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Abstract. We present APHRODITE, an architecture designed to re-
duce false positives in network intrusion detection systems. APHRODITE
works by detecting anomalies in the output traffic, and by correlating
them with the alerts raised by the NIDS working on the input traf-
fic. Benchmarks show a substantial reduction of false positives and that
APHRODITE is effective also after a “quick setup”, i.e. in the realistic
case in which it has not been “trained” and set up optimally.
Keywords: Intrusion Detection, False Positives

1 Introduction

Network intrusion detection systems (NIDSs) are considered an effective second
line of defense against network-based attacks directed at computer systems [1,2],
and – due to the increasing severity and likelihood of such attacks – are employed
in almost all large-scale IT infrastructures [3].

The Achille’s heel of NIDSs lies in the large number of false positives (i.e.,
false attacks) that occur: practitioners [4,5] as well as researchers [6,7,8] observe
that it is common for a NIDS to raise thousands of mostly false alerts per day.
Manganaris et al. [4] were able to collect more than 15,000 alerts per day per
sensor during a monitoring period of just one month. Julisch [9] states that up
to 99% of total alarms can be false alarms. Indeed, a high rate of false alarms
is – also according to Axelsson [6] – the limiting factor for the performance of
an intrusion detection system. False alarms often cause an overload for IT per-
sonnel [4], who must verify every single alert to prevent or block possible loss of
data confidentiality, integrity and availability (CIA). The manual identification
of true positives amongst this flood of alarms it is not only labor intensive but
also error prone [10].

False positives are a universal problem as they affect both signature-based

intrusion detection systems and anomaly-based systems [11]. Finally, a high false
positive rate can even be exploited by attackers to overload IT personnel, thereby
lowering the defenses of the IT infrastructure.
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Contribution of this paper Our thesis is that one of the main reasons why NIDSs
show a high false positive rate is that they do not correlate input with output
traffic: by observing the output determined by the alert-raising input traffic, one
is capable to reduce the number of false positives in an effective manner.

To demonstrate this, we have developed APHRODITE (Architecture for false
Positives Reduction): an innovative architecture for reducing the false positive
rate of any NIDS (be it signature-based or anomaly-based). APHRODITE con-
sists of an output anomaly detector (OAD) and a correlation engine; in addition,
APHRODITE assumes the presence of a NIDS on the input of the system (see
Figure 1).

We have benchmarked APHRODITE in combination with the signature-
based NIDS Snort [12,13], as well as APHRODITE in combination with the
anomaly-based NIDS POSEIDON. We have carried out the benchmarks both
on the common DARPA 1999 data set [14] as well as on a private data set. In
6 out of 7 cases, our benchmarks show a reduction of false positives between
50% and 100%, which is better than the only leading competitor [15] providing
benchmarks on a public data set.

Fig. 1. APHRODITE architecture

Architecture The main idea of our approach is simple: a successful attack often
causes an anomaly in the output of the system. For instance, a successful SQL
injection against a web-based system would typically cause the system to output
e.g. SQL tables rather than the usual web pages. Taking advantage of this,
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APHRODITE works as follows: when the NIDS raises an alert, the correlation
engine checks whether the communication that raised this alert also causes an
anomaly in the output (detected by the OAD). If this is the case, the alert is
considered a true positive and APHRODITE forwards it to the IT professionals,
otherwise, it is discarded as a false positive. (There are various exceptions to
this behaviour, taking into account e.g., the possible absence of output or the
quality/quantity of alerts raised by the NIDS, we explain this in Section 3.)

Quick setup Our benchmarks show that APHRODITE is effective also after
a “quick setup”, without an optimal training and by using a simple heuristics
for setting the threshold. This is particularly relevant because anomaly detec-
tion systems (like our OAD) are often regarded as systems whose deployment
is rather labor-intensive. This is because they need to be trained with a con-
siderable amount (gigabytes) of data, which should be as clean as possible: the
training data set should be representative of attack-free traffic. To carry out
such a training, in principle the IT professional should clean up the data set by
inspecting it and by manually removing the spurious traffic, a procedure which
is time consuming. Moreover, the anomaly detector should be re-trained each
time that changes in the system denote a change in the traffic type. In addi-
tion, anomaly-detection systems require the IT professional to spend time to set
the threshold (see also Section 2). In our case we show that APHRODITE is
reasonably accurate and complete also when it is trained with a data set that
was not cleaned up manually, and when the threshold is set using simple heuris-
tics. This makes APHRODITE attractive for real-life situations, in which the IT
professionals want to have a tool helping them to isolate true positives without
requiring a troublesome set up.

Structure of the paper This paper is organized as follows: in Section 2 we in-
troduce intrusion detection systems and the problems related to false positive.
Section 3 reports the system architecture and its properties. In Section 4 we
report the results of our benchmarks. In Section 5 we discuss other related work.
Finally, in Section 6 we draw our conclusions and set the course for further
developments. In the Appendix we report the pseudo-code of APHRODITE.

2 Preliminaries

In this Section, we introduce the concepts used in the rest of the paper and we
explain in more detail than in the introduction how false positives arise and the
harm they can do to a system. Those who are familiar with signature-based and
anomaly-based intrusion detection systems may skip this part.

There exist two different sorts of network intrusion detection systems: signature-
based and anomaly-based; both types are affected by a high false positive rate.

2.1 Signature-Based Systems

Signature-based systems (e.g. Snort [12,13]) are based on pattern-recognition
techniques: the NIDS contains a database of signatures of known attacks and



4

tries to match these signatures against the analyzed data. When a match is
found, an alarm is raised. A signature must be developed off-line, and then loaded
in the database before the system can begin to detect a particular intrusion. One
of the disadvantages of signature-based NIDS is that they can detect only known
attacks: all new attacks will go unnoticed until the system is updated, creating a
window of opportunity for attackers (and affecting the NIDS completeness and
accuracy [16,2]). Although this is considered acceptable for detecting attacks
to e.g., the OS, it makes them less suitable for protecting web-based services,
because of their ad-hoc and dynamic nature.

False Positives in Signature-Based Systems Signature-based systems raise
an alarm each time that traffic matches one of the signatures loaded into the
system. For example: the path traversal attack allows access to files, directories,
and commands that reside outside the (given) web document root directory.
The most elementary path traversal attack uses the ../ character sequence to
alter the resource location requested in the URL. Variations include valid and
invalid Unicode-encoding (“..%u2216” or “..%c0%af”), URL encoded charac-
ters (“%2e%2e%2f”), and double URL encoding (“..%255c”) of the backslash
character (excerpted from WASC Threat Classification [17]).

To detect these attacks, Snort, with the default configuration (like any sig-
nature-based intrusion detection system), raises an alarm each time that it iden-
tifies the pattern ../ in the incoming traffic. Unfortunately, this pattern is also
often present in legal traffic, and this causes Snort to raise a high number of false
alarms. These false alarms can be avoided by deactivating this rule, but this on
the other hand prevents the NIDS from finding this sort of attacks.

Tuning Signature-Based Systems A common way to reduce false positives in
signature-based systems is by deactivating the signatures relative to vulnera-
bilities that are not present in the given environment: many signatures can be
disabled because the monitored services are not exposed to a certain vulnerability
or the vulnerability itself affects only certain OS platforms. This configuration
phase of signature-based systems is also known as tuning and it is explicitly
required when deploying NIDSs with several sensors in complex environments.

Tuning requires a thorough analysis of the environment by qualified IT per-
sonnel and the tuning must be kept up-to-date to keep up with the changes in the
system: new vulnerabilities are discovered every day, new signatures are released
regularly, and systems may be patched, thereby removing vulnerabilities.

2.2 Anomaly-Based Systems

Anomaly-based systems (ABS), unlike signature-based systems, first build a sta-

tistical model describing the normal network traffic, then flag any behaviour that
significantly deviates from the model as an attack. This is achieved by imple-
menting a distance function and setting a threshold value: when the distance
between the input sample and the model exceeds the threshold, an alert is raised.
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The main advantage of ABSs is that they can detect zero-day attacks: novel
attacks can be detected as soon as they take place. The disadvantage is that an
ABS requires an extensive model building phase: a significant amount of (largely
attack-free) data must be analyzed to build accurate models of legal behaviour.

False Positives in Anomaly-Based Systems The value of the threshold
has a direct influence on both false negatives and false positives rates [18]: a low
threshold yields a high number of alarms, and therefore a low false negative rate,
but a high false positive rate. On the other hand a high threshold yields a low
number of alarms in general (therefore a high number of false negatives, but a
low number of false positives). As a matter of fact, the high false positive rate
is generally cited as one of the main disadvantages of anomaly-based systems.

Tuning Anomaly-Based Systems The most commonly used tuning procedure for
ABS is finding an optimal threshold value, i.e., the best compromise between a
low number of false negatives and a low (or acceptable) number of false posi-
tives. This is typically carried out manually by trained IT personnel: different
improving steps can be necessary to obtain a good balance between detection
rate and false positive rate.

2.3 Exploiting false positives

To conclude this section, we note that the presence of a NIDS with a relatively
high number of false positives can also be exploited by an attacker.

Both signature-based and anomaly-based systems can be fooled to raise thou-
sands of alerts: in the former case, the attacker can force an alert by inserting a
known attack sequence randomly in the input (e.g. inside a field of a web page
form), even if it is not aimed to exploit any vulnerability; in the latter case, the
attacker can send an input that is substantially different from the data analyzed
during the training phase (e.g. a long stream with the same character, which
obviously was never observed before).

This can be exploited by an attacker, e.g., to perpetrate a Denial of Service
attack against IT personnel [4] or to hide a real attack.

3 Architecture

The main idea of our approach is the following: a successful attack (incident) [3]
to a system (e.g., a web service) usually produces an anomaly in the output of
the system. On the other hand, if something in the input of the system causes
the NIDS to raise an alarm but does not cause the system to produce an unusual

output, then this alarm is likely to be a false positive.

Example 1. SQL Injection is a technique that exploits vulnerabilities of (web-
based) applications which are interfaced to an SQL database: if the application
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does not sanitize potentially harmful characters first [17], an intruder can in-

ject an SQL query in the database, and force the database to output sensitive
data (e.g. user passwords and personal details) from database tables, without
being authorized. SQL Injections are considered a serious threat and are con-
stantly listed in the “Top Ten Most Critical Web Application Security Vulnera-
bilities” [19] by “The Open Web Application Security Project”.

For instance, the following HTTP request is actually a well-known attack [20]
against the Content Management System (CMS) PostNuke [21] that can be used
to get hold of the user passwords:

\protect\vrule width0pt\protect\href{http://[target]/[postnuke_dir]/modules.php?op=modload}{ht

&name=Messages&file=readpmsg&start=

0%20UNION%20SELECT%20pn_uname,null,pn_uname,pn_pass,pn_p

When such an attack is carried out successfully, the output (a database table) is
significantly different from the HTML page usually rendered. This is exploited
by our system to distinguish false positive from true positives.

APHRODITE works by detecting anomalies in the output of the system and
by correlating them to the alerts raised by the NIDS monitoring the input of the
system. We want to stress that the NIDS monitoring the input is essential for the
functioning of APHRODITE, but it is not part of APHRODITE’s architecture:
as a matter of fact

APHRODITE can work together with any kind of NIDS (be it anomaly-
based or signature-based).

The central component of APHRODITE is the Output Anomaly Detector

(OAD), which is an anomaly-based NIDS placed on the output channel: the
OAD refers to a statistical model describing the normal output of the system,
and flags any behaviour that significantly deviates from the norm as the result
of a possible attack. To connect the input to the output NIDS, the correlation
engine is implemented with a stateful-inspection mechanism [22] to track and
correlate input and output data belonging to the same communication.

APHRODITE works as follows (see Figure 1): the external NIDS monitors
the input data while, simultaneously, the OAD analyzes the response of network
services; when the input NIDS raises an alarm, it warns the correlation engine

(CE), indicating the endpoint information (i.e. source and destination IP ad-
dresses, source and destination TCP ports) of the packet that raised the alert.
At this moment, the alert is not considered an incident yet (it is a pre-alarm)
and is not forwarded immediately to the IT specialists yet. Next, the correlation
engine marks the communication relative to the given endpoints as suspicious
and waits for the output of the OAD: if the OAD detects an anomaly in the
outgoing traffic related to the tracked communication, then the system consid-
ers the alert as an incident (i.e. a true positive) and the alert is forwarded to
the IT specialists for further handling and countermeasures reactions, otherwise
it is considered a false positive.

What we just described is the most common behaviour; nevertheless there
exist important exceptions to it. Once an alarm has been raised by the input
NIDS, the following exceptions can take place:
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1. Missing output response. If the OAD does not detect any output related
to the pre-alarm raised by the NIDS, then the pre-alarm is considered a true
incident and is forwarded to the IT specialist.
This is because the pre-alarm could belong to a denial of service attack
against a certain network service (preventing normal functioning or causing
a complete stop), leading to a situation of missing response.
Therefore, the absence of an output should be considered an anomaly in
the normal data flow and must be handled accordingly by the correlation
engine. To this end, we need to set appropriate application-dependent time-

outs (commonly a data exchange between peers take place in a short time):
after their expiration the communication can be marked as anomalous.

2. Alarm magnitude. When the NIDS monitoring the input is anomaly-based

(as opposed to signature-based), then when it raises an alert it can also
indicate the magnitude of the alert: anomaly-based NIDS compare the traffic
to a statistical model of the traffic, and raise an alert when the input sample
exceeds a give threshold. Here, by alarm magnitude we indicate the distance
between the alarm-raising packet and the threshold. The higher the alarm
magnitude, the more anomalous is the packet, and therefore the more likely
that it indicates a true incident.
In APHRODITE when the magnitude is higher than a given value the alert
raised by the NIDS is considered an incident, even if the OAD has not
detected any anomaly in the output.

3. Number of alarm-raising packets. APHRODITE takes into account the
number of anomalies regarding output traffic related to a single endpoint
(e.g. in the past and in the current communications) in a given time frame:
this parameter becomes particularly interesting when the input NIDS is
anomaly-based and packet-oriented, which can mark as anomalous a number
of packets belonging to the same communication.

3.1 The OAD

As we mentioned before, the OAD is basically a payload-based anomaly-based
intrusion detection system, which monitors the output of a system rather than
the input of it. Specifically, the OAD has the same structure of POSEIDON [23],
i.e. it is a payload-based two-tier NIDS, in which the first tier consists of a Self-
Organizing Map (SOM), and is used exclusively to classify payload data; the sec-
ond tier (the actual analyzer) consists of a slight modification of the well-known
PAYL system [24]. Actually, for the OAD we could have used any anomaly-based
payload-based NIDS, we chose POSEIDON because we are familiar with it and
because it gives better results than leading competitors[23].

The pseudo-code of APHRODITE (the OAD and the correlator) is reported
in Appendix A. The fact that the OAD is anomaly-based (rather than signature-
based) allows it to adapt to the specific network environment/service, and to
work in an unsupervised manner (at least, after the tuning). The disadvantage
is that the OAD needs an extensive (though unsupervised) training phase: a
significant amount of data is needed to build an accurate statistical model of the
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legal behaviour. During the training phase, there are some parameters that can
affect the completeness and accuracy of the OAD, namely:

– Duration of the training phase. The duration of the training (thus, the
number of samples used to train the system) directly affects the quality
of the model that will be used in the detection phase: a too short training
phase could lead to a (too) coarse data classification, which – in the detection
phase – translates into flagging legitimate traffic too often as anomalous. The
IT specialist can compensate for a too short training phase by increasing
the threshold (see below), but this has the disadvantage that the OAD will
classify (more) traffic resulting from attacks as legitimate.

– Quality of the training phase. Also the quality of the samples used
during the training influences the quality of the models. The samples should
be representative of normal behaviour and be as attack-free as possible,
otherwise the OAD might classify data resulting from an attack as legitimate
output traffic. In general, the more attack-free the data is, the more accurate
the model will be. It is out of the scope of this work to detect and mitigate
this problem but it is worth mentioning that we have obtained good results
also using a private data set which was not made attack-free by hand (see
Section 4 for further details).

– Threshold. As we said before, setting the threshold is a delicate task that
could require different improving steps to reach a good balance between true
positives rate and false positives rate.

4 Experiments and results

To validate our architecture, we have benchmarked APHRODITE in combina-
tion with the signature-based NIDS Snort [12,13] as well as APHRODITE in
combination with the anomaly-based NIDS POSEIDON [23]. To do this, we
have employed two different data sets: first, we have used the DARPA 1999 data
set [14]: despite criticism [25,26] this is a standard data for benchmarking NIDS
(e.g. [24,15]) and has the advantage that it allows one to duplicate experiments
and to compare different NIDS directly. Secondly, we have benchmarked the
system using a private data set.

Tests with the DARPA 1999 data set The testing environment of DARPA
1999 data set contains several internal hosts that have been attacked by both
external and internal attackers. Moreover, hosts inside the local area network are
able to conduct attacks against external hosts. In our tests, we focus on FTP,
Telnet, SMTP and HTTP protocols. There are two reasons for this: first only
these protocols gave us a sufficient number of samples we needed to train the
OAD, and secondly only these protocols allowed to compare our architecture
with POSEIDON, that has been benchmarked following the same procedures
(because of the large sample set available only for these protocols). Other re-
strictions have been applied to make the comparison: we consider only inbound
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Protocol Snort
Snort

+
APHRODITE

POSEIDON
POSEIDON

+
APHRODITE

HTTP
DR 59,9% 59,9% 100% 100%
FP 599 (0,069%) 5 (0,00057%) 15 (0,0018%) 0 (0,0%)

FTP
DR 31,75% 31,75% 100% 100%
FP 875 (3,17%) 317 (1,14%) 3303 (11,31%) 373 (1,35%)

Telnet
DR 26,83% 26,83% 95,12% 95,12%
FP 391 (0,041%) 6 (0,00063%) 63776 (6,72%) 56885 (5,99%)

SMTP
DR 13,3% - 100% 100%
FP 0 (0,0%) - 6476 (3,69%) 2797 (1,59%)

Table 1. Comparison between Snort stand-alone, Snort in combination with
APHRODITE, POSEIDON stand-alone and POSEIDON in combination with
APHRODITE using the DARPA 1999 data set: DR stands for detection rate
(attack instances), while FP is the false positive rate (packets); APHRODITE
reduces FP by more than 50% most of the times, being close to zero in 3 tests,
without affecting the detection rate.

and outbound TCP packets that belong to attack connections against hosts of
the network 172.016.0.0/16.

We trained the OAD of APHRODITE with the data of weeks 1 and 3 (attack
free): for each different protocol we have used a different OAD instance. After-
ward, we tested APHRODITE together with both POSEIDON and Snort to on
the traffic of weeks 4 and 5. The authors of DARPA provide a table containing
all the attack instances, allowing one to distinguish between false positives and
true positives attacks.

Table 1 reports a comparison of the detection rate and false positives rate
of Snort stand-alone (first column), Snort in combination with APHRODITE
(second column), POSEIDON stand-alone (third column) and POSEIDON in
combination with APHRODITE (fourth column). In both cases, APHRODITE
achieves a substantial improvement on the stand-alone system without affecting
the detection rate nor introducing false negatives. APHRODITE has not be
applied to SMTP traffic in combination with Snort because in this case Snort
raises no false positives.

Tests with a private data set To complete our validation, and to see how
the system behaves when trained with a data set that is not made attack-free,
we considered a second (private) data set we have collected at the University of
Twente: this is data set B. Data was collected on a public network for 5 consec-
utive working days (24 hours per day), logging only TCP traffic directed to (and
originating from) a heavy-loaded web server (about 10 Gigabyte of total data
per day). This web server hosts several official department web sites and per-
sonal web pages of students and research staff: thus, the traffic contains diverse
data such as static and dynamically generated HTML pages and, especially in



10

the output traffic, common format documents (e.g. PDF) as well as raw binary
data (e.g. software executables). We did not inject any artificial attack.

We focus on HTTP traffic because nowadays Internet attacks are mainly
directed to web-based services: Symantec Corporation reports that in year the
2005 web-based services have been the third most attacked service (ranked by
TCP port), and in the second-half of the year 69% of total discovered vulnerabil-
ities apply to web applications [27]. We classified alerts manually and detected
33 attack instances in 59288 input packets: most of the attacks are XSS (Cross-
site Scripting) [17] and SQL Injection attacks. Table 2 summarizes the results
we obtained.

We could not compare APHRODITE in combination with Snort on this
second data set for the simple reason that Snort did not find any attack to the
system (Snort raised only false alarms): by setting a high output threshold in
APHRODITE we could have easily removed all the false positives, but this would
have given no indication of the completeness and accuracy of APHRODITE.

Protocol POSEIDON
POSEIDON

+
APHRODITE

HTTP
DR 100% 100%
FP 1683 (2,83%) 774 (1,30%)

Table 2. Comparison between POSEIDON stand-alone and POSEIDON in com-
bination with APHRODITE using data set B; DR stands for detection rate
(attack instances), while FP is the false positive rate (packets); APHRODITE
reduces FP by more than 50% without affecting the detection rate.

Quick setup To train the anomaly-detection engines of both POSEIDON and
the OAD on the data set B, we simply used a snapshot of the data collected
during working hours (approximately 3 hours, 1,8 Gigabyte of data): it is widely
acknowledged that attackers prefer to conduct malicious activity during non-
working hours, when the system is usually less monitored by IT personnel. The
chosen training data set has not been pre-processed and made attack-free: thus, it
is possible that some malicious activities have been processed during the model
building phase. For the same reason, we randomly choose a nightly snapshot
(approximately 8 hours, 1,8 Gigabyte of data) to benchmark POSEIDON stand-
alone against POSEIDON in combination with APHRODITE. Moreover, we
setup the threshold following the simple heuristics discussed below.

This way of training the anomaly detection engines of POSEIDON and the
OAD is not optimal (as we remarked before, the training set is supposed to be
attack-free), but this allowed us to check the completeness and accuracy of our
system in a fairly realistic situation, and to show that APHRODITE is useful
for reducing false positives also in those cases in which the IT professional wants
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to carry out a quick setup and does not want to spend too much time cleaning
up the training set and setting an optimal threshold, applying several enhancing
steps.

Setting the threshold In Section 2.2 we introduce the fact that – in anomaly-
based systems – completeness and accuracy are intrinsically related and they are
heavily influenced by the threshold value. Here, we call completeness the ratio
TP/(TP +FN) and accuracy the ratio TP/(TP +FP ), where TP is the number
of true positives, FN is the number of false negatives and FP is the number of
false positives raised during the benchmarks. Our experiments show that setting
the threshold at 3tmax

4
, usually yields reasonably good results; here tmax is the

maximum distance between the analyzed data and the model observed during
the training phase.

Tables 1 and 2 report the best false positive rate we have measured dur-
ing our benchmarks without affecting the detection rate achieved during the
stand-alone session. Figure 2 shows more accurately what happens to the ac-
curacy and completeness of POSEIDON and POSEIDON in combination with
APHRODITE when we modify the threshold of POSEIDON stand-alone (bro-
ken line) and when we modify the threshold of APHRODITE after having fixed
that of POSEIDON to the best value (unbroken line). Here, we concentrate on
the Telnet and SMTP protocol data of the DARPA 1999 data set and HTTP
protocol data from data set B (these protocols presented the highest FP rate,
allowing more accurate measurements).

5 Related work

In this section we present related work. The problem of reducing false positive
has been addressed using two different kind of approaches: on the one hand we
have techniques for identifying true positives, and on the other hand we have
techniques for identifying false positives.

The main difference between our work and the papers described below (with
the exception of Qiao and Weixin’s [28] – see below) consists of the fact that we
take into account the output traffic of the system.

5.1 Identifying true positives

Ning et al. develop a model [29] and an intrusion alert correlator [30] to help
human analysts during the alert verification phase. Their work is based on the
observation that most incidents consist of several related stages, with the early
stages preparing for the later ones. The authors introduce the concept of prereq-

uisite of an attack : which is defined as the necessary condition for the attack to
be successful. Furthermore, logical formulas are used to describe relationships
between different attack stages, and hyper-alert correlation graphs are employed
to represent correlated alerts in an intuitive way. However, this correlation tech-
nique is ineffective when attackers use a different source at each attack step.
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Ning and Cui [30] demonstrate the effectiveness of this approach when applied
on a small data set: in [31,32] the same authors present other utilities they
developed to facilitate the analysis of large sets of correlated alerts, and report
some benchmarks employing network traffic used during the DEFCON 8 Capture
the Flag (CTF) event [33].

Morin et al. [34] propose a data model for input alert correlation, which allows
to aggregate alerts generated by multiple heterogeneous IDSs (e.g. network-based
and host-based). The authors state that alert correlation techniques do not take
full advantage of the available information about an information system. They
identify four main information areas that must be exploited: properties and
characteristics of the monitored environment and its vulnerabilities, monitoring
systems and events observed.

The model works by correlating input alerts using a similarity function: this
function is defined over alerts from the same event (raised by different IDSs),
addressing the same vulnerability, belonging to the same TCP/IP connection
and based on temporal constraints. No benchmark result is provided to support
the system effectiveness.

Lee and Stolfo [35] develop a framework based on data mining techniques,
such as sequential patterns mining and episodes rules (see Agrawal and Srikan [36]
and Han et al. [37]), to address the problem of improving attack detection while
maintaining a low false positive rate. The system works by extracting informa-
tion from audit traffic and building classification models (specifically designed
for certain types of intrusion) using data mining techniques: connection features
(i.e. duration, type, protocol) are used to build the time-based traffic model, traf-
fic features (i.e. number of connections directed to the same host or same service
in a given time frame) constitutes the basis for the host-based traffic model while
the content model collects content features information (i.e. data payload, errors
reported by the OS, root access attempts).

The system detects attacks combining the models and comparing them with
actual traffic features. Benchmarks have been conducted using the DARPA 1998
data set [38]: detection score for different attack typologies has a minimum value
of 65% with a false positive rate always below 0.05%.

5.2 Identifying false positives

Pietraszek [15] tackles the problem of reducing false positives by introducing an
alert classifier system (ALAC, Adaptive Learner for Alert Classification) based
on machine learning techniques. During the training phase, the system classifies
alerts into true positives and false positives, by attaching a label from a fixed set
of user-defined labels to the current alert. Then, the system computes an extra
parameter (called classification confidence) and presents this classification to a
human analyst. The analyst’s feedback is used to generate training examples,
used by the learning algorithm to build and update its classifiers. After the train-
ing phase, the classifiers are used to classify new alerts. To ensure the stability of
the system over time, a sub-sampling technique is applied: regularly, the system
randomly selects n alerts to be forwarded to the analyst instead of processing
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them autonomously. This approach relies on the analyst’s ability to classify alerts
properly and on his availability to operate in real-time (otherwise the system will
not be updated in time); we believe that these (demanding) requirements can
be considered acceptable for a signature-based IDS (where the analyst can eas-
ily inspect both the signature and network that triggered the alert), but that
it could be difficult to make the same analysis with an anomaly-based system
(OAD). Benchmarks conducted over the 1999 DARPA data set [14], using the
intrusion detection system Snort [12,13] to generate alerts, show an overall false
positives reduction of over 30% (details on single attack classes are not given).

It is worth summarizing the main differences between ALAC and APHRODI-
TE; namely: (a) ALAC does not consider the outgoing traffic, and (b) ALAC
relies heavily the expertise and the presence of an analyst (in APHRODITE, all
the IT specialist has to do is to set the thresholds). Pietraszek and Tanner [39]
further expand the previous work using alert post-processing based on data
mining and machine learning techniques.

Julisch [8] presents a semiautomatic approach for identifying true positives
based on the idea of root cause: an alarm root cause is defined as “the reason for
which it occurs”. The author observes that in most environments, it is possible
to identify a small number of highly predominant (and persistent) root causes.
Persistent root causes trigger alarm floods that distract IT specialists from iden-
tifying real attacks. The process presented, based on techniques which discover
frequently occurring episodes in a given sequence (see Mannila et al. [40,41]),
consists of two different steps: the former (called root cause analysis) identifies
root causes related to a given (large) number of alarms. Then, the latter removes
spotted root causes and thereby drastically reduces the future alarm rate.

Benchmarks conducted on a log trace from a commercial NIDS deployed in a
real network show a reduction of 87% of root causes. No further details are given
about the testing condition, network topology or traffic typology. The work has
been further expanded in [42,9] to improve the completeness and accuracy of
detecting algorithm.

Qiao and Weixin [28] introduce a NIDS that addresses the problem of reduc-
ing false positive combining anomaly-based and signature-based systems and
applying a co-stimulation mechanism [43].

The system is composed by two main components: detectors and agent mon-

itors. The first component is based on a biological immune mechanism (Forrest
et al. [44,45]) and it is responsible for detecting attacks: being anomaly-based,
it is able to detect zero-day attacks (improving detection rate). Agent monitors
are both signature-based and anomaly-based components, which analyze various
system parameters and which are responsible for sending a feedback information
(the co-stimulation) to the detectors to confirm a possible attack. The agents
monitor integrity of sensitive files (integrity monitor), information leakage (con-
fidentiality monitor) and anomaly occupation of resources, e.g. CPU or system
memory, (availability monitor). When a detector d raises an alarm, a timer is
started: the detector waits for a period of time τ , called co-stimulation delay, for
the (possible) feedback sent by at least one of the monitor agents. The feedback
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can also be sent by an IT specialist (e.g. the network administrator), that can
label the alert as a real attack. If no feedback is received within the period τ , the
alert is considered a false positive. The benchmarks do not allow a full compar-
ison: the authors report only few details about the used data set (private, with
artificial attacks introduced by authors themself), and state that all the attacks
have been detected without generating false positives.

6 Conclusion

In this paper we present APHRODITE, an architecture for reducing false posi-
tives in standard NIDS. The core of APHRODITE consists of an Output Anoma-
ly Detector (OAD): when the standard NIDS placed on the input raises an alert,
APHRODITE checks if the communication actually raises an anomaly in the out-
put. When this is the case (and in another couple of exceptional situation), the
alarm is forwarded to the IT specialist, otherwise it is discarded.

The fact that the OAD is anomaly-based (rather than signature-based) has
various advantages: first, the OAD can adapt to the specific network environ-
ment/service; secondly it does not require the definition of new signatures to
detect anomalous output. Creating and maintaining a set of signatures for the
output traffic is labor intensive, as these signatures would heavily depend on the
local application, and would have to be updated each time that the application
change its output format.

Benchmarks on the DARPA 1999 data set show that APHRODITE deter-
mines a reduction of false positives between 50% and 100% in most of the cases,
and that it does not introduce any extra false negative. Tests on our private data
set show that APHRODITE is still effective also when it is not trained optimally:
APHRODITE can be thus used for reducing false positives also in those cases
in which the IT professional wants to set it up quickly, without spending time
time at cleaning up the data set to carry out an optimal training.

A Appendix: APHRODITE pseudo code

In this Section we give a semi-formal description of how APHRODITE works.

DATA TYPE

l = length of the longest packet payload

PAYLOAD = array [1 ..l ] of [0 ..255 ]
HOMENET = set of IP addresses

/* hosts inside the monitored network */

HOST = RECORD [
address : IP address ∈ N

port : TCP port ∈ N

]
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PACKET = RECORD [
source : HOST

destination : HOST

payload : PAYLOAD

]

ALARM = RECORD [
alarm :

−∞ if input IDS is signature− based
value ∈ Real if input IDS is anomaly − based

attacker : HOST (6∈ HOMENET )
victim : HOST (∈ HOMENET )
processed : BOOLEAN /* track a processed alert by the OAD */
trueIncident : BOOLEAN /* alarm is marked as an incident */
counter : Integer

/* packets marked as anomalous in a single communication */
]

DATA STRUCTURE

τ ∈ N

/* Number of packets used for training phase */
oad ∈ IDS

/* Anomaly-based IDS analyzing outgoing network traffic */
outThreshold ∈ Real

/* Numeric value used for anomaly detection by OAD */
magnitudeThreshold ∈ Real

/* Value used to evaluate input alarm magnitude */
raisedThreshold ∈ Integer

/* Value used to evaluate alarm-raising packets */
alarms = set of ALARM

/* List of alarms, received from an IDS monitoring incoming traffic */

INIT PHASE
/* IT specialists set outThreshold, magnitudeThreshold and raisedThreshold values */

TRAINING PHASE

INPUT:
p : PACKET

/* outgoing network packet */

/* first, train the OAD with τ samples */
for t := 1 to τ
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oad.train(p.source.address, p.source.port, p.payload)
end for

TESTING PHASE

INPUT:
p : PACKET

/* outgoing network packet */

OUTPUT:
trueIncidents : set of ALARM

for each a ∈ alarms do

if (match alarm(a, p) = TRUE ) then

/* the function tracks the packet and checks if it belongs to
a communication marked as anomalous by the input IDS */
alarm level := oad.test(p.source.address, p.source.port, p.payload)
if (alarm level > outThreshold) then

a.trueIncident := TRUE

trueIncidents .add(a)
end if

a.processed := TRUE

end if

end for

/* Here we consider Exception1 */
for each a ∈ alarms do

if (a.processed = FALSE ) then

a.trueIncident := TRUE

trueIncidents .add(a)
a.processed := TRUE

end if

end for

/* Here we consider Exception2 */
for each a ∈ alarms do

if (a.alarm > magnitudeThreshold) then

a.trueIncident := TRUE

trueIncidents .add(a)
a.processed := TRUE

end if

end for

/* Here we consider Exception3 */
for each a ∈ alarms do
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if (a.counter > raisedThreshold) then

a.trueIncident := TRUE

trueIncidents .add(a)
a.processed := TRUE

end if

end for

return trueIncidents
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Fig. 2. Detection rates for POSEIDON in combination with APHRODITE using
DARPA 1999 data set (Telnet and SMTP protocols) and data set B (HTTP
protocol): the x-axis and y-axis present false positive rate and detection rate
respectively. Is it possible to observe that APHRODITE presents a lower false
positive rate than POSEIDON on every benchmarked protocol, considering the
same detection rate.
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