)MapViewOfFile (hFileMapping, FILE MAP READ, 0, 0, 0))) {
CloseHandle (hFileMapping) ;
return (-1);

}

CloseHandle (hFileMapping) ;

pNtHeader = ImageNtHeader ((PVOID)hModule) ;
#ifdef DEBUG

printf ("$d\n", pNtHeader->FileHeader.SizeOfOptionalHeader) ;
#endif

dwBaseAddress = pNtHeader->OptionalHeader.ImageBase;

UnmapViewOfFile ((PVOID) hModule) ;

return dwBaseAddress;
}

void PrintVersion (char *FileName)
{
DWORD dwLen, dwHandle, dwBaseAddress;
LPTSTR lpData, lpBuffer;
UINT Buflen;
VS_FIXEDFILEINFO *pFilelInfo;

char *p = FileName + strlen(FileName) ;

while (*p != '"\\' && p >= FileName)
P

ptt;

p = _strlwr(p);

if (strstr(FileName, ".dll") == NULL && strstr(FileName, ".exe") == NULL)
return;

if ((dwLen = GetFileVersionInfoSize (FileName, &dwHandle)) == 0) {

#ifdef DEBUG
printf ("$s (null) ", p);

#endif
return;
}
if ((lpbata = (LPTSTR)malloc (dwLen)) == NULL) {
printf("malloc() error\n");
exit (-1);
}
if (GetFileVersionInfo (FileName, dwHandle, dwLen, lpData) == FALSE) {

free (lpData) ;
#ifdef DEBUG
printf ("$s (null) ", p);
#endif
return;
}
if (VerQueryValue (lpData, "\\", (LPVOID)s&pFileInfo, (PUINT)&Buflen) == FALSE) ({
#ifdef DEBUG
printf ("%s (null) ", p);
#endif
} else {
#ifdef DEBUG
printf ("%d.%d.%d.%d\n", HIWORD (pFileInfo->dwFileVersionMS), LOWORD (pFileInfo->dwFileVersionMs),
HIWORD (pFileInfo->dwFileVersionLS), LOWORD (pFileInfo->dwFileVersionLS));
#endif
if (HIWORD (pFileInfo->dwFileVersionMS) > 4 && (dwBaseAddress = GetBaseAddress (FileName)) != -1)
printf ("%$s %d.%d.%d.%d %08x\n", p, HIWORD (pFileInfo->dwFileVersionMS), LOWORD (pFileInfo-
>dwFileVersionMS), HIWORD (pFileInfo->dwFileVersionLS), LOWORD (pFileInfo->dwFileVersionLS),
dwBaseAddress) ;
}
free (lpData) ;
}

int main(int argc, char *argv[])
{
WIN32 FIND DATA FindFileData;
HANDLE hFind = INVALID HANDLE VALUE;
DWORD dwError;
char Path[MAX PATH + 1], SearchPath[MAX PATH + 1], FileName[MAX PATH + 1];

ExpandEnvironmentStrings ("$WINDIR%", Path, sizeof (Path));
strcat (Path, "\\system32\\");

strcpy (SearchPath, Path);

strcat (SearchPath, "*");

hFind = FindFirstFile (SearchPath, &FindFileData);

if (hFind == INVALID HANDLE VALUE) {
printf ("Invalid file handle. Error is %u\n", GetLastError());
return (-1);
} else {
strcpy (FileName, Path);
strcat (FileName, FindFileData.cFileName) ;
PrintVersion (FileName) ;
#ifdef DEBUG
printf ("First file name is %$s\n", FindFileData.cFileName) ;
#endif
while (FindNextFile (hFind, &FindFileData) != 0) {
#ifdef DEBUG
printf ("Next file name is %$s\n", FindFileData.cFileName) ;
#endif
strcpy (FileName, Path);
strcat (FileName, FindFileData.cFileName) ;
PrintVersion (FileName) ;
}
dwError = GetLastError();
FindClose (hFind) ;
if (dwError != ERROR NO MORE FILES) {
#ifdef DEBUG
printf ("FindNextFile error. Error is %u\n", dwError);
#endif
return (-1);
}
}
return (0);

}
The plan is now to launch this small program on as many Windows 2000 boxes as

possible with different service packs, patches, and localization. The results are presented
in the following graph:

Windows 2000
\system32 DLLs

443
15

500

"English, Japanese, Italian, Dutch, German,
Spanish, Chinese, Russian, French
SPO0 to SP4 up to date

I Common ac- [l Common Il Others
cross Language accross SP
and SP

And here is the list of the common DLLs to all these platforms:

These DLLs are pretty much unused in commonly exploited programs such as Windows
services, with the exception of msvcirt.dll and msvcp50.d11 that can be found
from time to time (in the Message Queueing Service for example).

admparse.dll 5.0.2920.0 0x80000000
bootvid.dll 5.0.2172.1 0x80010000
dbmsadsn.dll 1999.10.20.0 0x42bd0000
dbmssocn.dll 1999.10.20.0 0x73330000
dbmsspxn.dll 1999.10.20.0 0x42be0000
gpkcsp.dll 5.0.2134.1 0x8000000

mcdsrv32.dll 5.0.2160.1 0x80010000
msvcirt.dll 6.1.8637.0 0x780a0000
msvcep50.dll 5.0.0.7051 0x780c0000
rtipxmib.dll 5.0.2168.1 0xd0000000
slbcsp.dll 5.0.2134.1 0x8000000

slbkygen.dll 5.0.2144.1 0x8000000

sqlwid.dll 1999.10.20.0 0x412£0000
vedex.dll 5.0.2134.1 0x0££b0000
vdmredir.dll 5.0.2134.1 0x0££a0000

Looking Deeper in Memory

So nothing terribly exciting can be found in the default DLLs of Windows. Fortunately,
there are several other memory areas allocated in a process containing data that can be of
interest, among those are:

Stacks

Heaps

File mappings

PEB, TEBs

Various different kinds of sections...

We can usually exclude stacks and heaps from our research since we can not rely on their
content and location, nevertheless we should not restrain ourselves to the DLLs and
EXEs of a process, but look into the whole process memory for opcodes of interest,
which is what the small C program dumpop.c does.

/*

DumpOp v0.21 (c) 2005 Kostya Kortchinsky <kostyal[at]immunityinc[dot]com>

dumpop.exe [-d] [-1 <InputFile>] [-o <OuputFile>] [-j <Register> | -s] [-p <PID>]

Exemple d'utilisation : esp dans services.exe de Windows 2000

lere machine : dumpop.exe -p 212 -j esp -o services esp.dmp

=> Cela va sauvegarder toutes les adresses possibles d'un jmp esp ou equivalent
dans le fichier services esp.dmp. On peut afficher les resultats a l'ecran
en rajoutant le flag -d

2eme machine :
=> Cela charge

1'on trouve

sauvegarder
Resultat : esp
001£5028:
0O0lecad4:
77£5e214:
7800ccdd:
*/

:ffed
:54c3
:54c3
:54c3

#include
#include
#include

enum { JmpEax = O,
static UCHAR Registers[][4] =

typedef struct
{

dumpop.exe -p 212 -j esp -i services esp.dmp -d

les resultats precedemment trouves puis les compare a ceux que
et on affiche les resultats a l'ecran. On peut aussi les

via le flag -o.

dans services.exe de Windows 2000 SP4 francais vs. anglais
sortkey.nls)

sortkey.nls)

gdi32.dll)

(
(
(
(msvcrt.dll)

<windows.h>
<stdio.h>
"getopt.h"

JmpEcx, JmpEdx, JmpEbx,

{ "eax", "ecx",

JmpEsp, JmpEbp,
medx", "ebx",

JmpEsi,
"esp",

JmpEdi,
"ebp",

PopPopRet };
nesi", "edi"

static OPCODE Opcodes][]

{

UCHAR *Data;
USHORT Length;
UCHAR Type;

} OPCODE;

"\xff\xdo",
"\xff\xelO",
"\x50\xc3",
"\xff\xdl",
"\xff\xel",
"\x51\xc3",
"\xff\xd2",
"\xff\xe2",
"\x52\xc3",
"\xff\xd3",
"\xff\xe3",
"\x53\xc3",
"\xff\xe4d",
"\x54\xc3",
"\xff\xd5",
"\xff\xe5",
"\x55\xc3",
"\xff\xde",
"\xff\xe6",
"\x56\xc3",
"\xff\xd7",
"\xff\xe7", ,
"\x57\xc3", 2,
"\x58\x58\xc3"
"\x58\x59\xc3"
"\x58\x5a\xc3"
"\x58\x5b\xc3"
"\x58\x5c\xc3"
"\x58\x5d\xc3"
"\x58\x5e\xc3"
"\x58\x5f\xc3"
"\x59\x58\xc3"
"\x59\x59\xc3"
"\x59\x5a\xc3"
"\x59\x5b\xc3"
"\x59\x5c\xc3"
"\x59\x5d\xc3"
"\x59\x5e\xc3"
"\x59\x5f\xc3"
"\x5a\x58\xc3"
"\x5a\x59\xc3"
"\x5a\x5a\xc3"
"\x5a\x5b\xc3"
"\x5a\x5c\xc3"
"\x5a\x5d\xc3"
"\x5a\x5e\xc3"
"\x5a\x5f\xc3"
"\x5b\x58\xc3"
"\x5b\x59\xc3"
"\x5b\x5a\xc3"
"\x5b\x5b\xc3"
"\x5b\x5c\xc3"
"\x5b\x5d\xc3"
"\x5b\x5e\xc3"
"\x5b\x5f\xc3"
"\x5c\x58\xc3"
"\x5c\x59\xc3"
"\x5c\x5a\xc3"
"\x5c\x5b\xc3"
"\x5c\x5c\xc3"
"\x5c\x5d\xc3"
"\x5c\x5e\xc3"
"\x5c\x5f\xc3"
"\x5d\x58\xc3"
"\x5d\x59\xc3"
"\x5d\x5a\xc3"
"\x5d\x5b\xc3"
"\x5d\x5c\xc3"
"\x5d\x5d\xc3"
"\x5d\x5e\xc3"
"\x5d\x5f\xc3"
"\x5e\x58\xc3"
"\x5e\x59\xc3"
"\x5e\x5a\xc3"
"\x5e\x5b\xc3"
"\x5e\x5c\xc3"

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’
’

JmpEax },
JmpEax },
JmpEax },
JmpEcx },
JmpEcx },
JmpEcx },
JmpEdx },
JmpEdx },
JmpEdx },
JmpEbx },
JmpEbx },
JmpEbx },
JmpEsp },
JmpEsp },
JmpEbp },
JmpEbp },
JmpEbp },
JmpEsi },
JmpEsi },
JmpEsi },
JmpEdi },
JmpEdi },
JmpEdi },

3,

WWWWWWwWWwWwWwWwWwWwWwWwWwWwwWwWwWwWwwWwWwWwWwwWwWwWwWwwWwWwWwwWwwWwwWwwWwwWwwwwWwwwwwwwwwwwww

PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet
PopPopRet

"\x5e\x5d\xc3", 3, PopPopRet },

{ 3

{ "\x5e\x5e\xc3", 3, PopPopRet },
{ "\x5e\x5f\xc3", 3, PopPopRet },
{ "\x5f\x58\xc3", 3, PopPopRet },
{ "\x5f\x59\xc3", 3, PopPopRet 1},
{ "\x5f\x5a\xc3", 3, PopPopRet },
{ "\x5f\x5b\xc3", 3, PopPopRet },
{ "\x5f\x5c\xc3", 3, PopPopRet },
{ "\x5f\x5d\xc3", 3, PopPopRet 1},
{ "\x5f\x5e\xc3", 3, PopPopRet },
{ 3

"\x5f\x5f\xc3", 3, PopPopRet }

}i

static ULONG NumberOfValidFirstBytes = 0;
static UCHAR ValidFirstBytes[256];

typedef struct
{
LPVOID Address;
ULONG OpcodeIndex;
} RETURN_ADDRESS, *PRETURN_ ADDRESS;

void Usage (void)
{
fprintf (stderr, "Usage:\ndumpop.exe [-d] [-1 <InputFile>] [-o <OuputFile>] [-J <Register> | -s] [-p
<PID>]\n");
exit (EXIT FAILURE);
}

ULONG DumpOpcode (ULONG Opcode, UCHAR *Buffer, ULONG Length)
{

ULONG Index;

static UCHAR HexString[] = "0123456789abcdef";

memset (Buffer, 0, Length);

for (Index = 0; (Index < Opcodes|[Opcode].Length) && (Index < (Length >> 1)); Index++) {
Buffer[Index << 1] = HexString[Opcodes[Opcode].Data[Index] >> 4];
Buffer[(Index << 1) + 1] = HexString[Opcodes[Opcode] .Data[Index] & Oxf];

}

return (Index << 1);

}

BOOL IsInList (LPVOID Address, PRETURN ADDRESS List, ULONG ListSize)
{
ULONG Index;

for (Index = 0; Index < ListSize; Index++)
if (List[Index].Address == Address)
return TRUE;
return FALSE;
}

void SearchMemoryForOpcode (LPVOID Address, ULONG Size, LPVOID Buffer, UCHAR Type, PRETURN_ ADDRESS
*pList, ULONG *pListSize)
{

ULONG Index, Offset;

PRETURN_ADDRESS pReturnAddress;

for (Offset = 0; Offset < Size; Offset++) {
for (Index = 0; Index < NumberOfValidFirstBytes; Index++)

if (((UCHAR *)Buffer) [Offset] == ValidFirstBytes[Index])
break;
if (Index == NumberOfValidFirstBytes)
continue;
for (Index = 0; Index < (sizeof (Opcodes) / sizeof (Opcodes[0])); Index++) {
if (Type == Opcodes[Index].Type && Opcodes[Index].Data[0] == ((UCHAR *)Buffer) [Offset]) {
if ((Offset + Opcodes[Index].Length) >= Size)
continue;

if (memcmp ((LPVOID) ((ULONG)Buffer + Offset), Opcodes[Index].Data, Opcodes[Index].Length) == 0)

if (*pListSize == 0)
*pList = LocalAlloc (LPTR, sizeof (RETURN_ADDRESS)) ;
else
*pList = LocalReAlloc (*pList, (*pListSize + 1) * sizeof (RETURN_ADDRESS), LMEM ZEROINIT);
pReturnAddress = &((*pList) [*pListSize]);
(*pListSize) ++;
pReturnAddress->Address = (LPVOID) ((ULONG)Address + Offset);
pReturnAddress->0OpcodeIndex = Index;

int main(int argc, char *argv[])
{
INT Option, Error = EXIT_FAILURE;
ULONG Index, Offset, ProcessId = 0;
HANDLE hInputFile = NULL, hOutputFile = NULL, hProcess = NULL;
UCHAR Type = (UCHAR)-1, String[64], *Unused, *InputFileName = NULL, *OutputFileName = NULL;
BOOL bResult, bDumpToScreen = FALSE;
DWORD NumberOfBytes;
DWORD InputListSize = 0, OutputListSize = 0, Size = 0;
PRETURN_ADDRESS InputList = NULL, OutputList = NULL;
SYSTEM_ INFO SystemInfo;
LPVOID CurrentAddress, Buffer;
MEMORY BASIC_INFORMATION MemoryBasicInformation;

while ((Option = getopt(argc, argv, "dsp:j:i:o:")) != EOF) {
switch (Option) {
case 'p':
ProcessId = strtoul (optarg, &Unused, 10);
break;
case 'j':
if (Type != (UCHAR)-1
Usage () ;
for (Type = 0; Type < (sizeof (Registers) / sizeof (Registers[0])); Type++)
if (stricmp(Registers[Type], optarg) == 0)
break;
if (Type == (sizeof (Registers) / sizeof (Registers([0])))
Usage () ;
break;
case 's':
if (Type != (UCHAR)-1
Usage () ;
Type = PopPopRet;
break;
case 'd':
bDumpToScreen = TRUE;
break;
case 'i':
InputFileName = optarg;
break;
case 'o':
OutputFileName = optarg;
break;
default:
Usage () ;
break;

}
if (ProcessId == 0 || Type == (UCHAR)-1
Usage () ;

if ((hProcess = OpenProcess (PROCESS_QUERY_ INFORMATION | PROCESS_VM READ, FALSE, ProcessId)) == NULL)

fprintf (stderr, "[-] Error opening process %d\n", ProcessId);
return Error;

}

if (InputFileName != NULL) ({
hInputFile = CreateFile(InputFileName, GENERIC READ, FILE SHARE READ, NULL, OPEN EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
if (hInputFile == INVALID HANDLE VALUE) {
fprintf (stderr, "[-] Error opening file %s\n", InputFileName) ;
goto Cleanup;

}
bResult = ReadFile (hInputFile, &InputlListSize, sizeof (InputlListSize), &NumberOfBytes, NULL);

if (bResult == FALSE || NumberOfBytes != sizeof (InputListSize)) {
fprintf (stderr, "[-] Error reading file %$s\n", InputFileName) ;

goto Cleanup;

}
InputList = LocalAlloc(LPTR, InputListSize * sizeof (RETURN_ADDRESS)) ;

if (InputList == NULL) {
fprintf (stderr, "[-] Error allocating buffer\n");
goto Cleanup;

}
bResult = ReadFile (hInputFile, InputlList, InputListSize * sizeof (RETURN_ADDRESS), &NumberOfBytes,

NULL) ;
if (bResult == FALSE || NumberOfBytes != InputListSize * sizeof (RETURN_ ADDRESS)) {
fprintf (stderr, "[-] Error reading file %s\n", InputFileName) ;

goto Cleanup;
}
for (Index = 0; Index < InputListSize; Index++)
if (InputList[Index].OpcodeIndex >= (sizeof (Opcodes) / sizeof (Opcodes[0]))) {
fprintf (stderr, "[-] Invalid return addresses list\n");

goto Cleanup;
}
}

memset (ValidFirstBytes, 0, sizeof (ValidFirstBytes));
for (Index = 0; Index < (sizeof (Opcodes) / sizeof (Opcodes[0])); Index++) {
if (Type == Opcodes[Index].Type) {
for (Offset = 0; Offset < NumberOfValidFirstBytes; Offset++)
if (Opcodes[Index].Data[0] == ValidFirstBytes[Offset])
break;
if (Offset == NumberOfValidFirstBytes)
ValidFirstBytes[NumberOfvValidFirstBytes++] = Opcodes[Index].Datal[0];

}

GetSystemInfo (&SystemInfo) ;
CurrentAddress = SystemInfo.lpMinimumApplicationAddress;
while (CurrentAddress <= SystemInfo.lpMaximumApplicationAddress) {
if (VirtualQueryEx (hProcess, (LPVOID)CurrentAddress, &MemoryBasicInformation,
sizeof (MemoryBasicInformation)) == 0)

break;
if ((MemoryBasicInformation.State & MEM COMMIT) != 0) {
if ((Buffer = VirtualAlloc(NULL, MemoryBasicInformation.RegionSize, MEM COMMIT, PAGE READWRITE))
== NULL)

return EXIT FAILURE;
if (ReadProcessMemory (hProcess, MemoryBasicInformation.BaseAddress, Buffer,
MemoryBasicInformation.RegionSize, NULL) != 0)
SearchMemoryForOpcode (MemoryBasicInformation.BaseAddress, MemoryBasicInformation.RegionSize,
Buffer, Type, &OutputlList, &OutputListSize);
VirtualFree (Buffer, 0, MEM RELEASE);
}
CurrentAddress = (LPVOID) ((ULONG)CurrentAddress + MemoryBasicInformation.RegionSize);

}

if (OutputFileName != NULL) {
hOutputFile = CreateFile (OutputFileName, GENERIC WRITE, 0, NULL, CREATE ALWAYS,
FILE ATTRIBUTE NORMAL, NULL);
if (hOutputFile == INVALID HANDLE VALUE) {
fprintf (stderr, "[-] Error creating file %s\n", OutputFileName) ;
goto Cleanup;
}

if (InputListSize != 0) {
for (Index = 0; Index < OutputListSize; Index++)
if (IsInList (OutputList[Index].Address, InputList, InputListSize) == TRUE)
Sizet+;
}
else

Size = OutputListSize;
bResult = WriteFile (hOutputFile, &Size, sizeof (Size), &NumberOfBytes, NULL);
if (bResult == FALSE || NumberOfBytes != sizeof (Size)) {
fprintf (stderr, "[-] Error writing to file %s\n", OutputFileName) ;
goto Cleanup;
}
}
for (Index = 0; Index < OutputListSize; Index++) {
if (InputListSize == || IsInList(OutputList[Index].Address, InputList, InputListSize) == TRUE) {
if (bDumpToScreen == TRUE) ({
DumpOpcode (OutputList [Index] .OpcodeIndex, String, sizeof (String));
fprintf (stdout, "%08x::%s\n", OutputList[Index].Address, String);

}

if (hOutputFile != NULL) {
bResult = WriteFile (hOutputFile, & (OutputList[Index]), sizeof (RETURN_ADDRESS), &NumberOfBytes,
NULL) ;
if (bResult == FALSE || NumberOfBytes != sizeof (RETURN_ADDRESS)) {
fprintf (stderr, "[-] Error writing to file %s\n", OutputFileName) ;

goto Cleanup;
}

Error = EXIT_SUCCESS;

Cleanup:

if (hInputFile != NULL && hInputFile != INVALID HANDLE_ VALUE)
CloseHandle (hInputFile);

if (hOutputFile != NULL && hOutputFile != INVALID HANDLE_ VALUE)
CloseHandle (hOutputFile) ;

if (hProcess != NULL)
CloseHandle (hProcess) ;

if (InputList != NULL)
LocalFree (Inputlist);

if (OutputList != NULL)
LocalFree (OutputList) ;

return Error;

}

Using this program to compare retrieve common return addresses for standard Windows
services on various platforms, we could notice some that were common to all of them,
located in some file mapping memory area.

NLS File Mapping

Several NLS files are mapped by default by Windows before the process even starts,
those are:

unicode.nls
locale.nls
sortkey.nls
sorttbls.nls

Some others can be loaded at runtime depending on the locale used, as well as the DLLs
initialized (ctype.nls for example). One of the advantages of these mapping is that even if
they have no such thing as an image base address — like DLLs have — the mapping
algorithm is deterministic and their mapping base address is (almost) fixed for a given
binary on the same major version of Windows.

Indeed, their mapping base address will depend on previously allocated pages during the
binary loading process: the stack of the main thread (based on the SizeOfStackReserve
parameter in PE header — 0x100000 for Microsoft compiled binary, can be changed with
/F for cl.exe), the imported DLLs (based on their image base address). Meaning that for
standard Windows services, you will always find them at the same address for a given
major version of Windows, which might not be the case for some other binaries. Among
the advantages of these file mappings is that they contain a lot of jmp reg, call reg
or push reg & ret opcodes, making them very useful for stack overflow, and that
they haven't changed since Windows NT 4.0! Among their disadvantages: the addresses
contain one NULL byte (the high-order byte) and are not marked as executable. In
Windows NT up to and including XP SP1, the executable bit is not important for the
memory section. So if you can use the null byte, you can use the address in the NLS
section.

As a side note, the Blaster worm was using a return address in one of the NLS file
mappings for its Windows 2000 targets, making it quite “universal”.

data block P
P

Drawing 1: Immunity Debugger View of NLS Sections

Remote Language Fingerprinting

As mentioned above, we can usually get either cross-SP return addresses or cross-
language return addresses but (except for NLS file mappings) not both. Since SP
fingerprinting is painful and not very reliable, what about language fingerprinting?
Microsoft Windows does not offer a documented remote and anonymous way to correctly
determine the language pack of a Windows install, but it would be really useful since:

e The applied language pack changes offsets and base addresses within DLLs which
affect our exploits

e Some vulnerabilities and/or exploits are only effective on certain languages:
o MS06-009: Korean Input Method Editor
o MSO07-001: Brazilian Portuguese Grammar Checker

Remote language fingerprinting seems to be a promising approach for massively reliable
exploitation. One of the aspects to consider is the Same Path Principle: when exploiting a
flaw, we preferably want all the fingerprinting to be done using the same ports/services
that the exploit is targeting, to reduce the risks of failure due to firewalling or services
being disabled. Thus, we had to find as many ways as possible to remotely (and
anonymously if possible) fingerprint a Windows install language, which include:

MSRPC: using different interfaces and endpoints;
The Windows SNMP service;

IIS

IE

Using MSRPC

MSRPC has been under particular attention during the last years, having carried the
“best” anonymously and remotely exploitable flaws in Windows systems. I will not go

into the details of MSRPC, interfaces, endpoints, functions: you will be able to find a lot
of information about this on the Interweb. MSRPC also happens to be one of the easiest
and most reliable ways to fingerprint a Windows language install.

Shares

The MSRPC language fingerprint technique using share enumeration works by matching
the “remark” unicode field of a SHARE_INFO_1 structure returned by the
NetShareEnum() API. This function uses the interface 4b324fc8-1670-01d3-1278-
5a47bf6eel188 v3.0, opnum 15 in services.exe (under 2000). This interface is usually
accessible through endpoints on ncacn_np, ncadg_ip_udp (in old SP — was patched with
the Windows Messenger Service vulnerability).

If the default IPC$ or the C$ share exists (or any other disk$ share in fact), it will come
with a remark field that is different depending on the Windows language. Anyway, if we
are exploiting a RPC bug over ncacn_np, the IPC$ share would better exist :)

This allows remote and anonymous language fingerprinting against NT 4.0, 2000, XP up
to SP1a and 2003 SPO. It no longer works in XP SP2 and 2003 SP1.

The shares will allow to match uniquely the following languages:

French
Spanish
Russian
German
Dutch
Polish
Simplified Chinese
Traditional Chinese
Turkish
Hungarian
Czech
Norwegian
Swedish
Greek
Danish
e Finnish
Unfortunately, for 5 languages, the remark field has not been localized, these are:
e Japanese
e Korean
e Hebrew
e Arabic
e English
These five languages all have the same remark field as an English install of Windows.
Moreover, a few “collisions” exists in the remark field with the following languages
using the IPC$ share:

e Portuguese

e [talian

e Brazilian
This is reduced to Portuguese and Brazilian if using the C$ share (or any other disk).
The following program can be used to illustrate this technique:

fplang.c

/*
FpLang v0.16 (c) 2005 Kostya Kortchinsky <kostyal[at]immunityinc[dot]com>

Remotely fingerprints Windows localization. It uses the NetShareEnum RPC
function (NULL session needed - or credentials of course) to fetch the shares
and matches the "Remark" field of IPC$ and C$ shares to identify the language.
If we managed to connect, IPC$ should be listed, but there are a few collisions
on some of the strings (like Italian & Portuguese). So if C$ is listed, we will
prefer this result.

It was tested against Windows 2000 platforms, but works fairly well against XP
and 2003 ... XP SP2 and 2003 SP1 will not allow the remote call anonymously
though.

*/

#ifndef UNICODE
#define UNICODE
#endif

#pragma comment (1lib, "netapi32")
#pragma comment (lib, "mpr")

#include <windows.h>
#include <stdio.h>
#include <lm.h>

typedef struct

{
UCHAR *Remark;
USHORT Size;
UCHAR *Language;

} SHARE_INFO;

SHARE_INFO IpcInfoArrayl[] =
{

{ "\x52\x00\x65\x00\x6d\x00\x6£\x00\x74\x00\x65\x00\x20\x00\x49\x00\x50\x00\x43\x00", 20, "English,
Arabic, Hebrew, Japanese or Korean" 1},

{ "\x52\x00\x65\x00\x6d\x00\x6£\x00\x74\x00\x65\x00\x2d\x00\x49\x00\x50\x00\x43\x00", 20,
"German" },

{ "\x49\x00\x50\x00\x43\x00\x20\x00\x64\x00\x69\x00\x73\x00\x74\x00\x61\x00\x6e\x00\x74\x00", 22,
"French" 1},

{ "\x49\x00\x50\x00\x43\x00\x20\x00\x72\x00\x65\x00\x6d\x00\x6£\x00\x74\x00\x61\x00", 20,
"Spanish" },

{ "\x23\x04\x34\x04\x30\x04\x3b\x04\x35\x04\x3d\x04\x3d\x04\x4b\x04\x39\x04\x20\x00\x49\x00\x50\x00\
x43\x00", 26, "Russian" },

{ "\x49\x00\x50\x00\x43\x00\x20\x00\x72\x00\x65\x00\x6d\x00\x6f\x00\x74\x00\x6£\x00", 20, "Italian,
Portuguese or Brazilian" },

{ "\x5a\x00\x64\x00\x61\x00\x6c\x00\x6e\x00\x65\x00\x20\x00\x49\x00\x50\x00\x43\x00", 20,
"Polish" },

{ "\x46\x00\x6a\x00\xed4\x00\x72\x00\x72\x00\x2d\x00\x49\x00\x50\x00\x43\x00", 18, "Swedish" },

{ "\x45\x00\x78\x00\x74\x00\x65\x00\x72\x00\x6e\x00\x65\x00\x20\x00\x49\x00\x50\x00\x43\x00", 22,
"Dutch" 1},

{ "\x45\x00\x6b\x00\x73\x00\x74\x00\x65\x00\x72\x00\x6e\x00\x20\x00\x49\x00\x50\x00\x43\x00", 22,
"Norvegian" },

{ "\x54\x00\xel\x00\x76\x00\x6£\x00\x6c\x00\x69\x00\x20\x00\x49\x00\x50\x00\x43\x00", 20,
"Hungarian" },

{ "\x46\x00\x6a\x00\x65\x00\x72\x00\x6e\x00\x2d\x00\x49\x00\x50\x00\x43\x00", 18, "Danish" },

{ "\x45\x00\x74\x00\xe4\x00\x2d\x00\x49\x00\x50\x00\x43\x00", 14, "Finnish" },

{ "\xdc\x8f\x0b\x7a\x20\x00\x49\x00\x50\x00\x43\x00", 12, "Simplified Chinese" },

{ "\x60\x90\xef\x7a\x20\x00\x49\x00\x50\x00\x43\x00", 12, "Traditional Chinese" },

{ "\x91\x03\xc0\x03\xbf\x03\xbc\x03\xb1\x03\xba\x03\xcl1\x03\xc5\x03\xc3\x03\xbc\x03\xad\x03\xbd\x03\
xpf\x03\x20\x00\x49\x00\x50\x00\x43\x00", 34, "Greek" 1},

{ "\x55\x00\x7a\x00\x61\x00\x6b\x00\x20\x00\x49\x00\x50\x00\x43\x00", 16, "Turkish" },

{ "\x56\x00\x7a\x00\x64\x00\xe1\x00\x6c\x00\x65\x00\x6e\x00\x£d\x00\x20\x00\x49\x00\x50\x00\x43\x00"
, 24, "Czech" }
}i

SHARE_INFO DiskInfoArray[] =
{
{ "\x44\x00\x65\x00\x66\x00\x61\x00\x75\x00\x6c\x00\x74\x00\x20\x00\x73\x00\x68\x00\x61\x00\x72\x00\

x65\x00", 26, "English, Arabic, Hebrew, Japanese or Korean" },

{ "\x53\x00\x74\x00\x61\x00\x6e\x00\x64\x00\x61\x00\x72\x00\x64\x00\x66\x00\x72\x00\x65\x00\x69\x00\
x67\x00\x61\x00\x62\x00\x65\x00", 32, "German" },

{ "\x50\x00\x61\x00\x72\x00\x74\x00\x61\x00\x67\x00\x65\x00\x20\x00\x70\x00\x61\x00\x72\x00\x20\x00\
x64\x00\xe9\x00\x66\x00\x61\x00\x75\x00\x74\x00", 36, "French" },

{ "\x52\x00\x65\x00\x63\x00\x75\x00\x72\x00\x73\x00\x6£\x00\x20\x00\x70\x00\x72\x00\x65\x00\x64\x00\
x65\x00\x74\x00\x65\x00\x72\x00\x6d\x00\x69\x00\x6e\x00\x61\x00\x64\x00\x6£\x00", 44, "Spanish" },

{ "\x21\x04\x42\x04\x30\x04\x3d\x04\x34\x04\x30\x04\x40\x04\x42\x04\x3d\x04\x4b\x04\x39\x04\x20\x00\
x3e\x04\x31\x04\x49\x04\x38\x04\x39\x04\x20\x00\x40\x04\x35\x04\x41\x04\x43\x04\x40\x04\x41\x04", 48,
"Russian" },

{ "\x43\x00\x6f\x00\x6e\x00\x64\x00\x69\x00\x76\x00\x69\x00\x73\x00\x69\x00\x6f\x00\x6e\x00\x65\x00\
x20\x00\x70\x00\x72\x00\x65\x00\x64\x00\x65\x00\x66\x00\x69\x00\x6e\x00\x69\x00\x74\x00\x61\x00", 48,
"Italian" },

{ "\x50\x00\x61\x00\x72\x00\x74\x00\x69\x00\x6c\x00\x68\x00\x61\x00\x20\x00\x70\x00\x72\x00\x65\x00\
x64\x00\x65\x00\x66\x00\x69\x00\x6e\x00\x69\x00\x64\x00\x61\x00", 40, "Portuguese" },

{ "\x44\x00\x6£\x00\x6d\x00\x79\x00\x5b\x01\x6c\x00\x6e\x00\x79\x00\x20\x00\x75\x00\x64\x00\x7a\x00\
x69\x00\x61\x00\x42\x01", 30, "Polish" },

{ "\x53\x00\x74\x00\x61\x00\x6e\x00\x64\x00\x61\x00\x72\x00\x64\x00\x72\x00\x65\x00\x73\x00\x75\x00\
x72\x00\x73\x00", 28, "Swedish" },

{ "\x53\x00\x74\x00\x61\x00\x6e\x00\x64\x00\x61\x00\x61\x00\x72\x00\x64\x00\x73\x00\x68\x00\x61\x00\
x72\x00\x65\x00", 28, "Dutch" },

{ "\x44\x00\x65\x00\x6c\x00\x74\x00\x20\x00\x73\x00\x74\x00\x61\x00\x6e\x00\x64\x00\x61\x00\x72\x00\
x64\x00\x72\x00\x65\x00\x73\x00\x73\x00\x75\x00\x72\x00\x73\x00", 40, "Norvegian" 1},

{ "\x41\x00\x6c\x00\x61\x00\x70\x00\xe9\x00\x72\x00\x74\x00\x65\x00\x6c\x00\x6d\x00\x65\x00\x7a\x00\
x65\x00\x74\x00\x74\x00\x20\x00\x6d\x00\x65\x00\x67\x00\x6f\x00\x73\x00\x7a\x00\x74\x00\xel1\x00\x73\x0
0", 50, "Hungarian" },

{ "\x53\x00\x74\x00\x61\x00\x6e\x00\x64\x00\x61\x00\x72\x00\x64\x00\x73\x00\x68\x00\x61\x00\x72\x00\
x65\x00", 26, "Danish" 1},

{ "\x4f\x00\x6c\x00\x65\x00\x74\x00\x75\x00\x73\x00\x72\x00\x65\x00\x73\x00\x75\x00\x72\x00\x73\x00\
x73\x00\x69\x00\x20\x00\x28\x00\x6a\x00\x61\x00\x65\x00\x74\x00\x74\x00\x75\x00\x29\x00", 46
"Finnish" },

{ "\xd8\x9%e\xa4\x8b\x71\x51\xab\x4e", 8, "Simplified Chinese" },

{ "\x10\x98\x2d\x8a\x71\x51\x28\x75", 8, "Traditional Chinese" },

{ "\xa0\x03\xc1\x03\xbf\x03\xb5\x03\xc0\x03\xb9I\x03\xbb\x03\xb5\x03\xb3\x03\xbc\x03\xad\x03\xbd\x03\
xb7\x03\x20\x00\xba\x03\xbf\x03\xb9\x03\xbd\x03\xae\x03\x20\x00\xc7\x03\xc1\x03\xae\x03\xc3\x03\xb7\x0
3", 50, "Greek" 1},

{ "\x56\x00\x61\x00\x72\x00\x73\x00\x61\x00\x79\x00\x31\x01\x6c\x00\x61\x00\x6e\x00\x20\x00\x64\x00\
x65\x00\x1£f\x01\x65\x00\x72\x00", 32, "Turkish" },

{ "\x56\x00\xfd\x00\x63\x00\x68\x00\x6f\x00\x7a\x00\xed\x00\x20\x00\x73\x00\x64\x00\xed\x00\x6c\x00\
x65\x00\x6e\x00\xel\x00\x20\x00\x70\x00\x6f\x00\x6c\x00\x6f\x00\x7e\x01\x6b\x00\x61\x00", 46
"Czech" },

{ "\x52\x00\x65\x00\x63\x00\x75\x00\x72\x00\x73\x00\x6£\x00\x20\x00\x63\x00\x6f\x00\x6d\x00\x70\x00\
x61\x00\x72\x00\x74\x00\x69\x00\x6c\x00\x68\x00\x61\x00\x64\x00\x6f\x00\x20\x00\x70\x00\x61\x00\x64\x0
0\x72\x00\xe3\x00\x6£f\x00", 56, "Brazilian" }

}i

int wmain(int argc, TCHAR *argvl[])
{
PSHARE INFO 1 pShareInfoBuf, pTmpBuf;
NET API_STATUS nStatus;
LPTSTR pszServerName = NULL;
DWORD i, j, dwEntriesRead = 0, dwTotalEntries = 0, dwResumeHandle = 0, dwError = 0;
TCHAR pszRemoteName [MAX PATH];
UCHAR pszLanguage[64];
NETRESOURCE NetResource;

memset (pszLanguage, 0, sizeof (pszLanguage));
memset (pszRemoteName, 0, sizeof (pszRemoteName)) ;

strncpy (pszLanguage, "Unknown", sizeof (pszLanguage) - 1);

if (argc !'= 2) {
fwprintf (stderr, L"[?] Usage: %$s \\\\ServerName\n", argv[0]);
return 1;

}

pszServerName = argv[1l];

if (pszServerName[0] != "\\' || pszServerName[l] != "\\') {
fprintf (stderr, "[-] Invalid ServerName (must start with \\\\)\n");
return 1;

}

_snwprintf (pszRemoteName, sizeof (pszRemoteName) - 1, "$s\\IPC$", pszServerName) ;

memset (&NetResource, 0, sizeof (NetResource));

NetResource.lpLocalName = NULL;

NetResource.lpProvider = NULL;

NetResource.dwType = RESOURCETYPE ANY;

NetResource.lpRemoteName = pszRemoteName;

// Establish a NULL session

if ((dwError = WNetAddConnection2 (&NetResource, L"", L"", 0)) != NO ERROR) {
fprintf (stderr, "[-] WNetAddConnection2 () failed (%d)\n", dwError);
return 1;

}

fprintf (stderr, "[+] WNetAddConnection2() succeeded\n");

// Enumerate the shares

do {

nStatus = NetShareEnum(pszServerName, 1, (LPBYTE *)é&pShareInfoBuf, MAX PREFERRED LENGTH,
&dwEntriesRead, &dwTotalEntries, &dwResumeHandle) ;
if (nStatus == ERROR SUCCESS || nStatus == ERROR MORE DATA) {
fprintf (stderr, "[+] NetShareEnum() succeeded\n");
// Let's first look for the IPC$ share
pTmpBuf = pShareInfoBuf;
for(i = 0; 1 < dwEntriesRead; i++) {

if (wcscmp ((LPTSTR) (pTmpBuf->shil netname), L"IPCS") == 0) {
for (j = 0; j < (sizeof(IpcInfoArray) / sizeof (IpcInfoArray([0])); J++)
if ((wcslen((LPTSTR)pTmpBuf->shil remark) << 1) >= IpcInfoArrayl[j].Size
&& memcmp (pTmpBuf->shil remark, IpcInfoArray[j].Remark, IpcInfoArray([j].Size) == 0) {
strncpy (pszLanguage, IpcInfoArray[]j].Language, sizeof (pszLanguage) - 1);
break;
}
if (j == (sizeof (IpcInfoArray) / sizeof (IpcInfoArray[0]))) {
printf ("{ \"");
for (3 = 0; j < wcslen((LPTSTR)pTmpBuf->shil remark); j++)
printf ("\\x%02x\\x%02x", (UCHAR) (((LPTSTR) (pTmpBuf->shil remark)) [j] & Oxff)
(UCHAR) (((LPTSTR) (pTmpBuf->shil remark)) [j] >> 8));
printf ("\", %d, \"Unknown\" },\n", j << 1);

wprintf (L"$s\n", (LPTSTR)pTmpBuf->shil remark);
}

break;

}

pTmpBuf++;
}
if (i == dwEntriesRead)

printf ("[!] No IPC$ share\n"); // How would that be possible ?
else

printf("[!] 1lst guess : %$s\n", pszLanguage);
strncpy (pszLanguage, "Unknown", sizeof (pszLanguage) - 1);

// Now the C$ share ...
pTmpBuf = pShareInfoBuf;
for(i = 0; 1 < dwEntriesRead; i++) {

if (wcscmp ((LPTSTR) (pTmpBuf->shil netname), L"CS$") == 0) {
for (j = 0; J < (sizeof (DiskInfoArray) / sizeof (DiskInfoArray[0])); j++)
if ((wcslen((LPTSTR)pTmpBuf->shil remark) << 1) >= DiskInfoArray[j].Size
&& memcmp (pTmpBuf->shil remark, DiskInfoArray[j].Remark, DiskInfoArray[j].Size) == 0) {
strncpy (pszLanguage, DiskInfoArray[j].Language, sizeof (pszLanguage) - 1);
break;
}
if (j == (sizeof (DiskInfoArray) / sizeof (DiskInfoArray[0]))) {
printf ("{ \"");

for (j = 0; j < wcslen((LPTSTR)pTmpBuf->shil remark); j++)
printf ("\\x%02x\\x%02x", (UCHAR) (((LPTSTR) (pTmpBuf->shil remark)) [j] & Oxff)
(UCHAR) (((LPTSTR) (pTmpBuf->shil remark)) [j] >> 8));
printf ("\", %d, \"Unknown\" },\n", j << 1);
wprintf (L"%$s\n", (LPTSTR) pTmpBuf->shil remark) ;

}

break;
}
pTmpBuf++;
}
if (i == dwEntriesRead)
printf("[!] No C$ share\n");
else
printf ("[!] 2nd guess : %s\n", pszLanguage);

NetApiBufferFree (pShareInfoBuf) ;
}

else
fprintf (stderr, "[-] NetShareEnum() failed (%d)\n", nStatus);
} while (nStatus == ERROR_MORE_DATA) ;

// Cancel the NULL session
WNetCancelConnection2 (pszRemoteName, 0, TRUE);

return 0;

Users

Windows allows remote listing of the users on a system using LsalLookupSids() API by
brute forcing SIDs. This technique matches the default ones that are localization
dependent: for example the “None” group. The function is accessible through interface
12345778-1234-abcd-ef00-0123456789ab v0.0, being opnum 57, usually over ncacn_np.

It will work anonymously against NT 4.0 and 2000, and against XP up to SP1a with fake

credentials if a Share has been setup. It is quite useful in some case to refine a previous
techniques results. In Immunity CANVAS, each technique is tried in turn, further
reducing the set of possible languages until one has been reached.

Print Providers

The “Print Providers” method is the best of the RPC methods, and is unique to
CANVAS. It works by matching the “comment” unicode field of a PRINTER_INFO_1
structure returned by the EnumPrinters() API. The API itself doesn't support remote
listing of Print Providers, only local providers, so rather than using the Windows API, the
attacker has to build their own RPC request to get it done. It need access to the Windows
Spooler service (spoolsv.exe) interface 12345678-1234-abcd-ef00-0123456789ab
v1.0, using opnum 0. This is usually accomplished through ncacn_np:\PIPE\spoolss
which allows anonymous access even in Windows XP SP2!

So this method works remotely and anonymously against NT 4.0, 2000, XP up to and
including SP2, but won't work against 2003 unless it is configured as a print server with
\spoolss pipe enabled.

To get into the details, Windows based clients and servers have 3 print providers by
default: localspl.dll,win32spl.dll and inetpp.dll. The comment string
for win32spl.dl1 is localized and can be used for matching. In addition, 3" party
software packages can install their own print provider. This risk has been forced into the
public eye with multiple vulnerabilities in print providers in the recent past:

MSO05-043: Heap overflow in win32spl.dll
Novell TID #3125538: Stack overflow in nwspool.dll
e CTX111686: Stack overflow in cpprov.dll

e Etc.,

The printer provider localization detection method allows the attacker to uniquely match
the following languages of Windows:

French

Spanish

Russian

German

Dutch

Polish

Simplified Chinese
Traditional Chinese
Turkish

Hungarian

Czech

Norwegian
Swedish

Greek

Danish
Finnish
Japanese
Korean
Portuguese
Italian
Brazilian

Unfortunately, the comment string has not been translated for the following languages:

e Hebrew
e Arabic
e English

meaning that Windows install using these localizations will always be matched as
English.

Regardless, this new method of using the printer providers gives the attacker the most
reliable and widest range of results that can be recovered remotely and anonymously
using MSRPC.

Using SNMP

SNMP has some advantages: it is widely used in corporate environments, and travels
over UDP, making it an interesting target for attackers. Unfortunately, there is no such
thing as a Windows Language OID that would allow an attacker to easily fetch the
localization of the Windows install (well at least I haven't found one). There is a
“Location” field (SNMPv2-MIB::sysLocation.0): it is a string that can be filled from
SNMP services options by an Administrator, but since almost anything can be put in
there, it is not useful for a reliable remote fingerprinting methodology.

Among the information that can be fetched from the SNMP service with read-access
credentials, is a list of installed software (HOST-RESOURCES-
MIB::hrSWinstalledName.*), which also includes the hotfixes and patches installed on
the machine. Luckily for the attacker, the term “Hotfix” is localized based on the
Windows install version:

e “Correctif” in French
e “Revision” in Spanish
e FEtc.,
For this technique to work, the attacker will need a public community name and at least

some hotfixes installed on the target machine. This is usually not a problem since no
hotfix usually means a straight-forward exploitation of old “universal” bugs.

Using IIS and IE

When exploiting an IIS bug or an ISAPI filter, it is highly probable that no other port than
80 and/or 443 will be opened, and we will have to use that to try and retrieve some

information about the underlying Windows language. As expected IIS is not very
talkative about its localization, the technique we have been using is based on the fact that
the 40x error pages are localized, as well as some 40x error status strings (like the 404
one). Even if the 404 page is customized, there still are some other requests we can send
to trigger errors for which pages are rarely modified.

Client-side exploits might also require a knowledge of the Windows language install, that
can only be done through IE itself. The Accept-Language header can give an hint on the
base language itself, but is not that reliable. Nowadays heap-spray provides a mean to
disregard this, allowing exploitation regardless of fine-grained fingerprinting.

CANVAS Implementation

Based on the previously described research, CANVAS (and SILICA of course)
implements these techniques to allow mass exploitation of Windows boxes without user
interaction by fingerprinting the OS (major version, language pack) and launching the
exploit based on the results. Some configuration options can be used to force some
behaviors if no language could be found for a given host:

e Always assume a language: English for example;
e Don't run the exploit if not language was found;
e Assume the language to be the one of the nearest neighbor;

Common return addresses are used as often as possible to prevent language detection
issues (mostly due to collisions).

Here is a example of a CANVAS run against a Windows 2000 German box, correctly
identified:

wmw:— (R A A A S T EY T) v “=8x
Action Listeners Hosts Exploit Action Configuration
Current Callback P 10.10.11.1 |
Mame |Description MICROSOFT WINDODWS LSASS RPC OVERFLOWY
ST — T oo I Microsoft Windows Lsass RPC Isasrv.dll Stack Overflow
ms03_001 Microsoft Windo: — | 5 |
»
ms03_022 115 5.0 Windows| |———————————----¢ o
ms03_026 Microsoft winde:| i nede Tree |
Ms03_049 Microsoft windo: Hosf: 10.10.11.1
=04 011 Microsoft Windo:|+ b W Host 10,10,11.129 (current target) J
o Host 10,10.12.1 E
CANVAS Log | Debug Lag |
N af(x

Guessed languages: ['German']
Host [10.10.11.129

Get Remote Language found: ['German'] ® Autoversioning

O Windows 2000 SP0-SP4 English

O Windows 2000 $P0-5P4 French, Simplified Chinese
L wersions O Windows 2000 SPO-5P4 Japanese

o |5tatus |Action O Windows 2000 SPO-SP4 German Er
O windows 2000 SP0-5P4 Dutch, Italian, Spanish
O windows XP SPO-SP1a

X cancel | Por

[| >
As Reliable as Possible Covertness Bar As Covert As Possible
1.0

L]

Found os of 10.10.11.129 as Windows 2000 Gerrman

0 DEEEd Microsoft windows Lsass RPC Overflow attac

Here is a list of some of the CANVAS exploits and the method chosen for reliability:

Exploit
ms01_023
ms01_033
ms03_001
ms03_022

ms03_026
ms03_049

ms04_011
ms04_031

ms05_039
ms06_066
ms06_070

Vulnerability
IPP ISAPI Overflow
Index Server ISAPI Overflow
RPC Locator Overflow
Media Services ISAPI Overflow

RPC Interface Overflow
WksSvc Overflow

LsaSs Overflow
NetDDE RPC Overflow

UPNP RPC Overflow
Netware Service Overflow
WksSvc Overflow

Heap Overflows

Method
NLS mapping
NLS mapping
NLS mapping
NLS mapping

NLS mapping
ws2help.dl1l address
based on localization
ws2help.dll address
based on localization
NLS mapping

NLS mapping
NLS mapping
NLS mapping

Target
2000 SP0-SP1
2000 SP0-SP1
NT 4.0 SP6a, 2000 SPO-SP3
2000 SP0-SP4

NT 4.0 SP6a, 2000 SPO-SP4,
XP SP0-SP1a, 2003 SPO

2000 SP0-SP4, XP SP0-SP1a

2000 SP0-SP4, XP SP0-SP1a
2000 SP0-SP4, XP SP0-SP1a
NT 4.0 SP6a, 2000 SPO-SP4,
XP SP0-SP1a

2000 SP0-SP4, XP SP0-SP1a
2000 SP0-SP4

Heap overflows are a different problem than stack overflows for reliability. Up to the

point where we get a write-4, the Windows language pack should not be an issue. One
notable exception is the Windows Messenger service overflow where the way the buffer
is aligned depends on a string that is localized. Once we get the write-4, we usually need
a function pointer overwritten to get control over the execution flow:

e The Unhandled Exception Filter (UEF) should be considered last resort since its
location depends on both SP and language

e PEB lock functions are at a fixed location (independent of language pack and
service pack) but may take as long as ten minutes to trigger, which is suboptimal

e To avoid an exception, the exploit writer often wants to find a writable location,
which can be in .data section of a binary. This location depends on the binary's

image base address and version.

For creating a reliable exploit despite these issues a memory leaks is often extremely
useful. (In this context, a “memory leak™ is a way to get the program to send contents of
memory back to the attacker).

MSRPC Memory Leak

When dealing with MSRPC interfaces (once again), one has to know that the MIDL
[unique] attribute leaks a pointer in the target process memory space on the wire if
combined with [out]

e http://msdn2.microsoft.com/en-us/library/aa367294.aspx

http://msdn2.microsoft.com/en-us/library/aa367294.aspx

Example

long RpcEnumPrinters (
[in] long arg 1,
[in] [unique] [string] wchar t * arg 2,
[in] long arg 3,
[in, out] [unique] [size is(arg 5)] char * arg 4,
[in] long arg 5,
[out] long * arg 6,
[out] long * arg 7

Wireshark Capture

Eile Edit \iew Go Capture Analyze Statistics Help

BEoiee SHxwE ReswTs IR QAGHGEDEX G
MENter“l j#ﬁxwessm “e;glear‘v’ﬁbp\v‘

No. - ‘Tlme ‘Source |Destmat\om ‘Protoco\ ‘ Info ‘
26 0.129575 18.18.11.1 10.10.11.134 SME Read AndX Request, FID: 0x4808, 16 bytes at offset @
27 6.129655 16.19.11.134 16.10.11.1 SHE Read AndX Response, FID: 6x4008, 16 bytes
28 ©.131780 16,198,111 10.10.11.134 SME Read AndX Request, FID: 9x4000, 588 bytes at offset © J
29 ©.131851 10.10,11.134 16.18.11.1 SPOOLSS EnumPrinters response
30 0.163794 10,18,11,1 10.10.11.134 TCP 37389 » microsoft-ds [ACK] Seq=1672 Ack=1601 Win=9312 Len=0 TSV=2438450 TSER=57617
31 6.182789 16.19.11.1 10.10.11.134 TCP 37389 » microsoft-ds [FIN, ACK] Seq=1672 Ack=1601 Win=%312 Len=@ T5V/=2438451 TSER=57617
32 ©.183532 16,18,11.134 10.18.11.1 TCP microsoft-ds » 37389 [FIN, ACK] Seq=1681 Ack=1673 Win=173%4 Len=0 TSY=57618 TSER=2438451

L] [

TR AT e T e Ty T T S EECBaT
b Internet Frotocol, Src: 18.16.11.134 (16.19,11,134), Dst: 16.18.11.1 ¢16.10.11.1)
b Transmission Control Protocol, Src Fort: microsoft-ds (445), Dst Port: 37389 (37389), Seq: 949, Ack: 1672, Len: 652
b NetBIOS Session Service
b SMB (Server Message Block Protocol)
b DCE RFC Response, Fragment: Single, Fraglen: ©04, Call: 2 Ctx: 0, [Req: #24]
= Hicrosoft Spool Subsystem, EnumPrinters
Operation: EnumPrinters (6)
Request in frame: 24
< Buffer
Referent 10: 6x00097e34
Buffer size: 558 o
Buffer data: 08800100FAG10006BAG100065401000000C00]10046A10660
Needed: 558

] [«]

BO96 ©5 69 ©2 ©3 16 00 00 ©0 Sc 62 00 @0 62 60 60 60
6016 44 02 00 00 00 00 00 00 ELNVERCERCED e 62 60 60
0026 ©8 80 ©1 80 fa @1 @0 @0 ba 61 80 00 34 01 60 6O
6030 00 O 01 00 46 ©1 00 00 f5 0O 0O O O 6O 60 60
6040 ©0 50 01 01 76 00 00 00 3Ic 00 0O 0O 10 60 60 60
6856 49 €0 6e 00 74 00 65 00 72 00 be €0 65 60 74 00
0066 20 69 55 09 52 00 dc 09 20 00 50 60 72 60 69 60
0076 6Ge B0 74 00 65 00 72 00 T3 00 00 60 57 60 69 60
0080 6e B0 64 8O 6Ff @O 77 @0 73 @0 20 00 de OO 54 6O
0090 20 00 49 00 Ge 0O 74 0O 65 00 72 00 Ge 00 G5 00
G020 74 00 20 00 50 00 72 00 6f 00 76 00 69 00 64 60
B8O 65 €9 72 00 00 00 57 00 69 00 be 00 64 00 6F 00
BB<6 77 €0 73 00 20 00 de 00 54 60 20 60 49 60 Ge 00
fRdf 74 GR AR AR 7D AR Re AR RS AR T4 AR A AR S6 AR

Frame (718 bytes) DCERPC over SMB (604 bvtes)‘

\Referent ID for this NDR encoded pointer {deerpc.referent_id), 4 bytes | P: 62 D: 62 M: 0 Drops: O

An ideal use of this memory leak would be the following:

e Populate target memory with an entry of your own using a 1* RPC function;
e Retrieve the entry using a 2" RPC function with the MSRPC Pointer Leak
e You have the pointer to your entry!

This case doesn't happen that often, it could successfully be used for MS05-010: License
Logging Service overflow. Even if this address is not directly used. it will give a good
idea of the base address of the heap, which will turn out to be quite useful most of the
time.

Example: Making MS06-074 Reliable

HEROES is the codename for the Windows SNMP Service arbitrary GlobalFree()
vulnerability that was patched in Microsoft bulletin MS06-070. It is a great example of
the heavy process that has to be carried out to make a vulnerability reliably work on
several platforms.

The Windows SNMP Service (SNMP.exe listening on UDP/161) is vulnerable to a flaw
that allows an attacker to trigger an arbitrary GlobalFree() operation. In order to trigger
this vulnerability the attacker must know a read enabled community name.

Description

Consider the following pseudo-code:

array=(unsigned int *)malloc (n*sizeof (unsigned int *))
//initialization and various operations on array

i=0;
while (condition) {
free(array[i++]);
//process some more, update condition

}
If the while-condition is erroneously evaluated the loop will continue freeing memory

referenced by pointer values taken from beyond the boundaries of the pointer array.
Meaning you are able to trigger arbitrary calls to free(). This basic bug primitive exists
within the Windows SNMP Service.

The actual impact of this flaw is largely dependent on being able to control the contents
of the memory after the pointer array (which is located on a heap). Following an in-depth
analysis of the vectors involved in exploiting this flaw Immunity has successfully
developed a working and reliable exploit for this vulnerability.

Technical Details

The vulnerability is located within the UpdateVarBindsFromResolvedVbl() function
which lives in the snmp.exe module. It can be reached by sending a SNMPv2c
GetBulkRequest (see REC1905 for details).

GetBulk requests take several parameters such as 'non_repeaters' and 'max_repetitions'.
They also take a list of variable bindings consisting of Object Instance Identifiers (OID)
and actual variable values. The variable values are mostly ignored and usually set to
NULL.

By carefully crafting the parameters to a SNMPv2c GetBulk request, an attacker can gain
control over the exit-condition of the SnmpUtilVarBindCpy() & SnmpUtilVarBindFree()
loop. This in turn leads to triggering an arbitrary GlobalFree() and reflects the previously
discussed bug primitive.

The main reason we are able to trigger this condition is that, in certain cases, the SNMP
service fails to properly initialize the repetition counter of the variable bindings. When
the call to FindSupportedRegion() on a variable binding fails, the repetition counter will
be left at O instead of being initialized to 1. This initiates the chain of events that allows
for a full blown remote exploitation of the Windows SNMP service.

Exploitability

Several issues arise when attempting to exploit this vulnerability:

http://tools.ietf.org/html/rfc1905

How can we control the pointer that will be freed?

Given pointer control, what do we actually want to free?

Once we get our Write4 primitive, what will we overwrite?

How do we leverage our Write4 primitive into full blown code execution?

To answer the first question consider the following; Considering all dynamic allocations
take place on the same heap, we have to make sure we end up controlling the memory
located after the initialized array. This in turn allows a SnmpUtilVarBindFree() to occur
on data we control.

We can achieve this goal by playing with the size of the data we submit to the SNMP
service. We control this size through the number of variable bindings and the actual size
of the OIDs in our request. Note that the OIDs are decoded as an array of DWORD:s.

The second question of what we actually want to free is a bit tricky. The heap base will
change with every run of the SNMP service. That means the exact heap layout will
depend on the amount of client interaction with the service at any given time. That means
we can not rely on a specific static heap layout.

Fortunately for us, the exact same bug that triggers the arbitrary GlobalFree() can also be
used to leak memory via the SnmpUtilVarBindCpy() operation.

SnmpUtilVarBindCpy enables us to overwrite data the SNMP service will send back to
us. This lets us receive the variable bindings we originally sent, but with OIDs that now
contain portions of heap memory. This leaked memory in turn contains the address of
where our sent OIDs are located on the heap.

Considering we are dealing with a LookAside enabled heap, it is likely that this same
chunk of OID memory will be reused for a later allocation of the same size. This means
we can now reliably determine an address that points to data we control.

Since we can leak an address pointing to memory we control, we are able to trigger a
GlobalFree() on this very memory. Thus, abusing the heap coalescing algorithm, we
answer the first part of the third question and obtain our Write4 primitive. This means we
can reliably write any 4 bytes anywhere in memory. Now we just have to figure out what
to overwrite.

Preferably we only rely on write targets related to the SNMP service itself. Doing this
makes us more generic than using write targets related to the OS core. The usual PEB
RtlEnterCriticalSection pointer is a potential candidate, but due to timing reasons, has not
proven itself to be a very reliable option. An alternative resides in the .data section of the
snmpapi.dll module. This .data section contains several function pointers, some which are
called in the SnmpSvcGetUptime() function. This function is in turn called when an
authentication trap occurs. Authentication traps are raised if a request was made with a
wrong community name and if the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SNMP\Parameters\E
nableAuthenticationTraps registry key is set. It just so happens to be that this key is set to
1 by default.

So by overwriting one of the snmpapi Auth-trap triggered function pointers and sending a
request with an invalid community name, we can reliably redirect execution. This
answers question number four.

In order to fully exploit all of the above we redirect execution to an address that points
just after our fake heap chunks and into our payload. This way everything needed for our
exploit can be calculated relative to a single, leaked, address. Meaning we end up being
quite reliable.

In order to finally make the exploitation language independent, we looked for an OID that
would trigger a call to the PEB lock routines. Once an OID found — and triggering
reliably the call — we only had to use the fixed PEB lock routine address and trigger the
call with a SNMPv2 Get request for our OID.

Conclusion

Given the fact that all public DEP disabling techniques under XP SP2 require knowledge
about addresses in ntdll.dll or kernel32.dll, and that the image base address of those are
language dependent, the language fingerprinting techniques are definitely needed in the
near future for large scale reliable exploitation of bugs.

Moreover, Vista introduces more languages, thus more targets and reliability issues.
Likewise, expanding these techniques to other operating systems, such as OS X and
Linux can require similar protocol analysis.

From the Immunity point of view, attacking large scale global networks can be done
effectively by spending a fairly reasonable amount of time doing reliable fingerprinting.

	Macro-Reliability In Win32 Exploits
	Introduction
	Common Return Addresses
	The Naïve Approach
	Looking Deeper in Memory
	NLS File Mapping

	Remote Language Fingerprinting
	Using MSRPC
	Shares
	Users
	Print Providers

	Using SNMP
	Using IIS and IE
	CANVAS Implementation

	Heap Overflows
	MSRPC Memory Leak
	Example: Making MS06-074 Reliable
	Description
	Technical Details
	Exploitability

	Conclusion

