
KERNEL WARS:
KERNEL-EXPLOITATION

DEMYSTIFIED

2

Introduction to kernel-mode
vulnerabilities and exploitation
• Why exploit kernel level vulnerabilities?

– It's fun!

– Relatively few are doing it

– Bypasses defense mechanisms and restrictions

3

Introduction to kernel-mode
vulnerabilities and exploitation
• Why exploit kernel level vulnerabilities?

– Attacks at the lowest level

• Does not rely on any particular application being installed

• Does not rely on how applications are configured

• Does not rely on file / registry permissions

4

Introduction to kernel-mode
vulnerabilities and exploitation
• Reasons not to exploit kernel level vulnerabilities

– Usually one-shot, exploit needs to be very reliable

– Kernel debugging can be tedious setting up

– Need some knowledge about kernel internals

5

Introduction to kernel-mode
vulnerabilities and exploitation
• Common targets for attack in a kernel

– Systemcalls

– I/O and IOCTL-messages through devicefiles

– Handling of files in pseudofilesystems (like procfs)

– Handling of data from the network (wireless/wired)

– Interaction with hardware (USB, Firewire, etc)

– Executable file format loaders (ELF, PE, etc)

6

Introduction to kernel-mode
vulnerabilities and exploitation
• Payload strategy

– Elevating privileges

• Altering the UID-field (Unix)

• Stealing access tokens (Windows)

– Injecting backdoors

• Stealth! Do everything in kernel-mode

7

Introduction to kernel-mode
vulnerabilities and exploitation
• Payload strategy

– Breaking chroot / jail / other restrictions

• Everything can be bypassed in kernel-mode

• Ring 0: One ring to rule them all..

8

Introduction to kernel-mode
vulnerabilities and exploitation
• Payload techniques

– Determining addresses and offsets

• Resolving symbols

• Pattern matching

• Hardcoding (last resort)

9

Introduction to kernel-mode
vulnerabilities and exploitation
• Payload techniques

– OS/architecture -specific techniques
• Windows/x86: ETHREAD-pointer at 0xFFDFF124 (fs:0x124)

• FreeBSD/x86: struct proc-pointer at [fs:0]

• Linux/x86: struct task_struct-pointer at esp & 0xffffe000

• NetBSD/x86: struct proc-pointer [[fs:4]+20]+16

• Solaris/AMD64: struct _kthread-pointer at [gs:0x18]

• Solaris/i386: struct _kthread-pointer at [gs:0x10]

• Solaris/SPARC: struct _kthread-pointer at g7

10

Introduction to kernel-mode
vulnerabilities and exploitation
• Exploitation

– Don't overwrite/trash more than necessary!

– Cleaning up

• May need to rewind the stack

• May need to repair the heap

• May need to restore overwritten data

FreeBSD 802.11 Remote
Integer Overflow

• Kernel vulnerability in the IEEE 802.11 subsystem
of FreeBSD

– Auditing the code

– Implementing exploit

– Exploit developed and vulnerability found by

Karl Janmar

FreeBSD 802.11 Remote
Integer Overflow

• Auditing the IEEE 802.11 stack of FreeBSD

– IEEE 802.11 code in its current shape is relatively

new in FreeBSD

• Problems faced auditing the code

– IEEE 802.11 has a complex link-layer protocol
• Rough metric, source-code of input functions

– ieee80211_input() - 437 lines

– ether_input() - 107 lines

– ip_input() - 469 lines

FreeBSD 802.11 Remote
Integer Overflow

• (cont.) Problems facing auditing the code

– Code is not written to be easily read (not by me at least)
• Huge recursive switch-statements

– Example: a 274-line recursive switch-statement in
ieee80211_input()

• Macros that include return statements etc.

• Lots of user-controlled data

– Link-layer management unauthenticated, unencrypted

• Found a local issue
– Ioctl which had a logic error, only kernel-memory disclosure

• Found another interesting issue:

FreeBSD 802.11 Remote
Integer Overflow

Code of function called by ioctl[SCAN_RESULTS]:
static int

ieee80211_ioctl_getscanresults(struct ieee80211com *ic, struct ieee80211req *ireq)

{

union {

struct ieee80211req_scan_result res;

char data[512]; /* XXX shrink? */

} u;

struct ieee80211req_scan_result *sr = &u.res;

struct ieee80211_node_table *nt;

struct ieee80211_node *ni;

int error, space;

u_int8_t *p, *cp;

p = ireq->i_data;

space = ireq->i_len;

error = 0;

FreeBSD 802.11 Remote
Integer Overflow

(continue from previous)

/* XXX locking */

nt = &ic->ic_scan;

TAILQ_FOREACH(ni, &nt->nt_node, ni_list) {

/* NB: skip pre-scan node state */

if (ni->ni_chan == IEEE80211_CHAN_ANYC)

continue;

get_scan_result(sr, ni); <-------- caclulate isr_len and other struct variables

if (sr->isr_len > sizeof(u))

continue; /* XXX */

if (space < sr->isr_len)

break;

cp = (u_int8_t *)(sr+1);

memcpy(cp, ni->ni_essid, ni->ni_esslen); <---- copy to stack-space of union u

cp += ni->ni_esslen;

FreeBSD 802.11 Remote
Integer Overflow

(continue from previous)

if (ni->ni_wpa_ie != NULL) {

memcpy(cp, ni->ni_wpa_ie, 2+ni->ni_wpa_ie[1]); <---- copy to union u

cp += 2+ni->ni_wpa_ie[1];

}

if (ni->ni_wme_ie != NULL) {

memcpy(cp, ni->ni_wme_ie, 2+ni->ni_wme_ie[1]); <---- copy to union u

cp += 2+ni->ni_wme_ie[1];

}

error = copyout(sr, p, sr->isr_len);

if (error)

break;

p += sr->isr_len;

space -= sr->isr_len;

}

ireq->i_len -= space;

return error;

}

FreeBSD 802.11 Remote
Integer Overflow

static void

get_scan_result(struct ieee80211req_scan_result *sr, const struct ieee80211_node *ni)

{

struct ieee80211com *ic = ni->ni_ic;

memset(sr, 0, sizeof(*sr));

sr->isr_ssid_len = ni->ni_esslen;

if (ni->ni_wpa_ie != NULL)

sr->isr_ie_len += 2+ni->ni_wpa_ie[1];

if (ni->ni_wme_ie != NULL)

sr->isr_ie_len += 2+ni->ni_wme_ie[1];

sr->isr_len = sizeof(*sr) + sr->isr_ssid_len + sr->isr_ie_len;

sr->isr_len = roundup(sr->isr_len, sizeof(u_int32_t));

if (ni->ni_chan != IEEE80211_CHAN_ANYC) {

sr->isr_freq = ni->ni_chan->ic_freq;

sr->isr_flags = ni->ni_chan->ic_flags;

}

………

………

}

FreeBSD 802.11 Remote
Integer Overflow

static void

get_scan_result(struct ieee80211req_scan_result *sr, const struct ieee80211_node *ni)

{

struct ieee80211com *ic = ni->ni_ic;

memset(sr, 0, sizeof(*sr));

sr->isr_ssid_len = ni->ni_esslen;

if (ni->ni_wpa_ie != NULL)

sr->isr_ie_len += 2+ni->ni_wpa_ie[1];

if (ni->ni_wme_ie != NULL)

sr->isr_ie_len += 2+ni->ni_wme_ie[1]; isr_ie_len is a uint8_t !!!!

sr->isr_len = sizeof(*sr) + sr->isr_ssid_len + sr->isr_ie_len;

sr->isr_len = roundup(sr->isr_len, sizeof(u_int32_t));

if (ni->ni_chan != IEEE80211_CHAN_ANYC) {

sr->isr_freq = ni->ni_chan->ic_freq;

sr->isr_flags = ni->ni_chan->ic_flags;

}

………

………

}

FreeBSD 802.11 Remote
Integer Overflow

• Test our theories

– Hardcode test-case into kernel

– Create a custom kernel with debugging facilities

– Modify kernel config:
makeoptions DEBUG=-g

options GDB

options DDB # optional

options KDB

– Recompile & reboot

– Make sure DDB is enabled
$ sysctl –w debug.kdb.current=ddb

FreeBSD 802.11 Remote
Integer Overflow

– Trigger the affected code

– in this example ifconfig will do the work
Fatal trap 12: page fault while in kernel mode

fault virtual address = 0x41414155

fault code = supervisor write, page not present

instruction pointer = 0x20:0xc06c405c

stack pointer = 0x28:0xd0c5e938

frame pointer = 0x28:0xd0c5eb4c

code segment = base 0x0, limit 0xfffff, type 0x1b

= DPL 0, pres 1, def32 1, gran 1

processor eflags = interrupt enabled, resume, IOPL = 0

current process = 203 (ifconfig)

[thread pid 203 tid 100058]

Stopped at ieee80211_ioctl_getscanresults+0x120: subw %dx,0x14(%eax)

FreeBSD 802.11 Remote
Integer Overflow

• Can it be triggered remotely?

– Who is calling this ioctl?

– Yes! wpa_supplicant regularly calls this ioctl

– wpa_supplicant is supplied in the base distribution
• Is needed for 802.1X authentication (WPA-PSK) etc.

• We need to send raw frames

– BPF in NetBSD was extended to be able to send
arbitrary IEEE 802.11 frames

FreeBSD 802.11 Remote
Integer Overflow

• Switch to better debugging environment – GDB

– Configure kernel to allow kernel-debugging:

In /boot/device.hints:

hint.sio.0.flags="0x80”

– Then switch default debugger:
$ sysctl –w debug.kdb.current=gdb

http://www.freebsd.org/doc/en_US.ISO8859-1/books/developers-

handbook/kerneldebug.html

FreeBSD 802.11 Remote
Integer Overflow

• We prepare a beacon frame with large SSID,WPA
and WME fields

16:32:33.155795 0us BSSID:cc:cc:cc:cc:cc:cc DA:ff:ff:ff:ff:ff:ff SA:cc:cc:cc:cc:cc:cc Beacon
(XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX) [1.0* 2.0* 5.5 11.0 Mbit] ESS CH: 1

0x0000: ceef f382 c40b 0000 6400 0100 0020 5858d.....XX

0x0010: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

0x0020: 5858 5858 5858 5858 5858 5858 5858 0104 XXXXXXXXXXXXXX..

0x0030: 8284 0b16 0301 01dd fc00 50f2 0141 4141P..AAA

0x0040: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

...

0x0120: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x0130: 4141 4141 41dd fd00 50f2 0201 4141 4141 AAAAA...P...AAAA

0x0140: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

...

0x0220: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA

0x0230: 4141 4141 AAAA

FreeBSD 802.11 Remote
Integer Overflow

• On target when frame is sent:
[New Thread 100058]

Program received signal SIGSEGV, Segmentation fault.

[Switching to Thread 100058]

0xc06c405c in ieee80211_ioctl_getscanresults
(ic=0x41414141, ireq=0x41414141)

at ../../../net80211/ieee80211_ioctl.c:1047

1047 ireq->i_len -= space;

FreeBSD 802.11 Remote
Integer Overflow

(gdb) print ireq

$1 = (struct ieee80211req *) 0x41414141

(gdb) bt

#0 0xc06c405c in ieee80211_ioctl_getscanresults (ic=0x41414141,
ireq=0x41414141)

at ../../../net80211/ieee80211_ioctl.c:1047

#1 0x41414141 in ?? ()

#2 0x41414141 in ?? ()

#3 0x41414141 in ?? ()

#4 0x41414141 in ?? ()

#5 0x41414141 in ?? ()

#6 0x41414141 in ?? ()

FreeBSD 802.11 Remote
Integer Overflow

(gdb) list ieee80211_ioctl_getscanresults

1003 static int

1004 ieee80211_ioctl_getscanresults(struct ieee80211com *ic, struct ieee80211req *ireq)

1005 {

1006 union {

1007 struct ieee80211req_scan_result res;

1008 char data[512]; /* XXX shrink? */

1009 } u;

1010 struct ieee80211req_scan_result *sr = &u.res;

1011 struct ieee80211_node_table *nt;

1012 struct ieee80211_node *ni;

1013 int error, space;

1014 u_int8_t *p, *cp;

1015

1016 p = ireq->i_data;

1017 space = ireq->i_len;

FreeBSD 802.11 Remote
Integer Overflow

(gdb) x/150xw &u

0xd0c5e940: 0x096c0148 0x370000e0 0x8d000164 0x89905342

0xd0c5e950: 0x8482048e 0x0000160b 0x00000000 0x00000000

0xd0c5e960: 0x00fd2000 0x00000000 0x58585858 0x58585858

0xd0c5e970: 0x58585858 0x58585858 0x58585858 0x58585858

0xd0c5e980: 0x58585858 0x58585858 0x5000fcdd 0x414101f2

0xd0c5e990: 0x41414141 0x41414141 0x41414141 0x41414141

...

0xd0c5eb40: 0x41414141 0x41414141 0x41414141 0x41414141

0xd0c5eb50: 0x41414141 0x41414141 0x41414141 0x41414141

0xd0c5eb60: 0x41414141 0x41414141 0x41414141 0x41414141

0xd0c5eb70: 0x41414141 0x41414141 0x41414141 0x41414141

0xd0c5eb80: 0x41414141 0xd0c5eb41 0xc063b816 0xc1509d00

0xd0c5eb90: 0xc01c69eb 0xc16eec00

...

(gdb) print $ebp

$8 = (void *) 0xd0c5eb4c

FreeBSD 802.11 Remote
Integer Overflow

• We can overwrite the return-address, what to put there?

– Return to a jmp ESP or equivalent in .text

• Search in kernel binary after wanted byte sequence
$ search_instr.py -s 0x003d4518 -f 0x00043c30 -v 0xc0443c30

FreeBSD_GENERIC_i386_6.0

0xc0444797: 0xff 0xd7, call *%edi

0xc04486c4: 0xff 0xd7, call *%edi

...

0xc044c5dd: 0xff 0xd7, call *%edi

0xc044dd3d: 0xff 0xe4, jmp *%esp

0xc0450109: 0xff 0xd1, call *%ecx

...

FreeBSD 802.11 Remote
Integer Overflow

• Initial payload

– Can't use stack before overwritten return address

– Resides after overwritten return address

– Limited to 32 byte to not destroy a previous frame

we want intact

– Stage a second payload that resides in received

beacon frame (in kernel list)

FreeBSD 802.11 Remote
Integer Overflow

• Second stage payload

– Allocate memory for backdoor

– Copy head of backdoor to allocated area

– Save away original management-frame handler

– Overwrite management-frame handler with pointer
to our backdoor

– Return from our exploited function, restore frame 2
levels down

– Return a empty scan list and without error

FreeBSD 802.11 Remote
Integer Overflow

• Backdoor in place

– Backdoor function receive all management-frame

– Look for magic number at a fixed position, within

WPA IE field

– First command initializes the backdoor

– If no magic number found pass frame to real

handler

ieee802.11
frame..

magic number cmd. len

offset: 88

cmd. type

offset: 102 offset: 103

cmd. data

offset: 104

FreeBSD 802.11 Remote
Integer Overflow

• (cont.) Backdoor in place

– Send back response as a probe-response

– Payload is included in the optional response field

– Spoofed source/destination MAC addresses

FreeBSD 802.11 Remote
Integer Overflow

• Backdoor command type

– Ping backdoor

• Every ping has a unique 32-bit identifier

• Send back pong response including identifier

– Upload backdoor-code

• Every upload has a 16-bit offset and a 251 bytes of possible
data

• Send back ACK response with ACK'd offset

– Execute backdoor-code

• All commands have a variable argument data field

• Send back execution result

FreeBSD 802.11 Remote
Integer Overflow

• Upload and Execute command

– The only primitives needed to implement plug-ins

– Plug-ins doesn't need to handle the actual

communication part

• Fileserver plug-in

– Read file, in 128 byte chunks

– Stat file, get state information of file

– Write (and possibly create) file, in 128 byte chunks

FreeBSD 802.11 Remote
Integer Overflow

• Do FS operations the way the kernel does it

– Extract the essential calls needed for the operations

– Open and read in file example:

1. Initialize a struct nameidata , the way NDINIT() macro does

2. Make sure the current threads process has a working directory: td-
>td_proc->p_fd->fd_cdir = rootvnode;

3. Try lookup vnode with vn_open()

4. Do the actual read with vn_rdwr()

5. Unlock and close vnode using VOP_UNLOCK_APV() and
vn_close()

– Some vnode macros are messy in assembly, disassembling the
kernel can help

FreeBSD 802.11 Remote
Integer Overflow

• Last word

– Net80211 framework in *BSD is a huge work and

deserve credits, brought a lot of good things with it

– ... but might need some cleaning up and security

auditing

• Demonstration

NetBSD mbuf overflow

• Finding the vulnerability
– Fuzzing it

– In-house developed fuzzer

– Almost instant crash

– Tracking the bug down
– DDB / GDB

– Source code

– Introduction to the bug
– mbuf pointer overflow / arbitrary m_free()

NetBSD mbuf overflow

• Mbufs

– Basic kernel memory unit

– Stores socket buffers and packet data

– Data can span several mbufs (linked list)

NetBSD mbuf overflow

• Developing the exploit(s)

– m_free() allows for an arbitrary 32-bit value to be

written to an arbitrary address (Normal unlinking

stuff)

– mbuf can have external storage

– And their own free() routine!

NetBSD mbuf overflow

• Unlink technique
– Remove mbuf from list and link remaining

neighboring mbufs together

– ”Arbitrary” write operations takes place
#define _MCLDEREFERENCE(m)

do {

(m)->m_ext.ext_nextref->m_ext.ext_prevref = (m)->m_ext.ext_prevref;

(m)->m_ext.ext_prevref->m_ext.ext_nextref = (m)->m_ext.ext_nextref;

} while (/* CONSTCOND */ 0)

NetBSD mbuf overflow

• Unlink technique example

– Unlinking an mbuf with these values
• m_ext.ext_nextref == 0xdeadbeef

• m_ext.ext_prevref == 0xbadc0ded

– Can be expressed as
*(unsigned *) (0xbadc0ded+NN) = 0xdeadbeef

*(unsigned *) (0xdeadbeef+PP) = 0xbadc0ded

– Where NN and PP are the offsets to the
ext_nextref and ext_prevref pointers within

the mbuf structure respectively

NetBSD mbuf overflow

• Targets to overwrite

• Return address

• “Random” function pointer

• sysent – function pointers to syscalls

NetBSD mbuf overflow

• External free() technique

• Some mbufs holds a reference to their own free()

routine

• No unlinking is done if ext_nextref pointer

reference its own mbuf

• Point ext_free to your payload – Job done!

• Bonus – No mess to clean up

NetBSD mbuf overflow

• Payload

– Decided to change process credentials to root.

– How to find your process
– I used allproc and %fs

– Changing credentials
– Pointer to credential structure in proc structure

– Change UID to 0

– Placing the payload
– Return to userland

NetBSD mbuf overflow

• Cleaning up

– Memory pools - Enough to give anyone a
headache

– mbinit() saves the day

– External storage/free() – Nothing to clean up!

• Demonstration

Windows Local GDI Kernel
Memory Overwrite

• About the bug
– GDI Shared Handle Table =

Memory section with GDI handle data
– Shared between usermode/kernelmode
– Mapped (read-only) into every GUI-process
– Turns out it can be remapped read-write, after

bruteforcing the shared memory section handle!
– BSOD is trivial, but can it be exploited?

Windows Local GDI Kernel
Memory Overwrite

• Finding the vulnerability
– I didn't, Cesar Cerrudo from Argeniss found it
– The bug was made public 2006-11-06 (MoKB)
– Microsoft was notified of the bug 2004-10-22...
– But... No exploit and still unpatched!
– All W2K/WXP systems are vulnerable

Windows Local GDI Kernel
Memory Overwrite

• Reliably determining the GDI section handle
– The GDI section = Array of structs with these

fields:
pKernelInfo - Pointer to kernelspace GDI object data
ProcessID - Process ID
_nCount - Reference count?
nUpper - Upper 16 bits of GDI object handle
nType - GDI object type ID
pUserInfo - Pointer to userspace GDI object data

– Each entry = 16 bytes

Windows Local GDI Kernel
Memory Overwrite

• Reliably determining the GDI section handle
– In Windows 2000, 0x4000 entries
– So GDI section size >= 0x40000 bytes
– In Windows XP, 0x10000 entries
– So GDI section size >= 0x100000 bytes

Windows Local GDI Kernel
Memory Overwrite

• Reliably determining the GDI section handle
– Lower 16 bits of a GDI object handle =

Index into the array in the GDI section
– Upper 16 bits of a GDI object handle =

Value of the nUpper-field in the struct

Windows Local GDI Kernel
Memory Overwrite

• Reliably determining the GDI section handle
– Final method:

• Create a GDI object, handle value = H
• Index into table = H & 0xFFFF (lower 16 bits of H)
• nUpper = H >> 16 (upper 16 bits of H)
• For each valid shared memory section handle, check if:

– Section size >= 0x40000 (W2K) / 0x100000 (WXP)
– pGDI[(H & 0xffff)].ProcessID == GetCurrentProcessId()
– pGDI[(H & 0xffff)].nUpper == H >> 16
– pGDI[(H & 0xffff)].nType == <TypeID-for-object-we-

created>

Windows Local GDI Kernel
Memory Overwrite

• Setting up a kernel debugging environment
– No previous Windows kernel debugging

experience
– Two main options: SoftICE / WinDBG
– SoftICE is discontinued since a while back..
– Better learn WinDBG!

Windows Local GDI Kernel
Memory Overwrite

• Setting up a kernel debugging environment
– WinDBG normally requires a two-machine setup
– Can emulate this using VMWare, by configuring

the virtual serial port to use a named pipe

Windows Local GDI Kernel
Memory Overwrite

• Finding a way to exploit the bug
– Two main points of attack:

pKernelInfo : Used in kernel context
pUserInfo : Used in a privileged process

– Pointers are always interesting targets...
– Goal: Being able to write to an arbitrary memory

address, once that is achieved turning it into
arbitrary code execution should be trivial

Windows Local GDI Kernel
Memory Overwrite

• Finding a way to exploit the bug
– Exploiting via a privileged process would most

likely be very hard to do reliably, even harder to do
generically and chances are quite slim it would be
portable across both Windows 2000 and XP

– Attacking the kernel directly would bypass any
hardening measures on the target

– And most importantly.. Kernelmode = More fun! ;-)

Windows Local GDI Kernel
Memory Overwrite

• Finding a way to exploit the bug
– Cannot reveal all details yet since Immunity Inc

has bought the rights to the exploit, until the end of
april

– Pointing the pKernelInfo pointer into specially
crafted (usermode) data is a good start though!

– Calling various GDI related syscalls and checking
out what happens is also a good idea

– WinDBG and IDA Pro are your best friends...

Windows Local GDI Kernel
Memory Overwrite

• Finding a way to exploit the bug
– Making a long story short, a reliable way to write a

certain fixed value to an arbitrary address was
achieved

– Turns out the same technique could be used on all
Windows 2000 and Windows XP systems

Windows Local GDI Kernel
Memory Overwrite

• Now what?
– Need to find a suitable function pointer to

overwrite and a method for determining its
address

– Can only write a fixed and very low value
– We can use two partial overwrites to construct a

high address that can be mapped with
VirtualAlloc()

– Or we can use NtAllocateVirtualMemory() directly
and ”fooling” it into mapping the NULL page

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– There are probably many function pointers in the

kernel that can be used, we need to make sure we
use one that these conditions holds for though:

• Should be possible to reliably determine its address
• Should be called in the context of our exploit process
• Should be rarely used, specifically it must not be used

during the time between us overwriting it and us
triggering a call to it within the context of our exploit

– An obvious choice is a rarely used system call

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– The system call pointers are stored in two tables:

• KiServiceTable
• W32pServiceTable

– KiServiceTable contains the native NT API
– W32pServiceTable contains the system calls for

the Win32 subsystem (which includes GDI)

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– My first choice was a pointer in KiServiceTable
– There are documented ways to determine its

address, specifically I used a popular method
posted to the rootkit.com message board under
the pseudonym 90210

– Worked great!
– Except under Windows XP SP1...

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– So why exactly didn't it work?
– Turns out that KiServiceTable actually resides in

the read-only text segment of ntoskrnl.exe
– Read-only kernel pages are usually not enforced
– I wanted a solution that works reliably for every

Windows 2000 and Windows XP release

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– What about W32pServiceTable?
– Resides in the data segment of WIN32K.SYS
– Data segment = writable = perfect!
– Now the only problem that remains is determining

its address, since W32pServiceTable is not an
exported symbol

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– Need to come up with my own method
– One idea was searching for 600 consecutive

pointers to the WIN32K.SYS text segment from
within the data segment (600+ Win32-syscalls)

– Not entirely reliable, since there may be unrelated
pointers to the text segment right before the start
of W32pServiceTable

Windows Local GDI Kernel
Memory Overwrite

• Determining where to write
– Second and final idea was searching for the call to

KeAddSystemServiceTable() within the ”INIT”
section of WIN32K.SYS and searching backwards
for the push of the W32pServiceTable argument

– Works great!

Windows Local GDI Kernel
Memory Overwrite

• Payload
– Want to elevate the privileges of the exploit process

– Not as easy as in Unix, need to "steal" an existing access
token from a privileged process

– This method has been used in several of the few other
kernelmode exploits for Windows that exists

– But caused occasional BSOD:s for me, seemingly related to
the reference counting of tokens

– Usually only if the exploit is executed several times on the
same box without rebooting it in between

Windows Local GDI Kernel
Memory Overwrite

• Payload
– Solution: Restore the original access token after

executing a new privileged process, or whatever it
is we wanted to do with our elevated privileges

– Also restores the overwritten system call pointer
– Done! Reliable exploitation of the GDI bug across

all Windows 2000 and Windows XP systems has
been achieved

Windows Local GDI Kernel
Memory Overwrite

• Final touch: Portability
– Changed between Windows 2000 and XP:

• Syscall numbers
• Token field offsets

– Exploit automatically adjusts the payload

Windows Local GDI Kernel
Memory Overwrite

• Demonstration

