

Software Virtualization Based Rootkits

ABSTRACT

The most popular virtual execution technologies include pure

emulator, API emulator and virtual machine, the typical representations of

all these three technologies are Bochs, Wine and VMware respectively.

The implementation of virtual machine could be divided into two

categories by the virtualization extent employed, those are full

virtualization and para-virtualization, the latter has come up and been

used in most recent years; the “para” means making some assumptions

about or doing some modifications on the Target OS. In addition,

according to the difference of virtual machine monitor(VMM)’s structure,

there are type I and type II VMM, and the type II could be referred to as

the hosted VMM as well. As the virtualization technology continues

developing and becomes more prevalent, the two biggest processor

manufacturers in the world both have developed their new CPU

technologies which support virtualization, the Intel VT-x and AMD

Pacifica. However, all of the following discussion will still aim at the

traditional x86 platform as that is by far the most widely used. The

virtualizable processor architecture requires that all the sensitive

instructions could be trapped when running with the degraded privilege

level. Unfortunately there exists a few non-virtualizable instructions that

make x86 a non-strictly virtualizable architecture. In order to achieve the

full virtualization of x86, some extremely complicated software

techniques should be used to overcome these architectural limitations.

Being an excellent virtual machine software product, VMware has

implemented the full virtualization of x86. We take the VMware

Workstation version as an example to give a brief introduction about the

architecture, basic working principle and some core technologies used of

the type II VMM. As a hosted structure, there are two OS contexts, the

host and the guest, so VMware must use the total context switch method

to ensure necessary execution environment isolation. VMware uses

privilege compression and dual execution modes (direct execution and

binary translation) to virtualize the instruction execution part of x86 CPU.

Direct execution with ring degradation would let a majority of common

instructions run natively, and trap most of the sensitive ones at the same

time. However, the binary translator would be used to deal with the

non-virtualizable instructions. The execution mode selection will be made

by the appropriate decision-making module which depends on the CPU’s

current mode, privilege level and segment state. It is worthy to point out

that binary translation is a very complicated but useful software technique

which is also referred to as dynamic recompilation. Besides the fact that

the code generation is highly difficult and complex, it will also handle the

translation cache’s synchronization and coherency. However, another

technique, used by Plex86, that solves the same problem seems much

simpler, which should be a good choice for implementing a light weight

VMM. In addition to virtualizing the instruction execution part, VMware

also applies some other techniques to virtualize the CPU’s segmentation,

paging and interrupt/exception system components, such as deferred

shadow segmentation, shadow paging and interrupt/exception forwarding.

As to device virtualization, VMware chooses the method of full

emulation which provides a complete set of virtual devices that are totally

different from the true hardware devices. Since the device emulation

depends completely on how each given hardware device works, the

implementation method varies.

At present, the virtualization technology has been widely used in

many computer related fields, but the research and application of

virtualization on the security area is still in an elementary state.

Virtualization technology could be applied to developing a non-intrusive

debugger, a honey pot that traps malicious programs, and VM Based

Rootkits. The Microsoft research team working together with Michigan

University has developed a VM Based Rootkit prototype named SubVirt.

SubVirt could gain system control after the Target OS was infected and

rebooted. SubVirt then made the Target OS run within the context of a

VM, while SubVirt itself would run directly on the true hardware.

SubVirt could control the behavior of the target system via a VMM and

provide some malicious services externally. However some inherent and

obvious defects of SubVirt greatly reduced its practicality. Finally, as the

most key part of the presentation, we will discuss the complete technical

scheme of a novel VM Based Rootkit. The VMBR itself is sort of light

weight VMM. After the VMBR is loaded, the VMBR will ensure the

target system is still running by placing it into a rootkit created virtual

execution environment. It then becomes very difficult for the victim to

perceive the rootkits’ presence or to find any virtualization footprint.

Although this novel VMBR is just a proof of concept, it has at least

achieved the coexisting transparently and perfectly with the target system.

KEY WORDS virtual machine, virtual machine monitor, virtual

machine based rootkit

Contents

Chapter 1 Introduction ..1

1.1 Popular “Virtual Execution” Techniques ..1
1.1.1 Pure Emulator ...1
1.1.2 API Emulator ..1
1.1.3 Virtual Machine ..1

1.2 Full Virtualization vs. Para-Virtualization ..2
1.3 Virtual Machine Monitor (VMM)...2

1.3.1 Type I VMM ..3
1.3.2 Type II VMM...3

1.4 Hardware Based Virtualization Techniques ..4
1.5 Virtualize x86..4

1.5.1 The Standards of Virtualizable Processor Architecture4
1.5.2 The Challenges On x86 Virtualization ..6

1.5.2.1 Limitations From Hardware and Processor6
1.5.2.2 Sensitive x86 Instructions List ...7
1.5.2.3 Non-trapped Sensitive x86 Instructions List.................................8

1.6 Related Concepts and Terminologies..9
1.7 VMware’s Working Principle ...10

Chapter 2 Implementation of a VM Based Rootkit ..13
2.1 Previous Works ...13
2.2 The Whole Structure ...14
2.3 Virtualize 4 Modes of x86...16
2.4 Virtualize x86 Instructions Execution...16
2.5 Virtualize Processor State Information ...17

2.5.1 The Changes in Processor State ...18
2.6 Virtualize Segmentation..19

2.6.1 The Structure of Shadow Descriptor Table and Shadowing Algorithm ...20
2.6.2 Target Redefine DT ...20
2.6.3 Target Modify Descriptors ...21
2.6.4 Target Remap/Unmap DT ..21
2.6.5 Target Load Segments ..21
2.6.6 Inter-Segments Control Transfer...21

2.6.6.1 Task Switching...22
2.6.6.2 Call Gate ..22
2.6.6.3 Direct jmp and call/ret Between Segments22
2.6.6.4 Interrupt/Exception ..22
2.6.6.5 sysenter/sysexit ..22

2.6.7 Synchronize Segment Accessed Bit ..23
2.6.8 The Changes in Segmentation System...23
2.6.9 Segment Irreversibility ...24

2.7 Virtualize Paging...25
2.7.1 The Structure of Shadow Page Table and Shadowing Algorithm25
2.7.2 The Procedure of Shadow Paging ..26
2.7.3 Physical Trace..26
2.7.4 Linear Trace ..27
2.7.5 Target Store PDBR..27
2.7.6 Target Load PDBR..27
2.7.7 Target Modify PDE/PTE ..28
2.7.8 Target Flush TLB ..28
2.7.9 Maintain The Accessed/Dirty Bits ...29
2.7.10 Handle the Page Fault...29
2.7.11 Linear Address Space Confliction ...30
2.7.12 The Changes in Paging System ..30

2.8 Virtualize TSS ...30
2.8.1 The Structure of Private TSS ...30
2.8.2 Target Store TR ...31
2.8.3 Target Load TR ...31

2.9 Virtualize Interrupt/Exception...31
2.9.1 The Structure of Private IDT ...32
2.9.2 Handle Interrupt/Exception ...35
2.9.3 Target Store IDTR...39
2.9.4 Target Load IDTR...39

2.10 Virtualize Devices ...40
2.10.1 Port Mapped I/O ...40
2.10.2 Memory Mapped I/O ..40
2.10.3 Hardware IRQ...41
2.10.4 DMA ...41

2.11 The Payload of VMBR ...42
Chapter 3 Conclusion..44

 1

Chapter 1 Introduction

1.1 Popular “Virtual Execution” Techniques

1.1.1 Pure Emulator

Pure Emulator simulates all the necessary components which constitute a

complete computer system by using a pure software method, including the processor

and all hardware equipments, and its processor part is very similar to the way in

which the compilation and execution environments of some interpreted high-level

languages (Visual Basic, Java) work, which cycle for fetching instructions, decoding

and executing them. Pure Emulator has the advantage of good portability, the target

(simulated) platform and actual execution platform can be heterogeneous, its

disadvantage is poorer performance. The typical representative is Bochs

(http://www.bochs.com).

1.1.2 API Emulator

The function of API Emulator is to allow binary code of applications compiled

for an operating system to run directly on another operating system, its working

principle is to intercept the API invokations issued by applications and use the API of

current operating system to simulate them. The merits of API Emulator are the

application binary compatibility between operating systems, and better performance,

but the drawbacks here are that this method relies on the internal implementations of

specific operating systems, and poor generality and portability. The typical

representative is Wine (http://www.winehq.com).

1.1.3 Virtual Machine

The initial goal for designing a Virtual Machine is to run several operating

systems concurrently, its working principle is little bit similar to the above Pure

http://www.bochs.com
http://www.winehq.com

 2

Emulator: it uses the pure emulation method for hardware devices, and direct

execution plus emulation (binary translation) for processor part, that’s namely one

kind of Quasi-Emulation technology, which lets most of instructions run naturally on

the hardware processor, but captures and emulates a small part of incompatible

(sensitive) instructions by a Virtual Machine Monitor. The merit of Virtual Machine is

the better performance, however the shortcoming is the poor portability, also it

requires that the target (virtualized) platform to be the same as the actual execution

platform. The typical representative is VMware (http://www.vmware.com), Plex86

(http://www.plex86.org, actually the new Plex86 belongs in Para-Virtualization, and

can only supports Linux as its Guest OS).

1.2 Full Virtualization vs. Para-Virtualization

Full Virtualization means virtualizing all features of the processor and hardware

devices. The typical representatives that use Full Virtualization include IBM VM/370,

VMware etc.

Due to some restrictions of processor architecture, for example x86 includes

some non-virtualizable instructions, it is impossible to achieve Full Virtualization

without using binary translation system or hardware virtualization support. Under

such circumstances, the so-called Para-Virtualization appears, Para-Virtualization

means to do some appropriate modifications on the target operating system, such as

getting rid of those non-virtualizable instructions and using customized I/O

communication protocols, which then can reduce the complexity of VMM

implementation and also enhance the performance. But Para-Virtualization technique

also exists some shortages, for example it can not be used in a non-open-source

operating system (such as Windows) , also modifications might be intrusive to target

operating system and so on. Owing to this VMware company puts forward a kind of

standard called Virtual Machine Interface (VMI) API, every operating system that

follows this interface can not only run naturally, but can also run in a Para-VM, and

without the need of kernel recompilation, this standard is in fact a kind of transparent

Para-Virtualization. The typical representatives which use Para-Virtualization include

Xen, Denali.

1.3 Virtual Machine Monitor (VMM)

http://www.vmware.com
http://www.plex86.org

 3

1.3.1 Type I VMM

Type I VMM refers to that the VMM runs directly on hardware (Bare Machine),

and actually it can be seen as an operating system with virtualization mechanism,

which is responsible for its Virtual Machines (VMs) scheduling and resource

allocation. The typical representative of Type I VMM is VMware ESX Server. The

diagram of Type I VMM is shown as follows:

Diagram 1－1 Type I VMM

1.3.2 Type II VMM

Type II VMM is also referred to as Hosted VMM, the VMM itself runs as an

application program in host operating system (Host OS), which manipulates hardware

devices directly and is responsible for creating virtual execution environment and

allocating resources for the guest operating system (Guest OS). By using Total

Context Switch technique, Host OS and Guest OS each lives in their own isolated

world, however the emulation of Guest OS device I/O operations is accomplished by

some virtual machine software runs in Host world by making use of its facilities (API

and Device Driver etc). The typical representative of Type II VMM is VMware

Workstation. The diagram of Type II VMM is shown as follows:

 4

Diagram 1－2 Type II VMM

1.4 Hardware Based Virtualization Techniques

The two new processor techniques, Intel VT-x (Vanderpool & Silverdale) and

AMD Pacifica, are enhancements to traditional processors to support software

virtualization. Initially, they are mainly concentrated in handling those

non-virtualizable instructions, and do not provide virtualization schemes for all

processor components. The main feature is the introduction of a new CPU privileged

root mode for the use of VMM itself, and non-root mode for Guest OS. In addition,

they also provide some special VM instructions for switching and controlling VM

(such as vmlaunch/vmrun, vmresume, vmexit/vmmcall, vmread, vmwrite etc.), and

data structures used to save/ restore the state of Guest OS (VMCS and VMCB) as

well. AMD Pacifica seems to go further on the road of hardware based virtualization,

which can support SMM (System Management Mode) and SMI (System Management

Interrupt), and use the NPT (Nested Page Table) and DEV (Device Exclusion Vector)

technologies to achieve memory virtualization and DMA protection.

If readers are interested in these rising technologies, please find related

documents for more technical information by yourself.

1.5 Virtualize x86

1.5.1 The Standards of Virtualizable Processor Architecture

 5

R. Goldberg put forward 4 requirements of the third generation hardware

architecture suitable for virtual machine in his doctoral dissertation << Architectural

Principles for Virtual Computer Systems >> in 1972:

1. At least two processor privilege modes.

2. A method used by non-privileged program to invoke privileged system

routines.

3. Memory relocation or protection mechanism, such as segmentation or paging

system.

4. Asynchronous interrupt mechanism, which allows the communication

between I/O system and CPU.

x86 meets R. Goldberg's requirements well:

1. 4 privilege modes (rings 0~3).

2. Interrupt Gate, Call Gate etc.

3. Segmentation and Paging.

4. Interrupts and Exceptions.

John Scott Robin and others gave further standards about virtualizable processor

architecture in the paper << Analysis of the Intel Pentium’s Ability to Support a

Secure Virtual Machine Monitor >> :

1. The execution manner of non-privileged instructions are almost identical in

two modes, the user mode and the privileged mode, no distinguishing instruction

words or extra bits in instruction address part must be used in privileged mode by

CPU.

2. Having protection mechanism or address translation system to isolate and

protect the real machine from the virtual one (or between several virtual machines).

3. When the Virtual Machine tries to execute sensitive instructions, the Virtual

Machine Monitor have to be notified automatically, and it must be able to emulate the

results of those instructions.

The sensitive instructions include:

a. Instructions that attempt to modify or reference the VM operation mode or

machine state.

b. Instructions that read or change the sensitive registers and/or specific

memory regions, such as clock and interrupt register.

 6

c. Instructions that access storage protection system, memory system or address

relocation system, which will allow VM to access any address that beyond its own

virtual memory.

d. All I/O instructions

x86 almost meets the requirements mentioned above:

1. No differences in execution manner of non-privileged instruction exist

between privilege modes, however the execution results might be slight different,

such as popf.

2. Segment and page based protection system.

3. By lowering the running privilege level of VM Operating System (VMOS),

the exception handler of VMM can trap and emulate most of the sensitive instructions,

which means most sensitive instructions are privileged. Unfortunately, however, there

are some sensitive but non-privileged ones (violate 3b, 3c), which makes x86 a

non-strictly virtualizable architecture.

1.5.2 The Challenges On x86 Virtualization

1.5.2.1 Limitations From Hardware and Processor

Hardware: usually be designed to be controlled exclusively by only one device

driver, otherwise it may result in hardware state confusion and inconsistency.

x86 processor: its system features part are designed to be configured and used by

only one operating system. In addition, there also exist some other problems as

follow:

² Tight-coupled between some non-strictly related mechanisms: there exists a

very close coupling between the privilege level and segment mechanisms,

the RPL and DPL are contained respectively in segment selector and

segment descriptor which are both manipulated directly by CPU. Thus the

VMM has no chance to interpose timely and perform emulation and

therefore may expose potentially to the VMOS the fact that its privilege

being lowered.

² Hidden part of segment registers: All 6 segment registers contain hidden

information, such as segment base address, length, and privilege level, and

these concealed information will be flushed only upon segment reloading.

 7

When segment descriptors in memory being modified but without a timely

segment reloading, then appears the so-called segment inconsistent or

irreversible problem. At this time an interrupt/exception occurred which

traps into VMM will result in the total loss of the hidden information, then

the VMM will not be able to emulate segment related instructions correctly,

and also VMOS may not be restored running.

² Non-trapped sensitive instructions: such as popf, pushf, sgdt, sldt, sidt.

1.5.2.2 Sensitive x86 Instructions List

The following is the incomplete list of the sensitive instructions in x86

architecture, and most of them are privileged instructions:

² clts

² hlt

² in

² ins

² out

² outs

² lgdt

² lidt

² lldt

² lmsw

² ltr

² mov r32, CRx

² mov CRx, r32

² mov r32, DRx

² mov DRx, r32

² popf/popfd

² pushf/pushfd

² cli

² sti

² sgdt

² sidt

² sldt

² smsw

 8

² str

² arpl

² verr

² verw

² lar

² lsl

² lds/les/lfs/lgs/lss

² mov r/m, Sreg

² mov Sreg, r/m

² push Sreg

² pop Sreg

² sysenter

² sysexit

² invlpg

² invd

² wbinvd

² rdmsr

² wrmsr

² rdpmc

² rdtsc

Because of the restriction of paper length, for more details readers have to make

reference to Intel instruction manual by themselves.

1.5.2.3 Non-trapped Sensitive x86 Instructions List

Most of the non-trapped sensitive instructions are segment or flags bits related

instructions:

² lar/lsl/verr/verw: the results of execution will depend on CPL and RPL value

of target segment selector, and lar/lsl might reveal the changes of segment

access right and limit.

² sgdt/sidt/sldt/str: reveal the changes of GDT/IDT base, length and LDT/TSS

selector value.

² smsw: expose some critical flag bits in CR0, such as PE bit.

² popf/popfd: can modify some critical flag bits in EFLAGS, also the

execution results will depend on current processor mode and privilege level

 9

(CPL and IOPL), and can not be trapped in protected mode.

² pushf/pushfd: expose some critical flag bits in EFLAGS, such as IF, IOPL

bit etc.

² mov r/m, Sreg: reveal the changes of RPL value in segment selectors.

² mov Sreg, r/m

² push Sreg: reveal the changes of RPL value in segment selectors.

² pop Sreg

In addition, I/O and control transfer instructions are also closely related to

virtualization topic, so deserve a thorough discussion.

² in/ins/out/outs

² sysenter/sysexit

² call/jmp/int n/ret/iret

An in-depth analysis of these non-virtualizable instructions will be given in the

following sections which deal with the complete technical scheme of VM Based

Rootkit.

1.6 Related Concepts and Terminologies

² Host OS: the Host Operating System of Type II VMM, which takes charge

of creating virtual execution environment and resource allocation for Guest

OS.

² Guest OS: the Guest Operating System of Type II VMM (in narrow sense),

which runs within the VM and is under the control of VMM.

² VM: Virtual Machine, the virtual execution environment that hosts the Guest

OS.

² VMM: Virtual Machine Monitor, the software component used to achieve

virtual machine hardware abstract.

² Hypervisor: the software that runs directly on the underlying hardware, with

the responsibilities for lodging and managing the VMs, it usually refer in

particular to Type I VMM.

² Non-virtualizable Instruction: those instructions existed in some processor

architectures, which are either sensitive or behave differently under different

privilege level, but both don’t incur traps.

² Segment Inconsistent Problem: also known as Segment Irreversible Problem,

 10

which means that the current processor operation mode is different from the

mode when segment being loaded, or the hidden information in segment

register is not the same with the current values of segment descriptors in

memory. Because the VMM must handle the interrupt/exception

transparently, however the occurrence of interrupt/exception will result in

the segments switch and then the flush of concealed contents in segment

registers, thus if those segments are in the irreversible states to the moment,

VMM will be unable to restore them.

1.7 VMware’s Working Principle

The following picture depicts the whole structure of VMware Workstation:

Diagram 1－3 The Whole Structure of VMware Workstation

Here I will not plan to spend a mass of words to describe the detailed working

principle of VMware, which should be your own work. However there are some

important points as follows you must be clear, which also help to understand how a

VM Based Rootkit works:

 11

1. Total Context Switch: Total Context Switch differs with ordinary Process

Context Switch in that it will save and restore all context information of a given

processor, which include address space state, general purpose registers set, floating

registers, privileged registers (control registers, segment descriptors table register),

interrupt/exception vectors etc. After switch, Host OS and Guest OS/VMM (in order

to control and manage the execution of Guest OS and make the switching back

possible, VMware maps its VMM module into Guest context, which is invisible and

non-influential to Guest OS) each lives in an isolated and independent world, and

there is no easy way to let the processor go back to another context’s instruction path,

in order to do this, VMware uses a “span page” in memory, which keeps the same and

starts at the same linear address in both contexts. “Span page” contains a set of

instruction sequence specific to a given processor architecture, which achieves the

address space switching and allows the processor to continue executing its next

instruction. Guest OS/VMM just occupies the VMware application’s time quantum to

run for a while in Guest world, and VMM must yield the control voluntarily and

switch back to Host world according to the clock frequency programmed by Host OS,

so that other applications in Host OS may get chances to be scheduled.

2. x86 Processor Virtualization: To virtualize x86 instruction execution,

VMware basically uses two critical techniques: the privilege (ring) compression and

the dual execution modes (direct execution and binary translation). After the running

privilege being lowered, most privileged instructions issued by Guest OS will incur

exceptions (#GP), then VMware will have chance to handle them with its own IDT,

exception handler and privileged instruction emulation module. Because there exists a

few number of non-virtualizable instructions in x86 architecture, the only using of

direct execution seems not adequate, as a necessary complement of direct execution,

the binary translator will be applied in some cases. The execution mode decision

process will depend on current processor mode, privilege level and segment state

comprehensively. VMware doesn’t use binary translation under Guest user mode for

performance consideration, which has become a leak used to detect VM presence by

some malicious codes. As to other components and mechanisms of x86 processor,

such as segmentation, paging, task, interrupt/exception etc, VMware also involves

some sub-modules in its VMM to virtualize them, for example the MMU emulation

module 516 is for virtualizing the x86 paging system by using a very complex but

interesting shadow paging technique.

 12

3. Hardware Devices Virtualization: The device emulation could be divided into

two kinds: those without the need to interact with real physical devices will be

emulated directly by VMM in Guest world, such as the access to state or latched data

ports, on the other hand all device operations which need to access the real devices

must be forwarded to device emulator software in Host world via a context switch,

and emulated by using the Host OS’s facilities. In addition, all hardware interrupts

occurred in Guest/VMM context do not belong to Guest OS, under such case the

VMM must make a switch back immediately and fake this interrupt in Host world as

if it happens here just now.

 13

Chapter 2 Implementation of a VM Based Rootkit

2.1 Previous Works

As far as I known, there do exist VM Based Rootkits by using AMD and Intel’s

processor virtualization enhancements (AMD Pacifica & Intel VT-x), which have

been demonstrated in Black Hat USA this year, but Hardware Virtualization Based

Rootkit is definitely not my concern here.

The Microsoft research team working together with Michigan University has

developed a Software VM Based Rootkit prototype named SubVirt. SubVirt could

gain system control after the Target OS was infected and rebooted. SubVirt then made

the Target OS run within the context of a VM, while SubVirt itself would run directly

on the true hardware. SubVirt could control the behavior of the target system via a

VMM and provide some malicious services externally.

Diagram 2－1 The Working Principle of SubVirt

As a prototype of Software VM Based Rootkit, SubVirt has brought forward a

 14

kind of very novel and challenging concept, however some inherent and obvious

defects of it greatly reduce its practicality:

² Firstly, it depends on large commercial VM software (VMware with source

code not opened or VPC) and a supporting Host OS (Linux), which make

itself too big and not easy for spreading out.

² Secondly, it requires to modify hard disk MBR and insert itself to system

Boot sequence, but the consistency of system Boot code could be ensured

easily by using some TPM or secure Boot software.

² Finally, VM software will provide a totally different set of virtual devices,

which requires re-installation of affected device drivers and thus allows the

Target OS being infected to be aware of the device changes.

As the most important part, we are going to discuss the complete technical

scheme of a novel VM Based Rootkit (VMBR) next, which can overcome all

shortcomings of SubVirt listed above. Actually this VMBR itself is sort of a light

weight VMM, that means no binary translation or dynamic scanning methods used,

and no immoderate assumptions, requirements and modifications made on Target OS.

After being loaded, the VMBR will ensure the target system is still running by placing

it into a rootkit created virtual execution environment. It then becomes very difficult

for the victim to perceive the rootkits’ presence or to find any virtualization footprint.

In addition, the VMBR may exercise various interferences and controls on Target OS

at its will.

2.2 The Whole Structure

 15

Diagram 2－2 The Whole Structure of VM Based Rootkit

There is no concepts of Host OS or Guest OS in this new VMBR scheme, thus

no need for a Total Context Switch that is absolutely necessary in Type II VMM, the

OS being controlled by VMBR is referred to as Target OS.

The VMBR can be loaded via a kernel mode driver under Target OS, after

initialization process finished, the driver then becomes useless and can be unloaded as

normal. The physical memory pages that occupied by VMBR can be 1) allocated by

driver module by invoking the related kernel functions exported by Target OS and

freed when driver being unload, 2) found in free page list by searching the PFN

database maintained by Target OS, 3) reserved expediently by using a Boot option

(/burnmemory) in system Boot configuration file (boot.ini). The linear address region

where VMBR resides will be topmost 4M of the entire 4G space, an example of

detailed address space layout is shown as follows:

Windows 2000 build 2195 sp4 with no 4M page support patch in ntoskrnl.exe

Total physical memory range 512M with /burnmemory=200M

0x00000000 ~ 0x0009ffff (0xa0000 640k)

0x00100000 ~ 0x1ffeffff (0x1feeffff 523,200k)

Physical memory range occupied by VMBR

0x18000000 ~ 0x18400000

Linear memory range occupied by Target OS in topmost 4M

0xffd00000 ~ 0xffd13fff (0x14000 80K) ACPI

0xffdf0000 ~ 0xffdfffff (0x10000 64K) System (PCR &

KI_USER_SHARED_DATA)

0xfffe0000 ~ 0xfffe0fff (0x1000 4K) HAL (maybe Timer Counter)

Linear memory range occupied by VMBR

0xffe00000 ~ 0xffe18fff (0x19000 100K) VMBR.sys

0xffe19000 ~ 0xffe19fff (0x1000 4k) Nexus

0xffe1a000 ~ 0xffe1afff (0x1000 4k) VM structure

0xffe1b000 ~ 0xffe1bfff (0x1000 4k) IDT

0xffe1c000 ~ 0xffe1cfff (0x1000 4k) GDT

0xffe1d000 ~ 0xffe1dfff (0x1000 4k) LDT

 16

0xffe1e000 ~ 0xffe1efff (0x1000 4k) TSS

0xffe1f000 ~ 0xffe1ffff (0x1000 4k) IDT stubs

0xffe20000 ~ 0xffe20fff (0x1000 4k) Log buffer

0xffe21000 ~ 0xffe21fff (0x1000 4k) Monitor page directory

0xffe22000 ~ 0xffe22fff (0x1000 4k) Nexus page table

0xffe23000 ~ 0xffe72fff (0x50000 320k) Monitor/Target page table

0xffe73000 ~ 0xffe73fff (0x1000 4k) Target CPU state

0xffe74000 ~ 0xffe74fff (0x1000 4k) Code physical page

0xffe75000 ~ 0xffe75fff (0x1000 4k) Temporary physical page0

0xffe76000 ~ 0xffe76fff (0x1000 4k) Temporary physical page1

0xffe77000 ~ 0xffe77fff (0x1000 4k) Transition page table

0xffe78000 ~ 0xffe78fff (0x1000 4k) Page table linear address map

After being initialized successfully, the VMBR would have replaced the real

information in hardware processor loaded by Target OS originally with its own ones

to fully virtualize the continue running of Target OS, which include Shadow GDT,

Shadow Page Table, Private TSS and IDT. Thereafter, a transparent intermediate layer

(VMM) has been created and functions properly between the Target OS and real

hardware, usually the processor will spend most of time on running codes of Target

OS, while Rootkit can only get controls of execution for a while during the

occurrence of hardware interrupts or exceptions, and must resume the running of

Target OS quickly after various necessary processing.

2.3 Virtualize 4 Modes of x86

Because the Rootkit in this scheme will be loaded only after the Target OS has

been booted successfully, we only discuss the virtualization of Protected Mode of x86

here, although Target OS may switch to Virtual 8086 Mode (a ntvdm launched) or

System Management Mode (SMM) occasionally (a SMI asserted). To keep a

light-weight implementation, we use completely direct execution to virtualize

Protected Mode.

2.4 Virtualize x86 Instructions Execution

We use complete direct execution mode combined with privilege level (ring)

 17

compression to virtualize the x86 instruction execution, that means all Target codes

(unmodified) will run natively on hardware processor, only with the privilege level of

Target kernel mode being lowered, therefore the execution of some privileged

instructions would consequentially incur exceptions due to privilege level

nonmatched, which then gives Rootkit good chances to emulate them. As to privilege

level compression, there are two feasible schemes (because most modern operating

system only use two rings, here we assume that the Target OS also uses just ring0 and

ring3):

Scheme 1: Compress Target OS kernel mode (original ring0) to ring3. As could

be seen from the following chapters, this scheme is not good for distinguishing the

segment and page accessibility between Target OS user mode and kernel mode,

and will make virtualization implementation become extremely complex.

Scheme 2: Compress Target OS kernel mode (original ring0) to ring1. This is a

recommended scheme.

Just as we have talked before, x86 belongs to a non-strictly virtualizable

architecture, so it is almost impossible to achieve a perfect virtualization by only

using the direct execution mode, but we would disclose various potential deficiencies

intensively in the next few chapters, and discuss how to try our best to reduce or

remedy them.

2.5 Virtualize Processor State Information

Rootkit reserves a small region in its memory space to maintain Target OS’s

virtual processor state information, which include general-purpose register set, flag

register, segment register set, control registers, debug registers,

GDTR/LDTR/IDTR/TR, some MSRs and PIC/APIC. Some state information which

are not used or modified by Rootkit can be left in hardware registers without any extra

saving operation. The general-purpose registers, arithmetic flag bits in EFLAGS and

segment registers should be saved each time when Target OS traps into Rootkit due to

interrupts or exceptions, because the succedent running codes of Rootkit might

change the contents in these registers. While the sensitive registers (include privileged

flag bits in EFLAGS) should usually be saved when Target OS attempts to modify

them, which inevitably traps into Rootkit for emulation, such as the issuing of a lgdt

instruction by Target OS to reload GDTR. Rootkit must follow the real processor’s

processing logics strictly when it performs the emulation, meanwhile which also

 18

involves frequent references to the virtual processor state information, for example

when forwarding the hardware interrupts to Target OS, Rootkit should make its

decisions according to the current states of Target OS’s virtual interrupt flag (IF),

virtual interrupt controller and virtual IDT.

2.5.1 The Changes in Processor State

² smsw is a non-privileged instruction, which stores the lowest 16 bits of CR0

register to specified general-purpose register or memory location. A Real

Mode Target OS may use this instruction to find that it is actually running at

Protected Mode.
0：PE (Protection Enable)

1：MP

2：EM

3：TS

4：ET

5：NE

² pushf/pushfd can not be trapped under Protected Mode (can be trapped

under Virtual 8086 when IOPL != 3), thus may expose potentially some

critical flag bits in EFLAGS, such as IF and IOPL, while VM and RF bits

are always cleared in stack images. In order to prevent Target OS from

enabling/disabling hardware interrupts by using sti/cli instruction pair,

Rootkit would always set hardware IOPL flag bit to 0, at the same time the

hardware IF flag bit to 0 to ensure itself always has chance to obtain controls.

When running at Target OS user mode, IF and IOPL are generally set to 1

and 0 respectively (prevent user application from disabling interrupt), this is

just the same as what Rootkit sets, so Target OS would see no change.

However, when being at Target OS kernel mode, if Target OS disables

interrupt (cli, may trapped. popf/popfd or iret, failed silently) or sets IOPL

not equal to 0 (popf/popfd or iret, failed silently, Target OS will usually not

do such a stupid thing) and follows a immediate check, it will surprisedly

find the hardware IF and IOPL are still 1 and 0 in fact.
8：TF Trap

9：IF Interrupt Enable

10：DF

 19

12-13：IOPL I/O Privilege Level

14：NT

16：RF

17：VM V86 mode

18：AC

19：VIF

20：VIP

21：ID

² popf/popfd can not be trapped under Protected Mode (can be trapped under

Virtual 8086 when IOPL != 3), and its execution results would heavily

depend on processor current mode and privilege level (CPL and IOPL),

under Protected Mode, IOPL can only be modified in ring0, while IF can be

modified only when CPL <= IOPL. Usually Target OS user mode would not

be affected, but its kernel mode may suffer from being not able to modify

some flag bits (IOPL and IF) due to privilege compression, these instructions

fail silently with no exceptions occurred, thus no emulation chance for

Rootkit. In most cases Target OS will not use popf/popfd to modify IOPL

and IF flags, but it may choose to use the iret (the required protection

checking for IOPL and IF modification is similar to popf/popfd, but it can be

used to change VM flag) or sti/cli instead.

2.6 Virtualize Segmentation

The privilege compression is the core of the whole virtualization scheme,

moreover the privilege level of running code under x86 are decided by CPL (in

invisible parts of current code and stack segment registers) or segment selector RPL

(when interrupt/exception occurs, the RPL saved in stack represents the code privilege

before control transfer), therefore the implementation of privilege compression

actually requires to play tricks with segmentation of Target OS. Rootkit will not allow

the Target OS’s segment descriptor table to be used directly by hardware, instead it

provides a shadow descriptor table (Shadow DT) of its own for real processor, the

“Shadow” here means that Rootkit’s DT is very closely associated with Target OS’s

DT, any descriptor change happened in Target OS’s DT will be eventually reflected to

Shadow DT with appropriate adjustment on descriptor’s DPL when performing the

synchronization action.

 20

The Following discussion will not deal with the LDT and Conforming Code

Segment, since few operating system uses them.

2.6.1 The Structure of Shadow Descriptor Table and Shadowing Algorithm

The Shadow DT contains some shadow descriptor entries (no more than 8192)

from the beginning, which virtualize the descriptors in Target OS’s DT, then six

cached descriptor entries that correspond to six segment registers and are used to

emulate the x86 segment caching mechanism, finally a number of entries reserved for

the use by Rootkit to describe itself (Rootkit descriptors). The segment present bit

(SPB) of shadow descriptors are initialized to be 0 (unshadowed state), while the SPB

and DPL of cached descriptors or Rootkit descriptors are 1 and 0 respectively. In this

way, any attempt to access the unshadowed (#NP), cached or Rootkit descriptor (#GP)

by Target OS would inevitably incur exception, which gives Rootkit chance to

emulate.

The Shadowing algorithm used when synchronizing descriptor pairs is shown as

follows: For a Data/Code segment descriptor of Target OS, its DPL must be changed

from 0 to 1 (or 3), and limit be truncated if overlapped with Rootkit space. For a Gate

descriptor (such as call gate), its target code segment selector value must be modified

to 0.

2.6.2 Target Redefine DT

lgdt instruction can be trapped, so Rootkit may desynchronize all shadow

descriptors at this time, which could be done quickly by unmapping the pages where

descriptors reside. After a new DT being defined, all previous traces installed on old

DT will be invalidated, yet the new DT needs not to be traced immediately. We only

install physical and linear traces on the Target OS pages which contain at least one

synchronized descriptor. Before desynchronization, we must cache the six active

shadow descriptors in advance, which means copying six shadow descriptors which

have been loaded into six segment registers currently to their corresponding cached

slots.

The introduction of Physical and Linear Trace will be arranged at the following

chapter (Virtualize Paging).

 21

2.6.3 Target Modify Descriptors

When Rootkit receives a notification that Target OS attempts to modify

synchronized descriptors via physical trace, it may desynchronize all affected

synchronized descriptors in Shadow DT, which could be done by setting SPB of these

descriptors to 0 or simply unmapping the whole page if the page only contains

desynchronized descriptors. If a page in Target OS’s DT doesn’t contain any

synchronized descriptor longer, all physical and linear traces would totally be

cancelled then. Again, we must firstly perform the caching before desynchronization

as long as the modification involves to some active descriptors (currently used by one

of six segment register). We can see that Rootkit doesn’t synchronize affected

descriptors at this point, but instead it defers the new descriptors synchronization to

the moment when they are loaded subsequently, this deferred and asynchronous

shadowing scheme is advantageous for the emulation of updating segment cache and

synchronizing segment accessed bit.

2.6.4 Target Remap/Unmap DT

Rootkit may receive a notification when the page mapping of some regions in

Target OS DT which contain synchronized descriptors has changed via linear trace,

and the disposition method it uses is basically identical to descriptors modification

above. Rootkit makes no difference between remap and unmap here, the distinction

between these two actions would present only when Target OS loads descriptors from

that regions subsequently.

2.6.5 Target Load Segments

The action that Target OS loads synchronized shadowed descriptors may go

naturally, while loading unshadowed or desynchronized shadowed descriptors would

lead to #PF or #NP, upon that Rootkit will carry out the descriptor pairs shadowing,

segment register cache update and segment access bit synchronization. Here we

assure that the first loading of a segment descriptor shouldn’t happen naturally, and

must be trapped and emulated by Rootkit.

2.6.6 Inter-Segments Control Transfer

 22

Inter-segment control transfer involves code segment, stack segment (when

privilege level changed) switching and a series of protection checking, and most

importantly it must still go successfully under the condition of our privilege

compression, which becomes a crucial and relatively complex problem of the whole

segment virtualization scheme. We are going to discuss inter-segment control transfer

topic from the following five transfer fashions.

2.6.6.1 Task Switching

Because most modern operating systems didn’t use the hardware task mechanism,

we also skip it for the moment.

2.6.6.2 Call Gate

The DPL (0) or target code segment selector value (0) field has been adjusted by

Rootkit when performing the Target OS descriptors synchronization, thereby Rootkit

may get a chance for interposition when Target OS tries to transfer through a call gate,

the emulation logic is very similar to transferring with an interrupt/trap gate which

will be talked later.

2.6.6.3 Direct jmp and call/ret Between Segments

Direct jmp and call/ret between segments don’t involve privilege level switching,

so privilege compression scheme would not affect this kind of transfer, and Rootkit

may let them go naturally. However, what should be noticed is that if we adopt the

first compression scheme that pushes Target OS kernel mode to ring3, then those

direct transfers from Target user mode to its kernel mode (or in reverse) which are

impossible at all under the normal condition would successfully happen by error.

2.6.6.4 Interrupt/Exception

Please refer to the chapter “virtualize interrupt/exception” for detailed analysis of

inter-segment transfer with interrupt/trap gate.

2.6.6.5 sysenter/sysexit

 23

In order to trap the actions that transfer with sysenter/sysexit instruction pairs by

#GP exceptions, Rootkit may simple set the hardware model specified register (MSR)

SYSENTER_CS_MSR (which defines the target segments of transfer directly or

indirectly) to 0, and the emulation process is also similar to interrupt/trap gate.

2.6.7 Synchronize Segment Accessed Bit

When Target OS attempts to load a segment descriptor for the first time, Rootkit

starts to synchronize this descriptor pair and update the accessed bit of it as well.

2.6.8 The Changes in Segmentation System

The Change of GDTR: sgdt instruction can not be trapped at any privilege level,

so by which Target OS may find the change of GDT base address and limit. The

solution to this problem is using dynamic scanning technique or mapping Shadow

GDT at the Target expected location when running in Target user mode. Fortunately

GDT in most operation systems would usually be created at a fixed memory address

known in compilation phase, so not necessary to be obtained by sgdt instruction in

runtime.

The Change of GDT Descriptors: When Target OS is running at ring3, Rootkit

may enforce page protection (supervisor bit) on the pages of its Shadow GDT. While

if the Target kernel mode has been compressed to ring1, Rootkit may truncate the

overlapped portions of Target OS’s code/data segment descriptors with the reduction

of their limits to protect itself, thus any access (for instance, to Shadow GDT) beyond

segment limit will incur #GP. Generally the DPL field of GDT descriptor in most

operating systems is static, and never checked.

The Change of Segment Selector: The change of RPL field in Target OS current

code segment selector, which is pushed on the stack when an interrupt/exception

occurs, would make the Target OS’s interrupt/exception handler impossible to

distinguish the format of trap frame correctly, and expose the fact that the running

privilege level has been lowered as well, fortunately this problem could be solved by

Rootkit emulating (capture, and then forward) the interrupt/exception for Target OS.

In a word, Rootkit should try its best to keep the Index and RPL fields in segment

register selectors as Target OS expected while segment descriptors’ DPL being

lowered, but unfortunately the RPL of CS and SS segment register selectors must be

 24

strictly identical to CPL.

Now we are about to discuss several sensitive (segment related) but non-trapped

instructions.

² When Target kernel mode has been compressed to ring3, then Target user

mode may have the accessibility to those segments that belong only to

kernel mode originally by using lar/lsl/verr/verw or segment loading

instructions.

² lar/lsl: Expose the change in segment limit and DPL of Target OS kernel

mode segments.

² mov r/m, Sreg/push Sreg: Expose the change of RPL in visible part (segment

selector) of Target OS kernel mode segment registers. Therefore, for some

segment registers, we should try to keep the RPL unchanged when segments

loading, but with their corresponding descriptors DPL lowered.

² Segment loading instructions (lds/les/lfs/lgs/lss /pop Sreg /mov Sreg, r/m):

All instructions above may not be used to load CS, otherwise it leads to an

#UD exception, so we put the discussion of CS loading at inter-segment

control transfer. SS loading requires RPL=CPL=DPL, otherwise an #GP is

generated, so it’s impossible to keep RPL unchanged here. However, the

loading of DS, ES, FS, GS would only need Max(RPL,CPL)<=DPL as long

as the target segment is a data segment or non-conforming code segment, so

in this case RPL can be kept unchanged. For example, the selector value of

DS is 0x0020, but the descriptor DPL it referenced is 3.

2.6.9 Segment Irreversibility

At first, we try to solve the segment inconsistency (or irreversibility) problem by

saving the active descriptors to corresponding cached descriptors (those cached ones

are used to emulate the hidden part of six segment registers) before they are

desynchronized, and updating the cached descriptors upon segment loading. However,

the deferred segment shadowing scheme has guaranteed that the cached descriptors

can be updated duly at the first loading of segment descriptors, so the caching

operation before desynchronization seems redundant then. Furthermore, because

usually this problem only happens during system Boot phase when switching from

Real Mode to Protected Mode (haven’t reloaded PM segments), we don’t talk it much

more.

 25

2.7 Virtualize Paging

Because Rootkit “steals” some portions in both linear address space and physical

memory of Target OS, and it also needs to use the access and protection bits in

hardware page table to play all kinds of virtualization tricks, then Rootkit will not

allow the Target OS’s page directory table/page table to be used directly by hardware,

instead it provides a set of shadow table (Shadow Page Table) of its own for real

processor, its working principle is almost identical to Shadow Descriptor Table

mentioned previously, any PDE/PTE change happened in Target OS table will be

eventually reflected to Shadow table with appropriate adjustments on entry’s access,

protection attributes and physical address mapped when performing the shadowing.

2.7.1 The Structure of Shadow Page Table and Shadowing Algorithm

Rootkit spend a number of physical memory to emulate the page directory

table/page table of Target OS, and this shadow table is initialized to be empty except

for those entries that map itself, which can be done by marking most entries as invalid

(valid bit cleared).

² Target kernel mode being compressed to ring1: The lowest 12 access bits are

kept unchanged during shadowing, while the adjustments of physical

address part should be decided according to different cases. If the physical

address mapped has been in used by Rootkit itself, it will then allocate a new

page to substitute the requested one, at the same time it also records the

association relationship between these two physical addresses in case that

Target OS requests the same physical page again. Another solution is that

Rootkit abandons the physical page used and looks for another free page for

itself, this solution can effectively protect against Target OS’s DMA

operations, but it requires a lot of content movement (copy) at the same time,

therefore now my Rootkit prototype only supports linear address relocation,

but not physical relocation.

² Target all modes being compressed to ring3: The shadowing algorithm is

similar as the above one, but there may exist an extra problem of how to

distinguish the page accessibility between different modes of Target OS. A

conceivable solution is that we split those tables that contain at least one

system entry into two shadow tables, which correspond to Target OS user

 26

mode (ring3) and system mode (ring0~2) respectively: For system mode, all

entries in Target table will be shadowed as user in shadow table (for system

mode use) except for those ones that assist virtualization. For user mode, we

keep the original settings of Target table, or simply don’t include those

system entries in its shadow table (valid bits cleared). However, a better

solution would be that Rootkit flushes totally the shadow table and restarts

with a empty one upon every privilege switching, and creates a proper set of

page table according to current privilege (CPL).

2.7.2 The Procedure of Shadow Paging

In initial state, all entries in shadow table are marked as invalid except for those

entries that map Rootkit itself, to be more exactly, only a nearly empty shadow page

directory table exists except for its last PDE, while dynamic shadow page tables are

created subsequently. When #PF occurs during Target OS running (the P flag in error

code pushed on stack is 0), Rootkit emulates the action of hardware MMU by

traversing Target OS’s page directory table/page table. If no valid mapping is found,

then it ends up with forwarding and letting #PF to be handled by Target OS. When a

valid mapping is found and also it is not caused by physical traces installed by Rootkit

(such as the read traces when Target OS is running at ring1), then Rootkit begins

shadowing, first shadows the corresponding PDE (if it is not be shadowed), next

creates a new shadow page table (if not be created) and shadows the corresponding

PTE with all other PTEs marked as invalid, then write protects the appropriate portion

of Target OS table which contains shadowed entries, finally re-executes the faulting

instruction (may be a processor instruction fetching). When #PF address (CR2) is

overlapped with the Rootkit space, Rootkit may need to relocate itself to somewhere

else (linear address space conflict and linear address relocation), but this would

usually incur a #GP first due to truncated segment limit.

2.7.3 Physical Trace

Physical Tracing is a mechanism that Rootkit has the ability to install read, write,

read/write traces on Target OS’s physical memory pages, and be notified when

accesses (read and/or write) to these pages occur. Because the trace is based on

physical memory page, it requires Rootkit to maintain a set of reverse mapping, that is

 27

mapping from physical address to linear address. Physical tracing is implemented by

degrading the access bits of all entries that map to a specified physical page in

Rootkit’s shadow page table, for read/write trace mappings are degraded to invalid

(not present), while for write trace mappings are degraded to read-only (CR0.WP bit

must be also set when ring1 compression scheme used). Each time when a new

mapping from linear address to physical address being inserted to shadow table, its

access bits may also need to be degraded according to the physical traces installed on

that physical page. Rootkit would record those physical page address which have been

installed with traces, and the recorded addresses are Target OS requested addresses,

but not the adjusted addresses in shadow table, choosing Target requested address is

because that Target OS may generally use consecutive physical pages, which would

simplify the codes of Rootkit that manage protected regions.

2.7.4 Linear Trace

Linear tracing is mechanism used by Rootkit to detect the mapping change

(unmap or remap) of a given linear region range of Target OS. Rootkit achieves the

linear trace by detecting the changes of Target OS’ page table and trapping the MMU

instruction that loads PDBR, while the changes of Target OS’ page table can be

monitored by installing physical traces (write trace) on relevant physical pages, where

the entries in Target OS page table that map the given linear region reside.

2.7.5 Target Store PDBR

All instructions that store PDBR (CR3) can be trapped, Rootkit then emulates

them so that Target OS may not perceive the change of physical address of page

directory table. Usually, operating system would map the page directory table (and

each page table) at a fixed linear address for a convenient memory management, for

example in Windows 2000, the page directory table of any process is arranged to start

at 0xc0300000.

2.7.6 Target Load PDBR

Here we don’t discuss the context switch via hardware task mechanism at the

moment. All instructions that load PDBR (CR3) can be trapped, Rootkit then may

 28

update the entire shadow table at this time. What should be noticed is that all

hardware TLB entries must be flushed except for those used to map Rootkit itself

after table update.

² Synchronous Scheme (not recommended): Converts and inserts each entry in

Target OS newly loaded page directory table/page table to shadow table, and

then installs physical traces (write trace) on those physical pages where

Target OS table reside after the shadowing finished.

² Asynchronous Scheme: Empties entirely the shadow table and starts anew,

then cancels all the traces aimed at Target OS page directory table/page table

as well. Although all physical traces installed previously are not in existence

and don’t function well anymore at present, they can be restored gradually

along with mappings being inserted dynamically.

2.7.7 Target Modify PDE/PTE

Because of the write traces installed by Rootkit, any attempt to modify the

shadowed entries by Target OS would incur a #PF, then Rootkit handles it accordingly,

and finally it flushes the corresponding TLB entries.

² Synchronous Scheme (not recommended): The write trace is base on the

granularity of a page size, therefore #PF handler should decide all affected

entries according to the target address of write operation. Those entries

affected must be shadowed again.

² Asynchronous Scheme: All affected entries would be unshadowed (set to a

non-present state as default), while the actual shadow actions of these entries

would be deferred until Target OS accesses the addresses mapped by them

later.

2.7.8 Target Flush TLB

The TLB flush operations of Target OS may include:

² Use invlpg instruction to flush a TLB entry correspond to a given linear page

that is specified with instruction operand.

² Reload CR3 register to flush all non-global TLB entries.

² Modify any paging flag (PE, PG in CR0, and PGE, PSE, PAE in CR4) to

 29

flush all TLB entries.

We don’t discuss the third case here, and the second case has also been analyzed.

As to the first case, the processing of TLB flush with invlpg instruction is actually

very similar to the modification of PDE/PTE discussed above: first Rootkit

unshadows the shadow entry that maps the desired page specified by instruction

operand, and then flushes the corresponding hardware TLB entry.

2.7.9 Maintain The Accessed/Dirty Bits

Processor will update the Accessed (PDE) and Dirty bits automatically so that

operating system may get feedbacks of its page usage, therefore Rootkit should

correctly emulate the Accessed/Dirty bits in Target OS page directory table/page table.

² Scheme 1: When Target OS accesses its own page table or Rootkit empties a

set of previous virtual page table, Rootkit may update the A&D bits to Target

table timely. In order to interpose when Target OS accesses its own table,

Rootkit may impose read traces on the physical pages of Target table, which

would not incurs #PF too frequently because Target table is not used directly

by hardware processor.

² Scheme 2: For asynchronous shadowing scheme, because each entry will be

shadowed when it is first accessed, then Rootkit may set it to Accessed (in

both shadow table and Target table) and temporary read-only (in shadow

table) at this time. When relevant pages mapped being written for the first

time, shadow entry (in shadow table) will be set to Dirty automatically by

hardware processor, then Rootkit only needs to set shadowed entry (in Target

table) to Dirty also and restore the access bits of shadow entry according to

that of the current shadowed entry. Because here we set shadow entry to be

temporary read-only factitiously, then the #PF handler must depend on the

real state of shadowed entry to decide whether it is a genuine #PF or an extra

one we brought in.

2.7.10 Handle the Page Fault

When #PF occurs during Target OS running (the error code pushed on stack call

tell us the reason for fault), Rootkit emulates the action of hardware MMU by

traversing Target OS’s page directory table/page table. If no valid mapping is found,

 30

then it ends up with forwarding and letting #PF to be handled by Target OS. When a

valid mapping is found and also it is caused by physical traces installed by Rootkit

(known from the fault address in CR2), then Rootkit disables the trace installed on

this mapping temporarily, and finally restores it to degradation state after single

stepping the faulting instruction. What should be noticed is that Rootkit should use

invlpg instruction to flush TLB entry for this mapping after restoration, otherwise the

trace might not function well any longer.

2.7.11 Linear Address Space Confliction

When Target OS accesses (via #PF before shadowing) or maps (via linear tracing

facility) the linear range that has been occupied by Rootkit, Rootkit must relocate

itself to some other free region by adjusting the base address of its code segment

descriptor, which requires no content movement. In addition, after this relocation

hardware GDTR, IDTR must be reloaded with descriptors of Rootkit itself inside

these tables being adjusted accordingly, and MSR registers (describes the syscall entry

points) are also updated to point to the new entry address. As an optimization, Rootkit

may load initially into a special region known as not used by given Target OS.

2.7.12 The Changes in Paging System

² The Change of CR3: All instructions that access CR3 can be trapped, so

Rootkit may simply emulate them.

² The Change of Page Directory Table/Page Table: Because Target OS can not

perceive the change of CR3, also generally operating systems would map the

page directory table (and each page table) at a fixed linear address, Target

OS shouldn’t be able to access the region of shadow table unless it does by

accident, event so Rootkit can still protect its shadow page table in the same

way like what it does to protect its shadow GDT that we have talked before.

2.8 Virtualize TSS

Virtualizing TSS is essential to interrupt/exception emulation (ring 0~2 stack

pointer) and I/O instructions capture (I/O permission bitmap).

2.8.1 The Structure of Private TSS

 31

Most modern operation systems are not inclined to use the hardware task

mechanism, but the software task method instead to perform task switching manually.

For example, Windows XP just uses one TSS for all processes, whose descriptor

selector value is 0x0028 with DPL equal to 0, most fields in TSS are insignificant and

usually it doesn’t contain a valid I/O permission map (its offset beyond TSS limit),

and XP only updates PDBR, ring0 stack and I/O map offset fields in TSS upon task

switching (SwapContext).

Rootkit will provide a private (virtual) TSS and a TSS descriptor of its own for

use directly by real processor: the private TSS resides in Rootkit’s linear region,

which is pointed by Base field in TSS descriptor, while the private TSS descriptor

belongs to the Rootkit Descriptors portion in Shadow GDT with a relative higher

selector value (the selector value of VMware’s private TSS descriptor is 0x4000). The

ring0 stack field in TSS points to the private ring0 stack of Rootkit, which is

represented by a ring0 stack segment selector: stack pointer pair and must has

sufficient space, while the I/O permission map field may be configured according to

the current privilege level.

2.8.2 Target Store TR

str instruction can not be trapped at any privilege level, so by which Target OS

may find the value change of TSS selector, but it is still impossible for it to access the

TSS descriptor. Fortunately operation system would usually map the TSS to a fixed

linear address and keep the address in PCR structure (be the same as GDT and IDT),

the TSS descriptor selector value is also invariable (constant) and not necessary to be

obtained by str instruction at runtime.

2.8.3 Target Load TR

ltr instruction can be trapped, then Rootkit only needs to save the new TSS

selector value set with no traces installed on new TSS, and Rootkit will access Target

OS’s TSS only when it is necessary (forward interrupt/exception or emulate I/O).

Because most modern operating systems only use one TSS shared by all tasks (not

one TSS per task as before), Rootkit may hardly come across this instruction.

2.9 Virtualize Interrupt/Exception

 32

Virtualizing interrupt/exception is a prerequisite. Firstly because the kernel mode

privilege level has been lowered, it is impossible for Target OS itself to handle the

interrupt/exception directly. The interrupt/exception emulation helps to hide the fact

of virtualization, and avoids exposing the changes of segment selectors and some

flags bit in trap frame. In addition, interrupt/exception is the only approach for

Rootkit to gain execution control, and also handling various exceptions is the

foundation for it to play all kinds of virtualization tricks.

2.9.1 The Structure of Private IDT

Firstly let’s see a example of IDT under Windows XP (sp2):

lkd> !idt –a

Dumping IDT:

0: 804e0350 nt!KiTrap00 #DE

1: 804e04cb nt!KiTrap01 #DB

2: Task Selector = 0x0058 NMI

3: 804e089d nt!KiTrap03 #BP (int3)

4: 804e0a20 nt!KiTrap04 #OF(into)

5: 804e0b81 nt!KiTrap05 #BR

6: 804e0d02 nt!KiTrap06 #UD

7: 804e136a nt!KiTrap07 #NM

8: Task Selector = 0x0050 #DF

9: 804e178f nt!KiTrap09 #Coprocessor segment overrun

a: 804e18ac nt!KiTrap0A #TS

b: 804e19e9 nt!KiTrap0B #NP

c: 804e1c42 nt!KiTrap0C #SS

d: 804e1f38 nt!KiTrap0D #GP

e: 804e264f nt!KiTrap0E #PF

f: 804e297c nt!KiTrap0F reserved

10: 804e2a99 nt!KiTrap10 #MF

11: 804e2bce nt!KiTrap11 #AC

12: Task Selector = 0x00A0 #MC

 33

13: 804e2d34 nt!KiTrap13 #XF

14: 804e297c nt!KiTrap0F reserved

15: 804e297c nt!KiTrap0F reserved

16: 804e297c nt!KiTrap0F reserved

17: 804e297c nt!KiTrap0F reserved

18: 804e297c nt!KiTrap0F reserved

19: 804e297c nt!KiTrap0F reserved

1a: 804e297c nt!KiTrap0F reserved

1b: 804e297c nt!KiTrap0F reserved

1c: 804e297c nt!KiTrap0F reserved

1d: 804e297c nt!KiTrap0F reserved

1e: 804e297c nt!KiTrap0F reserved

1f: 804e297c nt!KiTrap0F reserved

20: 00000000 00000000 (KINTERRUPT ffffffc4)

.

.

.

29: 00000000 00000000 (KINTERRUPT ffffffc4)

2a: 804dfb92 nt!KiGetTickCount

2b: 804dfc95 nt!KiCallbackReturn

2c: 804dfe34 nt!KiSetLowWaitHighThread

2d: 804e077c nt!KiDebugService

2e: 804df631 nt!KiSystemService

2f: 804e297c nt!KiTrap0F

30: 806f2d50 hal!HalpClockInterrupt IRQ0

31: 821bcdd4

32: 804ded04 nt!KiUnexpectedInterrupt2

33: 81c40dd4

34: 822b543c

35: 804ded22 nt!KiUnexpectedInterrupt5

36: 804ded2c nt!KiUnexpectedInterrupt6

37: 804ded36 nt!KiUnexpectedInterrupt7

38: 806ecef0 hal!HalpProfileInterrupt

39: 823dc174

 34

3a: 804ded54 nt!KiUnexpectedInterrupt10

3b: 823e5984 IRQB(PCI IRQ)

3c: 82065cdc

3d: 804ded72 nt!KiUnexpectedInterrupt13

3e: 8234c044

3f: 8234bb3c IRQ0F

40: 804ded90 nt!KiUnexpectedInterrupt16

.

.

.

ed: 804df452 nt!KiUnexpectedInterrupt189

ee: 804df459 00e96800 (KINTERRUPT 804df41d)

 00000000 (KINTERRUPT 000000e4)

ef: 804df460 nt!KiUnexpectedInterrupt191

f0: 804df467 nt!KiUnexpectedInterrupt192

f1: 804df46e 0000eb68 (KINTERRUPT 804df432)

 00000000 (KINTERRUPT e8fffffc)

f2: 804df475 nt!KiUnexpectedInterrupt194

f3: 804df47c 0085e900 (KINTERRUPT 804df440)

 00000000 (KINTERRUPT 0000008b)

f4: 804df483 nt!KiUnexpectedInterrupt196

f5: 804df48a nt!KiUnexpectedInterrupt197

f6: 804df491 000000ef (KINTERRUPT 804df455)

 00000000 (KINTERRUPT 0000ee64)

f7: 804df498 000000f0 (KINTERRUPT 804df45c)

 00000000 (KINTERRUPT 0000ef64)

f8: 804df49f 000000f1 (KINTERRUPT 804df463)

 00000000 (KINTERRUPT 0000f064)

f9: 804df4a6 000000f2 (KINTERRUPT 804df46a)

 00000000 (KINTERRUPT 0000f164)

fa: 804df4ad 000000f3 (KINTERRUPT 804df471)

 00000000 (KINTERRUPT 0000f264)

fb: 804df4b4 000000f4 (KINTERRUPT 804df478)

 00000000 (KINTERRUPT 0000f364)

 35

fc: 804df4bb 000000f5 (KINTERRUPT 804df47f)

 00000000 (KINTERRUPT 0000f464)

fd: 804df4c2 000000f6 (KINTERRUPT 804df486)

 00000000 (KINTERRUPT 0000f564)

In the IDT shown above: the first 32 entries (0x0~0x1f) are exceptions reserved

by Intel, among these entries, NMI, #DF, #MC are handled particularly by task gate

mechanism, #BP and #OF are interrupt gates with DPL = 3, and all the rests are

interrupt gates with DPL = 0. The following 0x2a~0x2f are software interrupts portion,

which are interrupt gates with DPL = 3 except for 0x2f (DPL = 0), and 0x2d, 0x2e

serve as debug service and system call service respectively. Finally comes the

hardware interrupts portion, which are 0x30~0x3f and correspond to IRQ0~IRQf.

Rootkit provides a private IDT (resides in Rootkit space) that is pointed by

hardware IDTR, in which the basic layout of descriptors is almost a reprint of Target

OS’ IDT, and also a separate handler (stub) for each vector, which can be indexed by

each corresponding interrupt gate descriptor in private IDT. Because the generation of

hardware interrupts and exceptions don’t need to check (ignore) the DPL of gate

descriptors, all gate descriptors of Target IDT may keep their DPL unchanged in the

private IDT except for those software interrupts with DPL = 0, whose DPL must be

modified to 1 (or 3). Recurring to private IDT and TSS, Rootkit would be able to get

execution control at the first time when interrupt/exception occurs.

2.9.2 Handle Interrupt/Exception

When interrupt/exception occurs, the corresponding handler of Rootkit gets

invoked, and processor has created in advance a interrupt/exception frame in ring0

stack specified in Rootkit’s private TSS as follows:

On rootkit’s own stack (inter-privilege)

Low address:

 Error Code (if needed)

 EIP

 CS

 EFLAGS

 ESP

 SS

 36

High address:

The stack images pushed of SS, CS and EFLAGS would be the real values in

hardware registers during the running of Target OS, which may not be what Target OS

expects and must be fixed accordingly when forwarding. Before further processing,

Rootkit must save the Target OS’ context firstly, which involves primarily the

general-purpose registers and data segment registers. In order to access the whole 4G

address space, Rootkit may load DS with its own data segment in and switch it back

before returning to Target OS, otherwise iret instruction would invalidate DS register

due to privilege level unmatched (however, in practice Rootkit also may not use flat

mode segments of its own for the sake of easier code relocation). Rootkit may get to

know the running privilege level of Target OS when interrupt/exception happens

according to the SS and CS pushed in trap frame, moreover it can judge whether it is

an exception resulted from the virtualization of itself or not by considering all facts

comprehensively, which include the exception vector, error code, faulting address

(EIP) and #PF address (in CR2). For the exceptions as results of virtualization,

Rootkit may perform necessary processing and then return directly, on the other hand

for those hardware interrupts, software interrupts and exceptions incurred by Target

OS, Rootkit has to forward them to Target OS correctly.

The exceptions introduced by Rootkit virtualization include #PF, #GP and #NP

etc. Usually, #PF is due to the physical traces installed on some pages of Target OS by

Rootkit (or unmapping the pages where desynchronized segment descriptors reside),

the reason of #GP is in that all kinds of privilege related checkings may fail when

Target OS is running with degraded privilege level, while #NP is the result of Target

loading desynchronized segments. After various appropriate processing (omitted)

according to various situations, Rootkit may return to the location of faulting

instruction or its next instruction directly, moreover it may return immediately to the

location of transfer target if the faulting instruction is a certain control transfer

instruction, the detailed return steps include restoring segment and general-purpose

registers at first, then following a stack pop of error code, and a final iret instruction.

In contrast with the exceptions processing above, the forwarding of those

hardware interrupts, software interrupts and exceptions by Target OS are not as easy

as the emulation of those deferred interrupts by Windows HAL, which only needs to

simply execute a int xx (HalpHardwareInterruptxx), here in fact the word “forward”

means that Rootkit uses software method to accurately emulate the generation process

 37

of interrupt/exception by hardware processor, the involved steps are listed as follows:

² If it is a hardware interrupt, then decides whether it is allowed to generate or

not according to the related bits in IMR of virtual PIC and IF flag of

EFLAGS.

² Locates Target OS’ IDT and indexes the corresponding gate descriptor by

interrupt/exception vector and virtualized IDTR of Target OS.

² Decides whether a privilege switch should happen or not by comparing

Target OS’s current privilege level with the privilege level of target code

segment specified in gate descriptor.

² If a privilege switch should happen, then locates the corresponding

internal-ring stack pointer pair according to the privilege level of target code

segment and the virtualized TSS of Target OS (TR and GDT as well).

² Fakes a correct interrupt/exception frame on appropriate stack (the current

stack or stack of internal-ring) .

² Clears some flag bits in virtualized EFLAGS of Target OS according to the

type of gate descriptor.

² Transfers control to proper handler of Target OS, and the forwarding ends.

Actually we have omitted a series of protection checkings performed by real

processor in above-mentioned steps for simplicity, which may include the checking of

privilege level, type and limit etc. Anyone of these checkings fails, then the resulting

exception would be forwarded to Target OS in the first place before the current

interrupt/exception to be forwarded.

Before actual transferring to interrupt/exception handler of Target OS, Rootkit

would fake a correct interrupt/exception frame as follows on the appropriate stack of

Target OS:

On target’s current stack (intra-privilege)

Low address:

 Error Code (if needed)

 EIP

 CS

 EFLAGS

High address:

 38

On target’s inner stack (inter-privilege)

Low address:

 Error Code (if needed)

 EIP

 CS

 EFLAGS

 ESP

 SS

High address:

The stack images pushed of SS, CS and EFLAGS would all be the values when

Target OS runs natively (not be virtualized), which should absolutely be what Target

OS expects. For the reason that interrupt/exception handlers would usually distinguish

the format of trap frame by judging the RPL value of CS selector image on stack, for

example Linux decides whether or not it is a inter-privilege level transfer by

comparing RPL of CS selector image with 3. Therefore creating correct

interrupt/exception frames on appropriate stacks of Target OS may ensure the proper

running of Target OS, and also avoid exposing the fact of virtualization.

The actual transfer from Rootkit to Target OS’s interrupt/exception handler is

completed by a iret instruction, before that Rootkit should fake a interrupt/exception

frame on the stack of its own, which would eventually emulate a inter-privilege level

return to Target OS. The interrupt/exception frame created as follows:

On rootkit’s own stack (inter-privilege)

Low address:

 EIP

 CS

 EFLAGS

 ESP

 SS

High address:

The CS:EIP pair is the address of Target OS’s interrupt/exception handler that is

specified in gate descriptor, and the RPL of CS must be fixed according to the

segment compression scheme used. The SS:ESP pair is either the current stack of

Target OS or internal-ring stack taken from its current TSS, also the RPL of SS

(internal-ring stack) must be adjusted. As to the EFLAGS, we may clear some flag

 39

bits (TF, NT, VM, RF and IF when an interrupt gate used) on the base of the value

pushed on the stack when Target OS traps to Rootkit, however the hardware IF must

always set, so we only clear IF flag in the virtualized EFLAGS of Target OS in stead

of the real one.

Here we assume that all interrupt/exceptions are generally handled by Target OS

kernel mode, although there may surely exist some exceptions, such as the XOK

operating system which handles some non-critical exceptions and software interrupts

in user mode routines. When Target kernel mode being compressed to ring1, because

the CS selector RPL (0) in trap frame < CPL (1), Target OS’s inner-privilege level

return (return to the same privilege level) would definitely incur a #GP, which then

needs Rootkit to help to emulate the iret instruction, while its inter-privilege level

return may go natively. When Target kernel mode being compressed to ring3, the

inner-privilege level return would also need to be emulated by Rootkit because it is

impossible to return to a code segment with higher privilege level in x86, while the

inter-privilege level return may happen by error since it is considered as an inner

return (CS RPL and CPL are both 3), which then leads Target OS to a wrong routing.

It is advantageous for perfect virtualization of the flags bits modification by iret

instruction that Rootkit interposes and emulates the interrupt/exception return of

Target OS, a feasible approach is that Rootkit puts a invalid EIP that points to its own

linear space when it fakes the trap frame on Target stack, in this way it not only

doesn’t expose the virtualization footprints, but also ensures that every iret of Target

OS would incur a #GP because the target EIP beyond the limit of target code segment,

and then give Rootkit a opportunity to perform emulation.

2.9.3 Target Store IDTR

sidt instruction can not be trapped at any privilege level, so by which Target OS

may find the change of IDT base (usually limit is unchanged 0x7ff), but it is still

impossible for it to access the descriptors inside it. Fortunately operation system

would usually map the IDT at a fixed linear address and keep the address in PCR

structure (be the same as GDT and TSS), therefore no need to obtain it via sidt

instruction at runtime.

2.9.4 Target Load IDTR

 40

lidt instruction can be trapped, then Rootkit only needs to save the new IDT’s

base and limit set with no traces installed on it, and Rootkit will access Target OS’s

IDT only when it is necessary (forward interrupt/exception). Because most operating

systems only set IDT in system initialization phase and don’t modify it anymore,

Rootkit may hardly come across this instruction.

2.10 Virtualize Devices

Because VM Based Rootkit is not a full-fledged machine virtualization project, it

is impossible and unnecessary to provide a complete set of virtual devices for Target

OS, what Target OS saw are still those real physical hardware, however this doesn’t

mean Rootkit has no ability to interpose and control the device related operations of

Target OS. Because of the opportunity when Rootkit starts, it has no chance at all to

do anything to the device enumeration and configuration process (also known as PCI

probing), but it can undoubtedly control the succedent device operations after that.

Next we are going to discuss briefly how to virtualize four general device operations.

2.10.1 Port Mapped I/O

Rootkit can utilize the IOPL flag bit combined with I/O permission map to

capture all in/out instructions that issued by Target OS to access I/O address space. It

goes like this: Whichever privilege level Target OS is running at, the hardware IOPL

will be always set to 0 to prevent Target OS from enabling/disabling interrupt by

using sti/cli instruction pair. When virtualized CPL <= virtualized IOPL , that means

Target OS is running with I/O access right, all other relevant bits in private TSS I/O

permission map will be cleared except for those ports for which Rootkit cares. While

virtualized CPL > virtualized IOPL, all cleared bits above mentioned will be set to the

current values of Target OS’s real TSS. Once the I/O port accesses being captured,

Rootkit may discard, modify (perform real I/O access for the Target OS, but do some

modifications on incoming/outgoing data) or emulate them according to the

requirements.

2.10.2 Memory Mapped I/O

Some devices have registers or storage regions which are shown as the form of

 41

mapped memory, that means these stuffs are mapped directly into the processor’s

physical memory address space and processor may use ordinary memory-reference

instructions to access them, for instance the registers of Local APIC and video buffer

(VRAM). Rootkit may utilize the paging mechanism provided by processor to capture

these memory mapped I/O: simply unmapping its physical pages or enforcing some

page protections on its corresponding linear pages both allow Rootkit to get chances

to virtualize the access to memory mapped devices.

2.10.3 Hardware IRQ

We have discussed fully the capture and forwarding of hardware interrupt in

previous chapters, what still deserves a few words here is the virtualization of

interrupt controller. Target OS may frequently configure the interrupt mask register

when running, while for Rootkit, masking some IRQs (clock interrupt IRQ0) may

result in the its loss of control, therefore it must maintain a virtual interrupt controller

by itself. The structure and working principle of APIC used in SMP system are

relatively complex, while virtualizing a PIC seems much easier, which is some similar

to the virtualization of IRQL in Windows kernel. Rootkit creates and maintains a

virtual PIC of its own, which further includes the interrupt mask register, interrupt

request register, interrupt in-service register (IMR, IRR, ISR) etc, all captured

operations to relevant ports of hardware PIC would eventually be reflected to this

virtual PIC, and then Rootkit may use the state information in such a virtual PIC to

make decision when forwarding hardware interrupts.

2.10.4 DMA

The DMA operation of device is a big headache to virtualization, especially

under the circumstance when the current PCI bus allows the PCI devices (interfaces in

fact) to become the master devices of bus, and to perform so-called Bus Mastering

DMA. Whichever DMA method being used, the third-party DMA through system

DMA controller (two cascaded 8237) or the Bus Mastering DMA, it is extremely

disadvantageous for virtualization in that Target OS may exploit device DMA to

access any desired real physical memory page, which may bypass all the memory

protections imposed by Rootkit’s segment/paging virtualization strategies, and

potentially destroy the memory regions occupied by Rootkit itself. Presently the best

 42

solution is to capture the address setting actions to system DMA controller or related

DMA registers in PCI interfaces (such as DMA region table and BMIDTPX register

in IDE interface), and to fully emulate them, however this would undoubtedly reduce

the generality heavily, and increase implementation complexity at same time. Besides

there is another workaround, which marks the physical pages occupied by Rootkit as

bad (such as parity error) in PFN database maintained by Target OS to prevent it from

using those pages thereafter, but its obvious disadvantage is the introducing of new

virtualization footprints. AMD Pacifica uses DEV (Device Exclusion Vector)

technique to enforce DMA protection.

2.11 The Payload of VMBR

After VM Based Rootkit being loaded as an intermediate layer between Target

OS and the real hardware, what it can see directly are just those hardware related

events, such as instruction executions, interrupt requests and I/O operations, however

Rootkit may also control the internal running logics and states of Target OS by using

VMI (Virtual Machine Introspection) technique.

In fact, what a VM Based Rootkit can really do only depends on your

imagination, here I will demonstrate how to hide specified process in icesword (a

famous rootkit revealer by Chinese) in my VMBR prototype. For the purpose of

anti-debugging, icesword periodically restores the int 1 and int 3 vectors in IDT to

their original values which should point to the debug and breakpoint exception

handlers provided by Target OS, and also it may clear the debug registers (dr0 ~ dr3)

to prohibit hardware breakpoints, however all of these anti-debugging methods are

useless in a virtualized environment because all sensitive operations are actually

emulated by Rootkit. Having broken through the obstacle of anti-debugging, the left

works seem much easier, we set a hardware breakpoint at the function used by

icesword to enumerate processes (ExEnumHandleTable, undocumented), then another

breakpoint at the location of the callback function which is passed as an argument.

When callback function called, we simply filter out the desired process by comparing

the process identifier. A companion application is used combined with VMBR, which

communicates to VMBR stealthily by a software breakpoint instruction (int 3) with

eax equal to a magic number and ebx equal to the desired process identifier. By

comparing the two following pictures, we can see that the command line process

(CMD.exe, pid 808) has been hidden from the process list.

 43

Diagram 2－3 the demonstration of hiding specified process (before)

Diagram 2－4 the demonstration of hiding specified process (after)

 44

Chapter 3 Conclusion

Because x86 is not a strictly virtualizable processor architecture, at present my

VMBR prototype has not implemented a perfect virtualization with the lack of binary

translation or dynamic scanning techniques, however this proof of concept has at least

proved that it can coexist with Target OS and work properly, which further validates

the correctness of the whole virtualization scheme that we discussed.

My future works include 1) trying to support more Target OSes (only Windows

2000 is eligible for serving as Target OS now), 2) adding more supports for advanced

processor features, such as SMP and SMM etc, 3) introducing simple dynamic

scanning module to deal with those non-virtualizable instructions of x86.

We can see very clearly from the following diagram, when running at a

virtualized environment, the executions of all privileged instructions of Target OS

would inevitably incur exceptions and be emulated by VMBR.

Diagram 3－1 VMBR prototype running within a debug version of Bochs

 45

Acknowledgement

First, I have to say that actually many contents in this paper are the abstractions

and summaries of viewpoints or concepts of many forthgoers in virtualization field,

without their great works, it was impossible for me to complete this paper so

smoothly.

Secondly, I would like to thank my colleague Borun Song. The discussions

between us have provided me many inspirations on technical aspect.

In addition, I must say thanks to my colleagues Jiayu Zang and my friend

Chuandong Zheng. Miss Zhang teaches me how to use MS Word for typesetting, and

as the final reviser Mr. Zheng ensures the text quality of this paper.

Finally, once again, let me express my most sincere thanks to all people who

make contributions to this paper!

 46

References

【1】 Intel Corporation 《Intel Architecture Software Developer’s Manual

Volume 2》 1997

【2】 Intel Corporation 《Intel Architecture Software Developer’s Manual

Volume 3》 2003

【3】 VMware Inc. 《System And Method For Virtualizing Computer Systems》

Dec. 2002
【4】 VMware Inc. 《System And Method For Facilitating Context-Switching

In a Multi-Context Computer System》 Sep. 2005

【5】 VMware Inc. 《Deferred Shadowing of Segment Descriptors In a Virtual

Machine Monitor For a Segmented Computer Architecture》 Aug. 2004

【6】 VMware Inc. 《Dynamic Binary Translator With A System And Method

For Updating And Maintaining Coherency Of A Translation Cache》 Mar.

2004
【7】 VMware Inc. 《Method And System For Implementing Subroutine Calls

And Returns In Binary Translation SubSystem Of Computers》 Mar.

2004
【8】 John Scott Robin, Cynthia E. Irvine 《Analysis of the Intel Pentium’s

Ability to Support a Secure Virtual Machine Monitor》 Aug. 2000

【9】 K. Lawton 《Running Multiple Operating Systems Concurrently On an

IA32 PC Using Virtualization Techniques》 1999

【10】Samuel T. King, Peter M. Chen, Yi-Min Wang 《SubVirt Implementing

Malware With Virtual Machines》 2006

【11】Jeremy Sugerman, Ganesh Venkitachalam, Beng-Hong Lim
《Virtualizing IO Devices on VMware Workstation’s Hosted Virtual

Machine Monitor》 Jun. 2001

【12】Charles L. Coffing 《An x86 Protected Mode Virtual Machine Monitor

for the MIT Exokernel》 May. 1999

【13】Prashanth P. Bungale, Swaroop Sridhar, Jonathan S. Shapiro
《Low-Complexity Dynamic Translation in VDebug》 Mar. 2004

【14】Prashanth P. Bungale, Swaroop Sridhar, Jonathan S. Shapiro
《Supervisor-Mode Virtualization for x86 in VDebug》 Mar. 2004

 47

【15】Jack Lo 《VMware and CPU Virtualization Technology》 2005

【16】Dave Probert 《Windows Kernel Internals II Virtual Machine

Architecture》Jul. 2004

【17】Steve McDowell, Geoffrey Strongin 《Virtualization Technology For

AMD Architecture》

【18】Narendar B.Sahgal, Dion Rodgers 《Understanding Intel® Virtualization

Technology (VT) 》

